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Abstract 

 

The question of optimal asset allocation strategy for defined contribution (DC) pension 

plans is addressed. A primary motivation for this study is provided by the recent literature 

on behavioural finance and intertemporal life-cycle investment theory. 

 

In this thesis two alternative utility forms are considered: loss aversion and Epstein-Zin 

recursive utility. We develop a dynamic-programming-based numerical model with 

uninsurable stochastic labour income and borrowing constraints. In the loss aversion case, 

members are assumed to be loss averse with a target replacement ratio at retirement and a 

series of suitably defined interim target prior to retirement. We also extend the 

intertemporal life-cycle saving and investment theory to the dynamic asset allocation 

problem of DC pension schemes. A new approach to model contribution and investment 

decisions with focus on the member’s desired pattern of consumption over the lifetime 

(based on Epstein-Zin utility preference) is proposed. 

 

The thesis draws on empirical evidence of salary scales and loss aversion parameters 

from UK households, with labour income progress estimated from the New Earnings 

Survey and loss aversion parameters estimated on the basis of face-to-face interviews 

with 966 randomly selected UK residents. 

 

 

 



1 
 

Chapter 1  

 

Setting the Scene  

 

 

 

1.1 Statement of the Problem 

 

Pension planning is probably the longest and most important financial decision that an 

individual has to make over their lifetime. The investment and asset allocation strategy in 

relation to pension funds has a profound effect on the capital market. To employers, the 

process of choosing a pension provider is one of the most important decisions an 

employer can make and one which can reflect directly on business and staff retention. To 

employees, even a small change in saving and investment decisions can have significant 

influence on their retirement standard of living.  

 
 
 

1.1.1 Why defined contribution pension plans? 

 

Basically, there are two types of pension plans: Defined Benefit (DB) and Defined 

Contribution (DC). Generally, in a Defined Benefit (DB) pension plan, the amount of 

retirement income of employees depends on the number of years they worked for the 

employers and the level of their salary when they retire, i.e. their final salary. A Defined 

Contribution (DC) pension plan is also called a money purchase plan. The level of 

contributions (made by employer and employee) is preset, but the amount of retirement 

income is not. The investment performance and longevity risks of the pension are borne 

by the employee, not the employer.  
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Important changes are occurring in the overall occupational pensions landscape. 

Traditionally, DB plans have been the dominant form of occupational pension provision 

in the UK, but a combination of increasing regulation and external market factors have 

led a growing number of employers to close their plans to new or even existing members 

and set up DC plans in their place. Some of the factors include new accounting rules 

forcing schemes to value their liabilities at current market rates, the prolonged equity bear 

market of 2000-2003, a secular fall in interest rate yields which are used to discount 

pension liabilities, and above all, longer life expectancy. The government is aiming to 

shift the current 60:40 state/private pension sector ratio to 40:60. An increasing number 

of workers now have to reply on defined contribution schemes to provide their future 

retirement income, either through a scheme set up by their employer or a personal 

pension as a group or individual arrangement, which is primarily the reason of objectives 

of this research.  

 

 

 

1.1.2 The investment problem with DC plans 

 

DC pension plans are designed to provide pensions on retirement for members. In a DC 

pension scheme, the member contributes part of his or her labour income each year and 

builds up a pension fund before retirement. At retirement, the member annuitises part of 

the pension fund by buying a life annuity. Unlike defined benefit (DB) pension plans, 

there is no guarantee offered by the employer that a pension fund will pay out a set 

amount on retirement. The investment performance risk of the pension is borne by the 

employee, not the employer.  

 

Members in a DC pension plan face the following risks: 

• Inflation risk. The risk that the value of assets do not keep pace with inflation 

thereby eroding the purchasing power of the final pension;  

• Annuity risk. The risk that as the member approaches retirement the cost of 

purchasing an annuity fluctuates significantly; 
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• Investment risk. The risk that the value of the member’s assets drops significantly 

when very close to retirement and there is little scope for recovery 

 

Most DC plans allow members a degree of choice about how to invest their contributions. 

They also normally offer a default option in which the member’s contribution is 

automatically placed if the member does not actively choose a fund. However, many 

members show little interest in financial matters and have little knowledge about 

investment. They often readily accept the default options. Choi et al. (2002) studied the 

tendency to accept scheme default options in the US and found that very few employees 

opt out of default arrangements even when they are free to do so. A similar tendency to 

accept the default is found in the UK. Hewitt Bacon and Woodrow, the pension 

consulting firm, found that around 80% of members in UK DC schemes accept the 

default fund choice (Bridgeland 2002). As Blake et al. (2005, p4) claimed in their studies 

of UK stakeholder pensions, “The vast majority of pension scheme members appear to 

passively accept whatever default fund the pension provider has chosen, but there is little 

consensus amongst providers as to what the appropriate characteristics for a default fund 

are, despite the importance of the choice in determining pension outcomes. In this sense, 

stakeholder pension schemes can be characterised as a lottery for the members”.  

 

In practice, a traditional deterministic lifestyle investment strategy (e.g. 5 year lifestyle, 

as shown in Figure 1 below) is widely used by many DC pension plans as the default 

option. In such a strategy, the pension wealth is invested entirely in high risk assets (e.g. 

equities) when the member is young. Then, as the individual approaches retirement, the 

assets are switched gradually into lower risk assets such as bonds and cash. This provides 

a pre-determined switching strategy for members who do not wish to take an active role 

and represents a compromise between risk and reward.  
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Figure 1: 5-year deterministic lifestyle strategy 
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But, recent research suggests that a traditional deterministic lifestyle investment strategy 

still leaves members with considerable exposure to volatility in the years preceding that 

gradual switch. The range of potential results (in terms of both final fund levels and 

retirement income) from a traditional lifestyle strategy is huge. This makes it very 

difficult for a DC member to have any idea of what level of retirement income they can 

expect. For DC members who seek greater certainty in their retirement planning, the asset 

strategy adopted needs to be far more focused on achieving their retirement targets. 

 

 

 

1.2 Dynamic asset allocation 

 

1.2.1 Short-term investment strategy (two-period model) 
 

Modern finance theory started with the mean-variance analysis of Markowitz (1952), 

which shows how investors should select assets if they only care about mean and 

variance of their end-of-period wealth. His analysis is shown in Figure 2.  
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A riskless asset (cash) corresponds to a point on the y-axis. The tangent point where the 

straight line touches the curved line is the market portfolio, which is the best mix of risky 

assets. Investors can pick a point somewhere on this upward-sloping line depending on 

their risk attitudes. This is also called mutual fund separation theorem. 

 

Figure 2: Markowitz mean-variance theory 
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If we assume that investors have utility defined over final wealth (i.e. making investment 

decisions to maximise the expected utility of final wealth), in order to get a tractable 

solution, several assumptions about the utility function and distribution of asset returns 

need to be made. Some popular assumptions are the following: 

1. Quadratic Utility, in which case, ( ) 2

111 +++ −= ttt bWaWWU , absolute and relative 

risk aversion increases with wealth. No distributional assumptions on asset returns 

are needed. 

2. Exponential Utility, in which case, ( ) ( )11 exp ++ −−= tt WWU θ , absolute risk 

aversion is a constant θ , relative risk aversion increases with wealth. Assets 

returns are assumed to be normally distributed.  

3. Power Utility, in which case, ( ) ( ) ( )γγ −−= −
++ 1/11

11 tt WWU , absolute risk aversion 

decline with wealth and relative risk aversion is a constant γ . Asset returns are 

lognormally distributed.    
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1.2.2 Long-term investment strategy (multi-period model) 
 

Intuitively, long-term investors are different from short-term investors, because long-term 

investors have a longer investment horizon and they could change the portfolio decision 

when any new information arrives or simply just as time passes. However, according to 

the analysis of Markowitz, it seems that all investors who only care about mean and 

variance of final portfolio wealth should hold the same portfolio of assets, no matter 

whether they have a short-term or a long-term investment horizon. Is this really correct? 

 

The answer is yes, as long as the following conditions are met:  

1) the risky asset returns are independent identically distributed (IID);  

2) investment opportunity set is constant (i.e. constant risk-free rate, constant 

expected return and constant volatility); 

3) investors’ relative risk aversion coefficient does not depend systematically on 

their wealth. 

 

These points have been understood for many years. In a discrete time framework, 

Samuelson (1963, 1969) proposed a dynamic programming model to explain this.  We 

will discuss this method later but the main idea is to use a series of two-period problems 

to solve the multi-period optimisation problem recursively. In the last time period, the 

long-term investor actually faces a two-period optimisation problem and will become a 

short-term investor. Since the asset returns are IID and investors’ risk attitudes do not 

change over time, the results for all the two-period maximisation problems should be the 

same. In other words, long-term investors should behave like short-term investors in this 

case. 

 

Merton (1969, 1971) was the first to apply this approach to a continuous-time optimal 

investment problem. The continuous-time models can be seen as the limit of the multi-

period discrete-time models when the time period becomes very small. Merton’s model 

suggests that, in the single-risky-asset and constant-investment opportunity setting, the 
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optimal portfolio weight in the risky asset for an investor with power utility should equal 

the risk premium ( µ ) divided by variance of the risky asset returns ( 2σ ) times the 

coefficient of relative risk aversion (γ ): 

2γσ

µ
α =

 

[1] 
  

 
Another interesting point to note about long-term investors is that they are more 

concerned with the standard of living that can be financed by wealth, rather than the final 

wealth level itself. Or, as explained by Campbell and Viceira (2002), “they consume out 

of wealth and derive utility from consumption rather than wealth” (p37). For example, let 

us assume long-term investors have power utility on consumption and only have two 

assets to invest (one risky and one riskless). They face a wealth accumulation process as 

follows: 

 

( )1 ( ) (1 ) 1 (1 )t t t t f t hW W C r rα α+
 = − − + + +   

 [2] 
 

where fr is the risk-free interest rate; hr is rate of investment return of risky asset; tW  and 

tC are the wealth and consumption level at time t respectively. 

 

In this case, the optimal dynamic asset allocation on risky assets ( tα ) should maximise 

the expected present value (EPV) of total future consumption utility, i.e., 

∑
∞

=
+

0

)(max
i

it

i

t CUE β
 

                                               
[3] 

 

where β  is the time discount factor, representing the relative weight investors put on 

future consumption.  
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An approximate closed form solution is available for this problem. Campbell and Viceira 

(2002) showed that, for above long-term investors with power utility over consumption, 

the optimal portfolio weight should still be the same as suggested in[1], if the 

consumption-wealth ratio is constant over time. 

 

 

1.2.3 Financial and human wealth 
 

So far we have briefly reviewed the research history of long-term portfolio choice with 

financial assets only. In a realistic life-cycle saving and investment model, however, 

labour income is also important for long-term investors. With income risk, the optimal 

portfolio weight is not constant and will follow a “lifestyle” strategy. This can be 

explained. Human wealth can be understood as the expected net present value (NPV) of 

future labour income. An individual’s labour income can be seen as a dividend on the 

individual’s implicit holding of human wealth. The ratio of human to financial wealth is 

the crucial determinant of life-cycle portfolio composition.  

 

In early life, as shown in Figure 3 below, the ratio is large because people have little time 

to accumulate financial wealth and expect to receive labour earnings for many years. 

Given that the growth rate of labour income is close to the risk-free rate, labour income 

can be seen as an implicit substitute of riskless asset. Young individuals hold “too much” 

in this non-tradable riskless asset and therefore need to allocate most their financial 

wealth to risky assets to keep the overall portfolio composition constant. When they grow 

older, they accumulate more financial wealth and have less human wealth left (i.e. a 

smaller holding in this implicit non-tradable riskless asset). Thus, they need to rebalance 

the portfolio and increase the weight in the riskless asset.  
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Figure 3: Financial and human wealth over the lifecycle up to retirement 
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1.2.4 The consumption problem 
 

Most economic decisions are intertemporal, as current decisions made will affect future 

available choices. Decisions regarding the funding and investment strategies adopted for 

retirement savings are a classic example of this. The retirement saving decisions made 

today affects not only an individual’s current level of consumption but also future 

consumption possibilities. In other words, individuals face an intertemporal trade-off: if 

they save more today, they must consume less and hence their current utility declines, but 

they can then consume more in the future (thereby increasing future utility).  

 

In fact, the most basic objective of a DC pension scheme (or all types of pension 

arrangements) is to arrange consumptions over life cycle. The member’s decision of 

contribution rate, portfolio asset allocation and the proportion of the accumulated fund 

used to purchase an annuity, are all driven by his or her preference between current and 

future consumptions. Thus, as a result, the optimal asset strategy of DC pension plans 
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should depend on the pattern of consumption levels over the entire lifetime, rather than 

just focusing on the terminal pension wealth level at retirement. 

 

 

1.2.5 Optimisation methods 
 

The inclusion of labour income will make the life-cycle investment model more realistic. 

As a tradeoff, the optimisation problem becomes very difficult (if not impossible) to 

solve analytically. Therefore, the recent literature uses a variety of numerical methods to 

approximate the solution of the dynamic portfolio optimisation problem. 

 

Dynamic programming
1
 

Dynamic programming was originally used in the 1940s by Richard Bellman to solve 

discrete-time optimisation problems. Since then, it has become one of the most 

fundamental building blocks of numerical methods in multi-period portfolio choice 

problems.  

 

The basic idea is to turn the multi-period optimisation problem into a series of two-period 

optimisation problems. At the heart of dynamic programming is the value function, which 

represents the maximum present discounted value of the objective function onward as a 

function of current state variables. For each period, going backward from the next-to-last 

period to the beginning, the solution is found by maximising the one-step ahead 

expectation of the approximated value function. 

 

To explain the idea into more detail, let us look at one simple example. At age t , an 

investor faces a long-term multi-period portfolio choice problem to maximise the 

expected present value (EPV) of total utility of consumption ( 65U ) at retirement age 65. 

We simplify the problem and make the following assumptions: 

• there are only two financial assets to choose: one risk-free asset ( fR ) and one 

risky asset ( hR ); 

                                                 
1 Dynamic programming method is also used in our models later on to solve the optimisation problem numerically. 
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• The risk-less asset is assumed to yield a constant interest rate fr  p.a. 

• The return on the risky asset ( hR ) is assumed to be normally distributed with 

mean µ+fr , and volatility of 1σ ; 

• the investor has a wealth level of tW  at age t ;  

• the investor has a salary level of tY  at age t ; the growth rate of salary is given 

by 2ZrI It +=   where
Ir is the annual growth rate of average salary 

and ),0(~ 2

22 σNZ ; 

• the investor has time-separable power utility (
γ

γ

−
=

−

1
)(

1

t

t

C
CU ) on consumption at 

age t ;  

• the investor is allowed to rebalance her portfolio annually; 

• the investor will consume all available wealth in the last period. 

 

The optimisation problem is ∑
∞

=

+

0
,

)(
i

it

i

t
C

CUEMax
tt

β
α

, subject to the constraint that 

1 1( ) [(1 )(1 ) (1 )]
t t t t t f t f

W W Y C r r Zα α µ+ = + − ⋅ − + + + + + , where 
tα is the asset allocation 

in risky assets  at age t , β  is the time discount factor, and ),0(~ 2

11 σNZ ; 

 

We start from the next-to-last period, i.e. the period from age 64 to age 65. Specifically, 

at age 64, the value function is ( ) [ ])(, 656464646464
64

JEUMaxYWJ β
α

+= , where 
γ

γ

−
=

−

1

1

65
65

W
J . 

As an important step of stochastic dynamic programming, we need to discretise the state 

variables (wealth level and income level, in this example) first. For example, wealth and 

labour income can be discretised into 100 and 10 even grids, respectively, in computation, 

so that we can calculate the optimal control variables ( tα , tC ) and value function for each 

grid point on the 100 by 10 matrix. 

 

To approximate the expectation term in the value function, by far, the most popular 

approach is quadrature integration. Gauss-Hermite quadrature is used to discretise shocks 
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(normally distributed variables for the risky asset return and salary growth rate, in this 

example) into several (e.g. 7) nodes, and the procedure of discretising 1Z  and 2Z  is to 

substitute 1,2 mZ and 2,2 nZ for them respectively. So, 

( ) ( ) ( ) ( )[ ]1,1,2,11

7

1

7

1

1

21211111 ;2,2,,
2,,1 +++

= =

−
∞

∞−

∞

∞−

++++ ∑∑∫ ∫ ≈= ttnmtZ

m n

Zttttt YWZZJwwdZdZZZfYWJJE
nm

π

, where 
1,mZw , 

2,nZw and 1,mZ , 2,nZ  are the Gauss-Hermite quadrature weights and nodes.  

As soon as we get optimal asset allocation and value function for each grid point at age 

64, we can then use them to solve the optimisation problem with the same 100 by 10 

matrix for previous time period, i.e. ( ) [ ])(, 646363636363
63

JEUMaxYWJ β
α

+= . It is very 

likely that the accumulated state variable values from the previous time period are not on 

a grid point, in which case, some interpolation methods (e.g. bilinear, cubic spline, etc. ) 

are employed to approximate the value function ( 64J , in this case). The iteration process 

is then repeated backward until the beginning.  

 

The above numerical method is called value function iteration. However, this approach 

requires knowledge of the distribution of all the shocks, so that appropriate quadrature 

integration (e.g. Gauss quadrature) can be used. Further, it cannot handle a large number 

of state variables. To overcome these limitations, Brandt et al. (2005) propose a 

simulation-based method based on recursive use of approximated optimal portfolio 

weights. The idea is to estimate asset return moments with a large number of simulated 

sample paths then approximate the value function using a Taylor series expansion. Also, 

if the returns are path-dependent, it would be necessary to regress the return variable on 

the simulated state variables from the previous time period, before using the Taylor 

expansion with conditional return moments. 

 

In a continuous-time framework, Bellman extends earlier work with William R. Hamilton 

and Carl G. J. Jacobi and derives Hamilton-Jacobi-Bellman (HJB) equation, which 

represents the fundamental partial differential equation obeyed by the optimal value 

function. This then becomes the so called stochastic optimal control theory.   
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Since most of the models in my PhD research are based on a discrete-time setting, 

continuous-time models are out of the scope of this thesis. Continuous-time models areas 

appear to be a fruitful area of future research. The biggest benefit of using continuous-

time models is that the mathematical calculations are easier in continuous time (and 

therefore it might be easier to get closed-form solutions). But if we need to use numerical 

methods to solve the problem, discrete-time and continuous-time models are in fact very 

similar in terms of methodology.  

 

 

 

1.3 Behavioural issues 

 
In a DC pension plan, the investment performance risk is borne by the employee, not the 

employer. The participants have more responsibilities in terms of deciding how much to 

save and how to invest the funds. DC plans have traditionally been regarded as 

employee-directed with employees seen as the active agents and the employer thought to 

play a minimal decision-making role. But, in fact, pension plan design is not a neutral 

vehicle within which participants make their own rational choices based on rational 

expectations. Instead, participants have a strong tendency to choose default options in DC 

schemes. They can be easily influenced by plan design, both in the saving area and in the 

investment decision-making as well. 

 

 

1.3.1 The existing literature on DC investment 
 

Cairns (1994) reviewed and divided the objectives of defined contribution (DC) pension 

research into two categories: (a) members are told the likely future amount of pension 

and expect the target to be attained, in which case, we need the actual pension to be as 

close to this level as possible; or (b) members are told the actual pension only at the date 

of retirement, in which case, we would need to maximise the expected utility of the net 

replacement ratio at retirement.  
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If equity returns are mean-reverting, to hold equity for a long period before retirement 

can be justified because the volatility of equity returns will be lower over a longer time 

period. But Howie and Davies (2002) finds limited evidence on mean-reversion of UK 

equity prices (or time diversification, which is mathematically the same thing). Also, as 

discussed earlier, to have a fixed asset allocation is not appropriate for long-term 

investors. DC pension plan members normally have a 20 to 30 year investment horizon 

and expect to receive many years of pension income after retirement. Thus, it is also 

necessary to consider non-pension assets2 (e.g. labour income) and have a more dynamic 

investment solution. 

 

With regard to the dynamic asset allocation problem for DC pension plans, most of the 

existing literature investigates the optimal dynamic asset strategy of DC pensions by 

assuming a fixed contribution rate (e.g. 10%, 12%) and maximising the expected utility 

of the terminal replacement ratio (i.e. pension as a proportion of final salary) at retirement 

(for example, Cairns et al. (2006)) or by minimising the expected present value of the 

total disutility3 until retirement (for example, Haberman and Vigna (2002)).  

 

Haberman and Vigna (2002) derived a dynamic-programming-based formula for the 

optimal investment allocation in DC schemes and considered three risk measures in 

analyzing the final net replacement ratio: the probability of failing the target, the mean 

shortfall and the value at risk (VaR). They suggested that the risk profile of the individual 

and the trade-off between different risk measures of the downside risk are important 

factors to be taken into consideration. According to their research, only risk averse 

members should adopt a lifestyle strategy and the switching point depends on the degree 

of risk aversion of members and the time to retirement, i.e. the more risk averse, the 

sooner the switch; the longer the accumulation period, the later the switch. 

 

                                                 
2 In real life, other non-pension assets such as housing also plays an important role in the member’s financial planning. 
However, this is out of the scope of our models in this thesis.   
3 The disutility is normally defined over the deviation of actual fund level from interim and final target fund levels.  
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Cairns et al. (2004) investigated a model incorporating asset risk, salary risk and interest-

rate risk and proposed a new form of terminal utility function by using the plan members’ 

final salary as a numeraire. They showed that the use of a stochastic asset allocation 

strategy (which they called stochastic lifestyle) could enhance the welfare relative to 

deterministic lifestyle and benchmark mixed funds strategy.  

 

 

1.3.2 Differentiators 
 

Application of behavioural features in DC plan design 

As argued by Mitchell and Utkus (2004), defined contribution (DC) plans can provide 

real retirement security, but only if participants utilise them appropriately and make 

optimal investment decisions. There is growing evidence suggesting that there are key 

behaviour barriers preventing participants from doing so. One obvious solution to dealing 

with significant behavioural barriers to the effective use of DC plans for retirement 

provision is to offer some form of education to participants, but intelligent plan design is 

also required when some participants show little interest in financial matters and readily 

accept default options.  

 

Representing an alternative way of looking at financial market, behavioural finance 

research is quite helpful for pension plan design. Behavioural finance is a combination of 

psychology and economics that investigates what happens in markets in which some of 

the agents display behavioural limitations and complications. Most behavioural studies 

have an empirical component in common and show a high predictive value. The 

fertilisation of economics with psychology and empirical evidence makes it interesting 

and promising in the pension plan design field. We believe behavioural studies are useful 

tools to improve both the design of pension schemes and the efficiency of communication. 

 

Loss-aversion dynamic asset allocation 

The concept of risk and risk aversion are cornerstones of economic modelling. Within the 

expected utility framework, the only explanation for risk aversion is that the utility 
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function for wealth is concave. People are assumed to be risk-averse expected utility 

maximisers and make rational choices based on rational expectations. To date, the 

investment problem of DC pension plans has been addressed principally for life cycle 

expected utility optimizers.  

 

However, as will be discussed later in Chapter 2, observed behaviour appears to 

invalidate expected utility theory as a descriptive model. Instead the use of loss aversion 

(LA) utility seems quite promising and helpful in modelling the optimal dynamic asset 

allocation of DC pension funds.  

 

The idea of “loss aversion” was first proposed by Kahneman and Tversky (1979) within 

the framework of prospect theory4. As one of its distinguishing features, the loss aversion 

value function is defined on gains and losses of wealth relative to a reference point, rather 

than absolute levels of total wealth (as is the case with the traditional ideas of utility 

theory).  

 

As shown in Figure 4 below, the two key properties of the loss aversion value function 

are: 

(i) it is S-shaped (i.e. convex below the reference point and concave above it), 

implying that individuals are risk seeking in the domain of losses and risk 

averse in the domain of gains; and 

(ii) it is asymmetric (i.e. steeper below the reference point than above, because of 

the effect of the loss aversion ratio λ ), implying that individuals are more 

sensitive to losses than to gains.  

 

 

 

 

 

                                                 
4 Kahneman and Tversky (1979) developed this theory to remedy the descriptive failures of subjective expected utility 
(SEU) theories of decision making.  
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Figure 4: Loss aversion value function 

 

 

We can incorporate this behaviour research finding into the investment solution of DC 

pension plans. In a DC pension plan, prior to retirement, the members can be thought to 

have a final target fund level at retirement and a series of consistent interim targets before 

retirement. Members are assumed to be loss averse with respect of these targets (which 

define the reference points in the loss aversion framework above) and make asset 

allocation decisions to maximise the sum of expected present value (EPV) of loss 

aversion value function at each age until retirement. 

 

Consumption problem 

Most economic decisions are intertemporal, as the current decisions made will affect the 

future available choices. Decisions regarding the funding and investment strategies 

adopted for retirement savings are a classic example of this. The retirement saving 

decisions made today affect not only an individual’s current level of consumption but 

also future consumption possibilities. In other words, individuals face an intertemporal 
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trade-off: if they save more today, they must consume less and hence their current utility 

declines, but they can then consume more in the future (thereby increasing future utility).  

 

In fact, the most basic objective of a DC pension scheme (or all types of pension 

arrangements) is to plan consumptions over life cycle. The member’s decision of 

contribution rate, portfolio asset allocation and the proportion of the accumulated fund 

used to purchase an annuity, are all driven by her preference between current and future 

consumptions. Thus, as a result, the optimal asset strategy of DC pension schemes should 

depend on the pattern of consumption levels over the entire lifetime, rather than just 

focusing on the terminal pension wealth level at retirement. 

 

 

1.4 Overview of the thesis 

 

The thesis consists of six chapters and is structured as follows: 

 

Chapter 1 introduces the background of the investment problem of DC pension scheme, 

including a brief review on existing literature in the area of optimal asset allocation 

problem. Research motivations are discussed in chapter 1 as well.  

  

In Chapter 2, we review the behavioural features that are relevant to the work of DC plan 

design and communication. This is necessary especially given that some approach taken 

in current DC plans may be counterproductive in encouraging retirement saving and 

helping members make appropriate investment decisions. 

 

Chapter 3 is devoted to a survey we did with sponsorship from Distribution Technology 

Ltd. The survey was conducted on a face-to-face interview basis from 14th April 2005 to 

19th April 2005. A total of 966 responses were received. The results help us to investigate 

how people’s attitudes to risk vary during long-term financial decision making. This 
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chapter provides the empirical evidence of behavioural utility parameters on UK 

households.  

 

This is followed, in Chapter 4, by incorporating the survey results into a loss-aversion-

based model to investigate the optimal investment strategy for DC scheme members. 

Members are assumed to be loss averse with a target fund level at retirement and a series 

of suitably defined interim targets prior to retirement, and are assumed to make asset 

allocation decisions with the aim of maximising the expected present value (EPV) of 

their total loss aversion value function over the period until retirement. 

 

Chapter 5 is based on a different research idea, intertemporal saving and investment. I 

built an intertemporal investment model for DC pension plan, in which case, the plan 

members’ contribution and investment decisions all depend on their preferences of 

consumption levels over their entire lifetime. Epstein-Zin preference is used to separate 

risk aversion and elasticity of intertemporal substitution (EIS). The effects of risk 

aversion and EIS on contribution rate and asset strategy over the life cycle are also 

considered. 

 

The thesis concludes with Chapter 6, which highlights the main contributions of the 

research, explains some of the shortcomings of the models, and looks to the future of 

asset allocation strategy of DC pension plans. 
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Chapter 2  

 

Behavioural Features in DC Plan 

Arrangement 

 

 

 
2.1 Introduction 

 

2.1.1 Background 

 

Given that in many countries, social security pensions are either non-existent or provided 

at only very low levels, and given that employers are moving away from providing 

defined benefit (DB) pension plans, it is increasingly becoming the responsibility of 

individuals to make adequate retirement provision for themselves. An increasing number 

of workers now have to rely on defined contribution (DC) plans to provide their future 

retirement income, either through a plan set up by their employer or a personal pension as 

a group or individual arrangement. 

 

DC plans have traditionally been regarded as employee-directed with employees seen as 

the active agents and employer thought to play a minimal decision-making role. In fact, 

pension plan design is not a neutral vehicle within which participants make their own 

rational choices based on rational expectations. As argued by Mitchell (2004), “Being 

good at retirement savings requires accurate estimates of uncertain future processes, 

including lifetime earnings, asset returns, tax rates, family and health status, and 

longevity. In order to solve this problem, the human brains as a calculating machine 
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would need to have the capacity to solve many decades-long time value of money 

problem, with massive uncertainties as to stochastic cash flows and their timing”. Many 

workers do not have particularly firm convictions about their desired saving behaviour. 

They can be easily influenced by plan design, both in the saving area and in the 

investment decision-making as well.  

 

According to the annual DC/AVC Survey of Hewitt Bacon & Woodrow’s (2004), only 

3% of employers think that DC members have a good understanding of the funding levels 

required to build sufficient savings for retirement. In US, according to survey by John 

Hancock insurance company (2003), 42% of the respondents said they had little or no 

investment knowledge, a further 38% stated they were “somewhat knowledgeable”, only 

20% of regarded themselves as knowledgeable investors. Alistair Byrne (2004b) did a 

similar survey in UK on the members of a mid-sized occupational pension plan and found 

that the results were broadly consistent with the US findings in that many employees 

show limited knowledge and interest in their pension arrangements. According to the 

survey by Office of Fair Trading (1997), half of the respondents agreed or strongly 

agreed that “I have found all the information I have seen, and the advice I have received, 

on pensions very confusing.” 

 

All the above evidence shows that the plan design and investment option offering will 

have substantial implications to the DC pension plan members. If DC pension plan 

members have behavioural biases and are not rational agents, then we are in fact 

transferring the long-term investment risk to many individuals who cannot make optimal 

decisions. This will has a potentially costly long-term consequences to the economy. 

Thus, it is important that investment arrangements in a DC pension plan are carried out 

with the knowledge of members’ potential biases and errors in decision making.  

Representing an alternative way of looking at financial market, behavioural finance is a 

combination of psychology and economics that investigates what happens in markets in 

which some of the agents display human limitations and complications.  
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2.1.2 Literature review 

 

There has been considerable amount of research carried out in the applications of 

behavioural studies in capital market, but relatively few of them deal with pension design 

and the implications to the work of pension actuaries. By reviewing several behavioural 

features, Mitchell and Utkus (2004, p30) illustrated how behavioural research of the last 

few years had fundamentally challenged the ways in which plan sponsors, retirement 

service providers and policy makers should think about retirement plan design in the 

future. They proposed several insights in pension plan design: behavioural research 

challenged the notion that workers are rational, autonomous and can exercise unbiased 

judgment in their retirement plans; sponsors and policymakers can affect members’ 

saving and investment decisions by choosing different default structures; some approach 

taken in current DC plans may be counterproductive in encouraging retirement saving; 

education in DC plans has its effective limits. The plan members’ tendency to choose 

default options in DC plans tells us that the plan design has a significant impact on 

scheme members. Blake et al. (2005, p4) claimed in their studies of UK stakeholder 

pension, “The vast majority of pension scheme members appear to passively accept 

whatever default fund the pension provider has chose, but there is little consensus 

amongst providers as to what the appropriate characteristics for a default fund are, despite 

the importance of the choice in determining pension outcomes. In this sense, stakeholder 

pension schemes can be characterised as a lottery for the members”.  

 

Some researchers tried to use the findings in behavioural study to improve the pension 

plan design. Taylor (2000) discussed the implications of behavioural finance on actuarial 

work including anchoring effect, prospect theory, framing, myopic loss aversion, 

overconfidence and mental accounting5. Sykes (2004) discussed the ideas of behavioural 

finance and their application to the areas in which actuaries work, also highlighted 

several issues by means of examples.  

 

                                                 
5 These concepts will be explained and discussed later on in this chapter. 
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Much of the other existing literature explaining saving behaviour in DC pension plan 

focuses on how participation and saving rates vary according to plan design. Choi et al. 

(2002) investigate the role of inertia in default options and found that employees’ choices 

can be easily swayed by the default options established by their employer. Papke (2004) 

finds that having the ability to direct the asset allocation of contributions to an employer-

sponsored saving plan leads to a large 36 percent point increase in the probability of 

participating. But this is not to say, having a greater number of funds available should 

make members in DC schemes more willing to invest. Actually, Iyengar, Huberman and 

Jiang (2003) show a strong negative relationship between the number of funds offered in 

DC schemes and average participation rates. They find that increasing the number of 

funds offered by 10 lead to a 1.5 to 2 percentage point decline in the participation rate. 

Also, behavioural studies find evidence that when an employee is offered a number of 

funds to choose, there is a bias towards dividing the money evenly among the funds 

offered. The asset allocation an investor chooses will depend on the arrays of funds 

offered in the retirement plan. For example, employees may evenly allocate asset when 

they are offered one equity fund and one bond fund. But if another equity fund were 

added, the allocation to equities would jump to two thirds.  

 

As mentioned by Van Der Sar (2004), most behavioural studies have an empirical 

component in common and show a high predictive value. It is maybe true that most of the 

behavioural research findings can not provides a sound basis for a normative theory of 

asset allocation. However, as will be discussed in this chapter, we believe behavioural 

studies are definitely useful tools to design DC pension plans and improve the efficiency 

of communication. As claimed by Sykes (2004), financial experts should be 

concentrating their efforts on identifying inefficiencies and designing the necessary 

products to offset them, rather than trying to decide which theory is a better explanation 

of current behaviour. 

 

In this chapter, I choose some distinguishing features that seem particularly relevant to 

DC pension arrangement and then discuss their possible applications in the different 

processes of DC pension arrangement. This chapter will proceed as follows: in Section 
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2.2, all relevant behavioural features are reviewed; applications to DC pension 

arrangement are elaborated in Sections 2.3 and concluded in Section 2.4.  

 

 

2.2 Behavioural finance 

 

 

2.2.1 Repeated gamble 

 
The literature on repeated gambles can be traced to 1963. Samuelson asked his colleague 

whether he would be willing to accept the following bet: a 50 percent chance to win $200 

and a 50 percent chance to lose $100. The colleague turned him down and offered his 

rationale as: “I won’t bet because I would feel the $100 loss more than the $200 gain.” 

However, the colleague announced that he was happy to accept 100 such bets. After that, 

many academics tried to investigate why individuals make decisions as Samuelson’s 

colleague does. 

 

They argued individuals tend to perceive and evaluate changes of wealth (gains and 

losses) rather than final wealth positions as assumed in the expected utility framework. 

More importantly, they are more sensitive to losses than to gains.  To explain the effect, 

if we assume Samuelson’s colleague has a value function as follows,  
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where is x  the potential outcome. 

 

he would reject the lottery with 50% chance of  $200 gain and 50% chance of $100 loss. 

This can also helps to explain why Samuelson’s colleague is willing to accept 100 such 

bets. For example, when there are two consecutive such bets, he actually faces another 
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lottery with 25% chance to win $400, 50% chance to win $100 and 25% chance to lose 

$200. According to the above value function, he would feel indifferent to 2 gambles and 

be willing the take a sequence of more than 2 gambles. 

 

Benartzi and Thaler (1999) studied the decision making of multiple plays of a gamble or 

investment and showed repeated play of a positive expected value gamble is more 

attractive if they are shown as the explicit resulting distribution of possible outcomes. 

They tried to apply the finding to retirement investing and found that subjects were 

willing to invest up to 90% of their investment funds in stocks when they were shown 

distributions of long-turn returns rather than one year.  

 
However, the above value function [4] does not fully capture the empirically observed 

attitude towards risk. Individuals display diminishing sensitivity in both gain and loss. 

Kahneman and Tversky (1979, 1992) discussed the issue in detail and make it popular 

through their prospect theory. 

 

 

2.2.2 Prospect theory and loss aversion 

 
As one of its distinguish features, in the prospect theory, there is a value function defined 

on gains and losses relative to a reference point, rather than absolute levels of total wealth. 

 

Tversky and Kahneman (1979,1992) suggested a value function as follows:  
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where 1λ ≥ , 10 1v≤ ≤  and 20 1v≤ ≤ . This function reflects loss aversion via parameter 

λ  and diminishing sensitivity via parameter 1 2,v v . As shown in  
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Figure 5 below, two important properties of the value function are that, first, it is S 

shaped (convex below the reference point and concave above it), i.e. people are risk 

seeking in the domain of losses and risk averse in the domain of gains. The smaller the 

1 2,v v , the more risk averse the individual is in the gain domain and the more risk seeking 

in the loss domain; second, it is asymmetric, steeper below the reference point than above 

because of loss aversion. The reference point is determined by each individual as a point 

of comparison. Based on an experiment conducted using a group of 25 graduate students, 

Tversky and Kahneman (1992) suggest that 2.25λ =  and 1 2 0.88v v= = . 

 

 
Figure 5: Loss aversion value function 

GainLoss

 

 

 

Prospect theory receives increasing attention in economic analysis because of the fact that 

it can explain many phenomena which it is hard to explain in expected utility framework 

(e.g. premium puzzle6). Rabin and Thaler (2001) argued the expected utility theory is 

manifestly not close to the right explanation for most risk attitudes and “we have also 

been surprised by economists’ reluctance to acknowledge the descriptive inadequacies of 

expected utility theory”. They claimed that loss aversion and the tendency to isolate each 

                                                 
6 Equity premium is defined as the difference in returns between stocks and a risk-free asset such as treasury bill. 
Equity premium puzzle refers to the argument that stocks have outperformed bonds over the last century by a 
surprisingly large margin, and that investors will be unreasonably risk averse to be willing to hold bonds at all. Mehra 
and Prescott (1985) estimated that investors would have to have coefficients of relative risk aversion in excess of 30 to 
explain the historical equity premium, whereas previous estimates and theoretical arguments suggest that the actual 
figure is close to 1. 
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risky choice should replace expected utility theory as the descriptive theory of risk 

attitudes.  

 
 

2.2.3 Mental accounting 

 
Meanwhile, people show a tendency to separate related events and decisions and find it 

difficult to aggregate events. The process by which decision-makers formulate problems 

for themselves is called mental accounting. People vary in their attitudes to risk between 

their mental accounts. Rather than netting out all gains and losses, people set up a series 

of “mental accounts” and view individual decisions as relating to one or another of these 

accounts.  

 

Let us use an example to explain the effect of mental accounting. Kahneman and Tversky 

(1982) asked people the following questions: “Imagine that you have decided to see a 

play where admission is $10 per ticket. As you enter the theatre you discover that you 

have lost a $10 note. Would you still pay $10 for a ticket to the play?” 88% of the people 

said they would still buy a ticket. 

 

They then changed the question to the following:” Imagine that you have decided to see a 

play and paid the admission price of $10 per ticket. As you enter the theatre you discover 

you have lost the ticket. The seat was not marked and ticket cannot be recovered. Would 

you pay another $10 for another ticket?” In this case, only 46% of people said they would 

buy another ticket. 

 

In the above example, we all understand that the loss of ticket and the loss of the $10 are 

mathematically the same. However, people seem to set up a “theatre ticket” mental 

account in the second question and add the cost of buying another ticket ($10) to the total 

cost of “theatre ticket”. Then they decided $20 per ticket was too expensive. In our 

everyday lives, we can actually also find lots of example about mental accounting. For 

example, some people do not want to buy life assurance products; meanwhile, they are 

willing to spend lots of monies on gambling. 
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2.2.4 Myopic loss aversion (MLA) 

 
In 1995, Benartzi and Thaler (1995) put forward an explanation for the equity premium 

puzzle by combining the above two behavioural concepts: loss aversion and mental 

accounting. The behavioural hypothesis of myopic loss aversion (MLA) assumes that 

people are myopic in evaluating outcomes over time, and are more sensitive to losses 

than to gains. “Myopic” is put here to describe the short-sightedness that induces a 

decision maker to evaluate each alternative within a sequence independently, whereas a 

rational decision maker would evaluate the sequence as a whole. 

 

Gneezy and Potters (1997) tested this hypothesis in laboratory experiments. In the 

experiments, subjects were confronted with a sequence of 12 identical but independent 

rounds of a lottery.  As a crucial feature of the design, there were two different treatments. 

In “high frequency treatment”, the subjects played rounds one by one (i.e. they were not 

allowed to bet on round 2 until they were informed about the realisation of the lottery in 

round 1, as so on). In “low frequency treatment”, however, subjects played the rounds in 

blocks of three. For example, at the beginning of round 1, subjects had to decide how 

much to bet in rounds 1, 2 and 3 (these three bets were restricted to be equal). They were 

then informed about the combined realisation for round 1, 2 and 3 (i.e. they only knew 

the aggregate result for 3 rounds rather the results for any particular round). The basic 

idea behind the two treatments is to manipulate the evaluation period. In “low frequency 

treatment”, the frequency of choice and information feedback was lower than “high 

frequency treatment”. The results of their experimental studies suggests that the more 

frequently returns are evaluated, the more risk averse investors will be, which is in line 

with the MLA hypothesis. Thaler et al. (1997) examined how individuals split money 

between two assets with different levels of risk by conducting an experiment to 80 

undergraduate students at the University of California at Berkeley and made similar 

conclusions.  
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All the above evidence on MLA suggests that the willingness to invest in the risky asset 

is influenced by a simultaneous manipulation of feedback frequency and period of 

commitment. If participants receive less frequent feedback and are forced to make a 

binding multi-period decision, they evaluate the assets less myopically and are more 

willing to accept risk. Rather than using additive approach as above researchers did, 

Langer and Weber (2003) used multiplicative approach7 and found that binding decisions 

and providing less frequent feedback seemed to help people to be more willing to accept 

risk and make long-term investment decisions. But they claimed that there was no simple 

effect from combining commitment and feedback and “it seems that if people are 

committed to their decisions, more frequent feedback is helpful, because over time it 

becomes more salient that occasional losses are outweighed by ultimate gains”.  

 

 

2.2.5 Framing effect 

 
Many individuals deviate from standard economic theory in another important way. How 

the question is asked or “framed”, in particularly, the wording in terms of gains and 

losses can have an enormous impact on the decision made. Mitchell (2004) argued that 

“rational economic agents would not be expected to vary their responses to a question 

based on how it is asked. But in practice, many people do exactly that, both in the saving 

area and in the investment decision-making as well”.  

 

 

2.2.6 Anchoring effect 

 
Anchoring is a psychological concept which is used to describe the common human 

tendency to rely too heavily on a piece of information when making decisions. Or, as 

defined by Taylor (2000), anchoring effect refers to the notion that people base 

perception on past experience or “expert” opinion, which they amend to allow emerging 

deviations from the current conditions. Investors tend to use initial condition to justify the 

                                                 
7 In multiplicative approach, people receive an initial endowment that is transferred from period to period 
and can be reinvested together with its returns, which resembles the investment process more closely. 
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current decision making. For example, subsequent portfolio changes tend to be made with 

reference to initial allocation decision, rather than on some absolute basis. 

 

 

2.2.7 Overconfidence and confirmation bias 

 
Individuals tend to overestimate their own abilities, knowledge and skills. The classical 

economic equilibrium theory asserts that when agents receive heterogeneous information, 

they tend to communicate their private signals through purchase and sell orders. Thus, 

assuming all agents are rational, it may worth for an investor to revise his private opinion 

in the light of new information coming from the activity of other investors. However, the 

investors are subject to overconfidence and will only concentrate on their own signal, 

even if that of other investors is different. This behavioural feature leads to inadequate 

revision of opinions and excessive trading. 

 

Furthermore, they would see a positive event as confirmation that their approach was 

correct. This is also called “hindsight bias”, reflecting the situation that events that 

happen will be thought of as having been predictable prior to an event and that events that 

do not happen will be thought of as having been unlikely to happen prior to the event. 

 

 

2.2.8 Default option, Inertia and Procrastination 

 
What this suggests, is that many individuals do not have particularly firm convictions 

about their desired saving behaviour. In Madrian and Shea’s (2001) analysis of automatic 

enrolment, they showed that after automatic enrolment was introduced, plan participation 

rates jumped from 37 percent to 86 percent for new hires. The impact of automatic 

enrolment is an illustration of a broader behavioural phenomenon, namely “default 

option”. When confronted with difficult decisions, individuals tend to adopt heuristics 

that simplify the complex problem they face. One simple heuristic is to accept the 

available default option, rather than making an active choice. Choi et al. (2002) studied 
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the tendency to accept scheme default options in US and found that very few employees 

opt out of default arrangements even when they are free to do so8. A similar tendency to 

accept the default is found in the UK. Hewitt Bacon and Woodrow, the pension 

consulting firm, found that around 80% of members in UK DC schemes accept the 

default fund choice (Bridgeland, 2002). Currently, deterministic lifestyle investment 

strategy is widely used in the default fund offered by many UK DC pension providers9.  

 

Inertia is also sometimes called status quo bias, which means people would prefer to stick 

with their current position than move to new position. They would need a positive 

incentive to be persuaded to make a change. In the same analysis by Madrian and Shea’s 

(2001), they showed that the benefit of higher plan participation rates appeared to be 

offset by a profound level of inertia. Most participants remained at the default saving and 

conservative investment choices set for them by their employer. Once enrolled, 

participants made few active changes to the contribution rates or investment mixes 

selected for them by their employers. 

 

 

  2.2.9 Hyperbolic discounting 

 
Hyperbolic discounting effect means that individuals’ short-term discount rate is higher 

than long-term discount rate. Thaler (1981) discussed this feature with an interesting 

example: some people prefer “one apple today” to “two apple tomorrow”, but at the same 

time they prefer “two apples in one year plus one day” to “one apple in one year”. In 

other words, people seem to over value the immediate utility loss and behave irrationally 

in short-term decision making. In contrast, hyperbolic discounting implies that people are 

more likely to make rational commitments long in advance that they would never make if 

the commitment required immediate action. 

 

 

                                                 
8 According to their studies, in the schemes they investigated, between 42% and 71% of participants accept the default 
contribution rate and between 48% and 81% of scheme assets are invested in the default fund. 
9 According to “Annual Defined Contribution Industry Survey 2003” conducted by JP Morgan Fleming, in 2003, 77% 
of DC schemes use lifestyle default option. 
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  2.2.10 Other 

 
There are some other interesting behavioural findings which will be relevant to DC plan 

arrangement: 

� Representativeness. People naturally group information and rely on these 

grouping when making future decisions. They consider more probable that 

which they find easier to imagine. 

� Home bias. Many investors are most comfortable with investments they know or 

are most familiar with. For example, many investors prefer to invest in domestic 

stocks, even though they should rationally diversify their portfolios to include 

overseas stocks.  

 

 

2.3 Application to DC plan arrangement 

As discussed earlier in this chapter, some approaches taken in the DC pension plans may 

be counterproductive in encouraging retirement saving and helping members make 

appropriate investment decisions. Thus, this section looks at some possible applications 

of behaviour finance in the DC plan arrangement.  

 

 

2.3.1 Communication 

In DC pension plans, members are responsible for deciding to join a plan and how to 

invest their monies. An effective communication strategy is therefore crucial to ensure 

members make appropriate decisions in terms of both take-up and contribution rate. 

Attitudes to risk are fundamental to the optimal design of DC pension plans. Without a 

good understanding of members’ attitude to risk, all the subsequent communication can 

be wasted. To avoid this, we can classify the members into three key categories: 

aggressive, balanced and conservative, by asking a few simple survey questions. The 

communication is then tailored for each category of members. In addition, a good 

communication strategy should be tailored for individual members at different ages. For 



 33 

example, 25-year old members are unlikely to pay much attention to their pension plan 

but have a long investment horizon. In this case, the communication tools offered to them 

should focus on encouraging making enough contributions and investing in long-term 

return generating asset classes. 

 

Meanwhile, a good communication strategy should be designed with consideration of the 

behavioural features of members. As discussed in the previous section, due to framing 

effect, members vary their response to questions depending on how they are framed, such 

as numbering, order and degree of difference between options. In explaining investment 

risk, compared with probability and fancy stochastic graphic projection, natural 

frequencies are more intuitive and easier for readers to understand properly. Also, 

members would feel more comfortable to hear that “there is 50% chance that the funding 

level will rise above 100%” than “there is 50% chance that the funding level will remain 

or drop below 100%”. 

 

 

2.3.2 Decision to save 

 
Due to hyperbolic discount rate, people like to postpone the painful decisions in the 

future. Pension members are easily convinced to commit a savings plan starting 

sometime later (e.g., one year). By using the implication of this behavioural feature, 

Benartzi and Thaler (2004) proposed so-called “Save More for Tomorrow” or “SMarT” 

pension plan. Under “SMarT” plan, members consent to allow their contribution rate to 

increase as part of salary increase in the future, in other words, people postpone the 

“painful” decision. According to their study, the employee who elected to join the 

“SMarT” plan contribute 3 percent more over three years than those who have not joined 

“SMarT”. 

 
 

2.3.3 Default and other options 
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Many members show little interests in financial matters and have little knowledge about 

the investment. As explained in previous section, when confronted with difficult 

decisions, individuals tend to adopt heuristics that simplify the complex problem they 

face. The simplest option is actually the non-decision, i.e. doing nothing. To protect the 

plan members who have little financial knowledge when they make important investment 

decisions, we need give them a default option to select based on the presumption that the 

option is likely to be a reasonably good choice.  

 

To those members who have interest and knowledge in planning their retirement, we 

need to give them enough rights to make their own decisions. Behavioural finance theory 

tells us that if the employers offer a large range of funds, this can have an adverse effect 

on the decision process by confusing the members. In addition, members are likely to 

divide the money evenly among the funds offered. So the asset allocation members 

choose will depend strongly on the arrays of funds offered. When confronted with a 

range of funds with different risk profiles, people tend to select from the middle of the 

range, regardless of whether this suits their risk preference. 

 

Thus, to find an appropriate default fund and find a good balance between default and 

other options is crucial to DC pension design. Myners Report10 recommended that when 

DC plans offer default options, trustees should ensure that an objective is set for that 

option, including expected risks and return and that they have offered a sufficient range 

of funds to satisfy the risk and return combinations reasonable for most members. Trying 

to find an appropriate default fund and find a good balance between default and other 

options is important to DC pension design.  

 

Set the UK stakeholder DC pension market as an example. As explained in Blake et al. 

(2005), current situation is that around 85% of members are not interested in investment 

choices and just take the default options. A small percentage, around 10% to 15% will be 

                                                 
10 In March 2000, the Chancellor of the Exchequer (HM Treasury) commissioned Paul Myners to conduct a review of 
instituional investment in the UK. The Myners Report entitled “Institutional Investment in the UK: a review”was 
published on 6 March 2001.   
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prepared to make choices within a limited range of options. Only quite few members, less 

than 5%, will be looking for a wide range of options, which we should not target on when 

we design the scheme. The current investment decision-making process is too 

complicated because almost every plan has its own default options.  In theory, ideal 

situation is that there are only limited types of default funds in the DC pension market, or 

even only one default fund exists, which is a “long-term pension market portfolio”.  In 

this case, the members will be more willing to save and invest according to behavioural 

finance theory, the investment risk placed on members in DC scheme is better managed, 

retirement system would be more flexible and the cost of transferring fund between 

employers can be reduced to a minimal level.  

 

 

2.3.4 Fund selection 

 
In practice, we can face a lot of problems related to behavioural finance when we select 

fund managers (especially active fund managers) for the pension plan. For example, if the 

active managers have yet to obtain any outperformance above their benchmarks, they 

might tend to be optimistic about their methods and believe it is just unproven; if they 

had achieved outperformance, they will believe that it demonstrates their process works. 

In other words, they can be over confident in either situation of the market. In addition, 

many members or investment consultants are affected by anchoring effect as discussed in 

section 2.2.6. For the selected fund managers, their past performance is an anchor. If they 

used to perform well, we are more willing to be optimistic and tolerant of them.  

 

With knowledge of the impact of above behavioural features, we should be able to 

remove the bias in the information provided by a manager.  For example, we can setup a 

set of objective and rigorous fund selection criteria to avoid the above behavioural bias. 

When the fund performance is communicated to the members, transparency and an 

objective outlook is quite important. In addition, the process should be made easy for 

members  to change the asset allocation decision as their circumstances change.  
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2.3.5 Fund performance data 

 
In investment, loss aversion is also believed to manifest itself in what is known as the 

“disposition effect”. That is people appear to realise gains too quickly in the fear that they 

may make a loss.  As explained in section 2.2.4, myopic loss aversion theory tells us that 

employees are more willing to accept risk when they evaluate less often and the frequent 

feedback would prevent them from adopting appropriate long-term investment strategy. 

So, for the benefits of the members, it will actually be better off if we provide them less 

frequent investment performance data.  

 

 

2.3.6 Annuitisation decision 

 
The annuitisation decision (including the timing of an annuity buy out and the form of the 

annuity benefits), is a very important event for DC members. This decision will be 

heavily influenced by factors like longevity, the outlook for inflation, and other 

considerations like value of non-pension assets and current state of health. Longevity 

risk 11  can be eliminated by purchasing a life annuity at retirement, however, as an 

important problem of DC pension plans, many members do not choose to buy annuities 

and instead take too much cash lump sum at retirement.  

 

One obvious reason for this is bequest motive (which we will explain and discuss in 

details later on in Chapter 4 and Chapter 5). Members are concerned that they might die 

shortly after buying the annuity and the lump sum used to buy annuity is no longer 

available to make bequests. In addition, there are also some possible behavioural 

explanations for why members choose the lump sum over the annuity: 

 

                                                 
11 Because people do not know precisely how long they will live, they run the risk of exhausting their assets before 
dying. Such risk exposure can be reduced by consuming less paper year during retirement, but of course this simply 
elevates the chances that a retiree might die with “too much” wealth left over. One way to offset longevity risk is to buy 
an annuity with all or part of one’s retirement assets. Single premium lifelong annuities are relatively appealing, since 
they continue to pay benefits as long as the retiree lives, irrespective of whether the retiree outlives the life tables.  



 37 

� Overconfidence – members underestimate how much they need to live on 

after retirement 

� Hyperbolic discounting – members are very “myopic” and would treat the 

lump sum payment at retirement as the current “one apple”! 

 

To encourage members to choose annuity over the lump sum, we can use the following 

behavioural features: 

 

� Framing effect. Choice can be framed in a way that causes people to 

overvalue the annuity and undervalue the lump sum. 

� Hyperbolic discounting. As explained in Section 2.2.9, members are more 

likely to make rational commitments long in advance that they would never 

make if the commitment required immediate action. Thus, we can let 

members make annuitisation decisions several years ahead of retirement (e.g. 

5 years before retirement) rather than at retirement. 

 

2.4 Conclusions 

 
DC pension plans can provide real retirement security, but only if participants utilise 

them appropriately and make the right investment decisions. It would be a challenge to 

provide the expertise to support good decision-making in the DC context. The research 

we describe in this chapter tells us that some approaches taken in current DC plans may 

be counterproductive in encouraging retirement saving. The investment decisions made 

by employees in DC plans also vary considerably depending on how their investment 

opportunities are described and the manner and frequency with which they receive 

feedback on their investment returns. With more education, more information on 

investment risks and expected returns and better communication, the members may begin 

to act more rationally. However, this will take time and has its  own limit as well. 
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I choose some features that seem particularly relevant to DC pension arrangement and 

then discuss their possible applications in the different processes of DC pension 

arrangement. It is important that actuaries are alert to the use of these factors when they 

design the plan and give financial advice. It is hoped that the research will have a 

profound impact on the way actuaries now view varied aspects of financial life and 

manage retirement systems. 
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Chapter 3  

 

Reexamining Behavioural Characteristics 

(UK Evidence) 

 

 

 

3.1   Introduction 

 

Representing an alternative way of looking at financial market, behavioural finance 

investigates what happens in markets where some of the agents display human limitations 

and complications. The fertilisation of economics with psychological and evidence makes 

it interesting and promising.  

 

The literature of behavioural research can be traced to 1963. As discussed in previous 

chapter (see Section 2.2.1 and 2.2.2), to explain the behaviour of Samuelson’s colleague, 

some academics argued that individuals tend to perceive and evaluate changes of wealth 

(gains and losses) rather than final wealth positions as assumed in the expected utility 

framework. For example, Kahneman and Tversky (1979) suggested a value function as 

follows:  
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where 1≥λ , 10 ≤≤ α and 10 ≤≤ β . This function reflects loss aversion (representing 

the phenomenon that investors are more sensitive to losses than to gains) via parameter 
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λ  and diminishing sensitivity via parameter α and β . Kahneman and Tversky (1979) 

investigated the issue in detail and made it popular through their prospect theory: 

 

( ) ( ) ( ) ( ) ....2211 ++= xvpwxvpwU                                        

[7] 
 

where 1x , 2x ,… are the potential outcomes, 1p , 2p ,… are their respective probabilities 

and (.)w is the probability weighting function.  

 

Prospect theory differs from expected utility theory in two important respects: 

1) Prospect theory has a value function )(xv defined on gains and losses relative to a 

reference point, rather than absolute levels of total wealth. Two important 

properties of the value function are that, first, it is S shaped (convex below the 

reference point and concave above it), i.e. people are risk seeking in the domain 

of losses and risk averse in the domain of gains; second, it is asymmetric. The 

value function has a kink at the reference point, with the slope of the loss 

function steeper than the gain function. The ratio of these slopes at the reference 

point is a measure of loss aversion. 

 

 

Figure 6: Loss aversion value function 
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2) Prospect theory also has a probability weighting function )( pw . It postulates that 

decision weights tend to overweight small probabilities and underweight 

moderate and high probabilities, as shown in Figure 7. 

 

 

Figure 7: Prospect theory – probability weighting function 
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Loss aversion receives increasing attention in economic analysis because of the fact that 

it can explain many phenomena that are hard to explain in expected utility framework. As 

discussed in Section 2.2.2, Benartzi and Thaler (1995) tried to explain premium puzzle 

with loss aversion and argue that in a myopic evaluation, the volatile return of an equity 

investment looks particularly unattractive, i.e. Myopic Loss Aversion (MLA). “Myopic” 

is put here to describe the short-sightedness that induces a decision maker to evaluate 

each alternative within a sequence independently, whereas a rational decision maker 

would evaluate the sequence as a whole. Gneezy and Potters (1997) tested this hypothesis 

in laboratory experiments. The results of their experimental studies suggests that the 

more frequently returns are evaluated, the lower are the average level of investments in 

the equity market, i.e. the more risk averse investors will be, which is in line with the 

MLA hypothesis. Thaler et al. (1997) examined how individuals split money between 



 42 

two assets with different levels of risk by conducting an experiment to 80 undergraduate 

students at the University of California at Berkeley and made similar conclusions.  

 

Recently, loss aversion has also been applied to asset pricing by assuming that investors 

are loss averse over the fluctuations in the value of their financial wealth (e.g. Berkelaar 

and Kouwenberg (2003)). Barberis et al. (2001) showed that loss aversion helped explain 

the high mean, excess volatility, and the predictability of equity returns, as well as their 

low correlation with consumption growth.  By using an example where an expected 

utility maximiser turn down a 50/50 gamble between losing $100 and winning $2.5m 

(due to diminishing marginal utility), Rabin and Thaler (2001) argued the expected utility 

theory is manifestly not close to the right explanation for most risk attitudes and “we 

have also been surprised by economists’ reluctance to acknowledge the descriptive 

inadequacies of expected utility theory” (p229). They claimed that loss aversion and the 

tendency to isolate each risky choice should replace expected utility theory as the 

descriptive theory of risk attitudes.  

 

The growing literature of behavioural finance, in particular loss aversion utility theory 

raises important questions about how individual investors will behave under such 

behavioural utilities. In other words, to understand the values of loss aversion parameters 

( 1v , 2v  and λ ) of individuals and how the values change with profiling characteristics (e.g. 

sex, age, marital status, standard region, etc.) becomes more important.  

 

Empirical estimates of loss aversion are typically in the neighbourhood of 2.5, meaning 

that the disutility of giving something up is twice as great as the utility of acquiring it. 

Tversky and Kahneman (1992) carried out an experiment on 25 graduate students and 

suggested that the loss aversion coefficient ( λ ) should equal to 2.25 and the curvatures 

for gains ( 1v ) and losses ( 2v ) should be both equal to 0.88. This parameterisation then 

became well known and frequently used by other researchers. However, Tversky and 

Kahneman (1992)’s experiment and most of the existing empirical studies of loss 

aversion parameters are based on surveys with students in the university (e.g. Brooks and 

Zank (2005)), who are relatively well educated and rational individuals. Hwang and 
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Satchell (2005) use 20 years of monthly UK and US asset allocation data to empirically 

investigate admissible ranges for the loss aversion parameters in financial market. Their 

study proposes a long-term average value of 3λ =  for the loss aversion ratio, and suggest 

that this value should be adjusted upwards and downwards by 1.5 for bull and bear 

markets respectively. They suggest curvature parameters of 1 0.75v = and 2 0.95v = , again 

implying that investors are risk averse with respect to gains and risk seeking with respect 

to losses.  

 

The aim of this study is to provide some UK empirical evidence on individuals’ risk 

attitude in terms on loss aversion parameters ( 1v , 2v  and λ ). This helps us to compare and 

contrast with existing US findings (e.g. Tversky and Kahneman (1992)). Also, we 

proposed several behavioural characteristics questions in the survey to investigate how 

individuals make their saving and investment decisions. 

 

The outline of this chapter is as follows. Section 3.2 describes the survey design and 

estimation method, while Section 3.3 provides the survey results and analysis. Section 3.4 

summarises and concludes the chapter.  
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3.2   Survey 

 

3.2.1 Subjects 

The survey was conducted on a face-to-face interview basis from 14th April 2005 to 19th 

April 200512 . A total of 966 responses were received, who are classified with nine 

profiling characteristics, i.e. sex, age, marital status, terminal education age, standard 

region, working status, household status and household income (as shown in Figure 8 

and Table 1).  

 
 

Figure 8: Survey sample (total respondents: 966) 
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12 The survey was sponsored by Distribution Technology Ltd. 
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Table 1 Survey sample (966, all adults aged 18+)13 
 
 

Sex   

Male 433 45% 
Female 533 55% 
Age   

18-24 110 11% 
25-34 162 17% 
35-44 186 19% 
45-54 151 16% 
55-64 144 15% 
65+ 213 22% 
Marital Status   

Married 514 53% 
Living with partner 86 9% 
Single 192 20% 
Widowed/Divorced/Separated 174 18% 
Terminal Education Age   

Under 16 281 29% 
16 260 27% 
17-18 177 18% 
19+ 214 22% 
Working Status   

Full-time 316 33% 
Part-time 122 13% 
Self-employed 48 5% 
Student 34 4% 
Retired 258 27% 
Unemployed 38 4% 
Other not working 150 16% 
Household Status   

Male head of house hold (hoh) 354 37% 
Female head of household (hoh) 234 24% 
Not head of household (hoh)  378 39% 
Standard Region   

North 58 6% 
Yorks and Humber 90 9% 
East Midlands 68 7% 
East Anglia 31 3% 
South East 315 33% 
South West 110 11% 
Wales 49 5% 
West Midlands 78 8% 
North West 116 12% 
Scotland 51 5% 

 

                                                 
13 To investigate the representativeness of our sample, we compared it with UK Census 2001. In UK Census 2001 
dataset, the split between male and female is 49% and 51%; the split by ages is 18-24 (11%), 25-34(18%), 35-44(19%), 
45-54(17%), 55-64 (14%) and equal or above 65 (21%);  the split for single, married and widowed/divorced/separated 
is 44%, 41% and 15%. We can see that our sample is quite representative to the UK population. 
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 3.2.2 Survey Design 

 
The survey consists of three components: classification questions, behavioural 

characteristics/financial knowledge questions and risk preference questions (see 

Appendix 01).  

 

In the classification questions, in addition to the nine profiling questions, i.e. sex, age, 

marital status, terminal education age, standard region, working status, household status, 

household income and social class, we also asked about people’s expected retirement age 

and health status. This helps us to understand how the expected retirement age when 

people grow older. 

 

In the behavioural characteristics questions, we designed several straight forward 

questions to find out more about individuals’ knowledge and interests in financial 

planning. 

 

In addition, we proposed five questions as follows to get a better understanding of how 

individuals make their investment decisions (see Appendix 01 for details): 

� Question 6: how you allocate money for retirement needs? 

� Question 8: how often you review savings and investments 

� Question 10: do you act in spontaneous or unplanned way? 

� Question 11: do you make plans and stick to them? 

� Question 12: are you able to control impulsive feelings? 

 

As the crucial part of the survey, risk reference part contains six simple lottery questions 

(Question 13 to 16, as illustrated in Appendix 01). The estimated results of the loss 

aversion parameters (i.e. 1v , 2v  and λ ) will be based on individuals’ answers to these six 

questions:  
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� Question 13: In a coin tossing contest, what would the minimum prize money have to 

be to persuade you to take part if you stood to lose £100? 

� Question 14: In a coin tossing contest, what would the minimum prize money have to 

be to persuade you to take part if you stood to lose £1000? 

� Question 15: In a coin tossing contest, what would the minimum prize money have to 

be to persuade you to take part if you stood to lose £10000? 

� Question 16: In a coin tossing contest, what is the maximum amount of money you 

would be prepared to lose if the prize money was £100? 

� Question 17: In a coin tossing contest, what is the maximum amount of money you 

would be prepared to lose if the prize money was £1000? 

� Question 18: In a coin tossing contest, what is the maximum amount of money you 

would be prepared to lose if the prize money was £10000? 

 

Some special considerations and efforts were made to keep the above questions unbiased: 

 

(i) Choices tasks vs. matching task. We used so called “matching task” approach to 

investigate people’s attitudes to risk to avoid suggestions by proving choices. There 

are two common experimental procedures for eliciting risk attitudes: choice tasks and 

matching tasks. In choice tasks, subjects are asked to choose between two gambles. 

Choice tasks are sometimes accused of “simply recovering the expectations of the 

experimenters that guided the experimental design” (Frederick, Loewenstein and 

O’Donoghue, 2002, p48) because results from choice tasks can be affected by the 

given choices. In matching tasks, respondents fill in the blank to equate two options 

(e.g. in a simple coin toss, individuals choose a value X  such that £0 = 50% chance 

of wining £ X  plus a 50% change of losing £100). In this case, an exact figure can be 

imputed from a single response because subjects give an indifference point. 

 

(ii) Framing effect. Individuals’ answers can be affected by how the question is 

“framed”, in particularly, by the wording in terms of gains and losses. To avoid this 

impact, in the six lottery questions, three of them are framed in the sense of “gains” 

and the other three are framed in the sense of “losses”. 
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(iii) Anchoring effect. Anchoring effect suggests that when respondents are asked to 

make decisions on a series of questions, the first question they face often influences 

their subsequent answers. Thus, we have ensured that questions 13-18 are asked in 

random order to avoid this effect.  

 

(iv) Real rewards vs. hypothetical rewards. We use “hypothetical rewards” method in 

this study. The use of real rewards is generally desirable for obvious reasons, but 

hypothetical rewards actually have some advantages. In studies involving 

hypothetical rewards, respondents can be presented with a wide range of reward 

amounts, including losses and large gains, both of which are generally infeasible in 

studies involving real outcomes14.  

 

 

 3.2.3 Method 

 
According to the prospect theory, the interplay of loss aversion value function and 

probability weighting function controls the investor’s decision making. The loss aversion 

parameter estimation results therefore depend on the probability value and probability 

weighting function form being used. To keep the analysis consistent with existing 

literatures, we only use 50% probability in our gambling questions and follow the 

probability weighting function setting15 used in Tversky and Kahneman (1992): 
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14 Of course, as a trade off, we realise that the disadvantage of hypothetical choice data is the uncertainty about whether 
people are motivated, or capable of, accurately predicting what they would do if outcomes were real.  
15 This form of function has been used by most researchers in past literatures. As explained by Tversky and Kahneman, 
it has several useful features: it has only one parameter; it encompasses weighting functions with both concave and 
convex regions; and more importantly, it provides a reasonably good approximation to probabilities in the range 
between 0.05 and 0.95. 
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where 0.61r =  and 0.69δ = .  

 

3.3   Results 

 

3.3.1 Loss aversion parameters 

 
As explained in the previous section, we ask six simple lottery questions in the survey, 

with the first three questions (Q13-Q15) fixing the loss amount, the last three questions 

(Q16-Q18) fixing the gain amount, as shown in Table 2. 371 individuals gave 

quantitative answers 16  to all the six questions (i.e. there are 595 respondents chose 

“would not take part” or “do not know” in at lease one of the six questions). Therefore we 

use this sample to investigate loss aversion parameters. 

 

Table 2 Loss aversion questions 
 

Question 50% Gain 50% Loss 

13 ? 100 

14 ? 1000 

15 ? 10000 

16 100 ? 

17 1000 ? 

18 10000 ? 
Sample: 371 

 

To estimate the loss aversion parameters ( 1v , 2v  and λ ), we define A  as the loss amount, 

B as the gain amount, then, 1 20 5 0 5( . ) ( . )
v v

B w A wλ+ −+ −+ −+ −====
17, and,  

 

(((( )))) (((( ))))1 20 5 0 5( . ) ( . )v LnB Ln w Ln v LnA Ln wλ+ −+ −+ −+ −+ = + ++ = + ++ = + ++ = + +                           

[9] 

                                                 
16 The survey results confirmed some weakness of matching task approach. More than half of the respondents did not 
give a quantitative answer to question 13-18. 
17 The aim of this study is to estimate the parameters of loss aversion value function proposed by prospect theory 
(Kahneman and Tversky (1979)), we therefore follow the method of Tversky and Kahneman (1992) and assume this 
function form still holds. 
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For each individual in the above sample, we will obtain six equations in the same form as 

equation [9] with different gain and loss amounts. The loss aversion parameters ( 1v , 2v  

and λ ) are then estimated by using least square method, i.e., 

 

                      ( ) ( )
26

2 2
1

ˆ ˆ ˆ(0.5) (0.5)
i i

i

Min Ln v LnA Ln w v LnB Ln wλ − +

=

 + + − − ∑               

[10] 
 

 

Table 3 Estimated loss aversion parameters 
 

 
1v  2v  λ  

Median 0.53 0.77 3.4 

25% 0.36 0.47 2.0 

75% 0.69 1.21 4.1 
Sample: 371 

 

 

As shown in Table 3, the results 18  suggest the median values of three parameters 

as 1 0 53.v ==== , 2 0 77.v ==== and 3.4λ =  (with the 25% quartile being 1 0 36.v ==== , 

2 0 47.v ==== and 2=λ , and 75% quartile being 1 0 69.v ==== , 2 1 21.v ==== and 4.1λ = ). The above 

results tell us that, on average, individuals are risk averse with respect to gains ( 1 1v < ) 

and risk seeking with respect to losses ( 2 1v < ). This is consistent with the prospect theory 

setting as explained in Section 3.1. Meanwhile, compared with the results 

( 1 0.88v = , 2 0.88v =  and 2.25λ = ) of prospect theory which is suggested by Tversky and 

Kahneman (1992), our estimation results are different in several respects: 

• Loss aversion coefficient. Our results suggest average individuals are 3.4 times as 

sensitive to losses as to gains. In other words, individuals in our sample  are more loss 

averse than the people suggested by the Tversky and Kahneman (1992) and Hwang 

and Satchell (2005) 

                                                 
18 The results from the process above are 371 estimated values of 1v , 2v  and λ  for each individual. 
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• Sensitivity to marginal losses and gains. While the prospect theory implies people 

have the same sensitivity to marginal losses and gains ( 1 2 0.88v v= = ), our results 

suggest that they are more sensitive to marginal losses than to the equivalent marginal 

gains ( 1 2v v<<<< ). 

• It is worth noticing that the individuals above the upper quartile have different risk 

attitudes. While they are more sensitive to losses than to gains, they are risk averse 

with respect to both losses and gains ( 1 1v <  and 2 1v > ).   

 

Some possible reasons for the above difference are: 

• We have a much large sample size (371). Tversky and Kahneman (1992) estimated 

their loss aversion parameters on only 25 graduate students from Berkeley and 

Stanford (12 males and 13 females). Furthermore, graduate students are relatively 

well educated and rational individuals. 

• Our estimation results are based on UK individuals. The difference may simply 

reflect the different risk attitudes of UK and US individuals. 

• The questions in Tversky and Kahneman (1992) can be biased due to anchoring effect. 

As explained in Section 3.2.2, we have made special efforts to avoid this anchoring 

effect in our survey results. 

 

Given the relatively larger sample of response, we can separate individuals into several 

subgroups according to their gender, age, standard region, working status, terminal 

education age, marital status and household status. Table 4 shows the loss aversion 

parameter estimations for each group.  
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Table 4 Estimated subgroup loss aversion parameters 
 

  Responses % V1 V2 Lambda 

Total sample (371)   0.53 0.77 3.42 

      
Gender      
Male 182 49.1% 0.56 0.77 3.29 
Female 189 50.9% 0.52 0.75 3.55 
Age      

18-24 60 16.2% 0.63 0.96 2.37 
25-34 82 22.1% 0.58 1.00 2.28 
35-44 85 22.9% 0.56 0.77 3.50 
45-54 54 14.6% 0.47 0.69 3.65 
55-64 46 12.4% 0.49 0.66 3.75 
65+ 44 11.9% 0.36 0.60 4.12 
Standard region     

North 26 7.0% 0.48 0.55 3.82 
Yorks and Humber 36 9.7% 0.41 0.66 3.94 
East Midlands 33 8.9% 0.64 1.00 2.33 
East Anglia 8 2.2% 0.57 1.25 2.54 
South East 129 34.8% 0.56 0.73 3.52 
South West 39 10.5% 0.56 0.90 2.49 
Wales 14 3.8% 0.51 0.58 3.73 
West Midlands 28 7.5% 0.54 0.62 3.65 
North West 37 10.0% 0.56 0.64 3.65 
Scotland 21 5.7% 0.58 1.25 2.00 
Working status     

Full-time 151 40.7% 0.56 0.86 3.02 
Part-time 49 13.2% 0.54 0.77 3.50 
Self-employed 20 5.4% 0.50 0.57 3.89 
Student 16 4.3% 0.64 0.99 2.22 
Retired 60 16.2% 0.41 0.64 3.94 
Unemployed 20 5.4% 0.61 0.75 3.58 
Other not working 55 14.8% 0.52 0.68 3.65 
Terminal education age     

Under 16 83 22.4% 0.47 0.69 3.92 
16 104 28.0% 0.56 0.83 3.17 
17-18 96 25.9% 0.57 0.80 3.28 
19+ 88 23.7% 0.51 0.69 3.50 
Marital status      

Married 197 53.1% 0.48 0.68 3.65 
Living with partner 44 11.9% 0.60 1.00 2.19 
Single 88 23.7% 0.64 1.00 2.28 
Widowed/Divorced/Separated 42 11.3% 0.49 0.66 4.03 
Household status     

Male hoh 133 35.8% 0.49 0.69 3.50 
Female hoh 71 19.1% 0.52 0.75 3.52 
Not hoh 167 45.0% 0.56 0.81 3.29 
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Following observations can be made from Table 4: 

 

• Our estimation results for the whole sample ( 1 0 53.v ==== , 2 0 77.v ==== and 42.3=λ ) 

are reasonably robust to different profiling characteristics. For all the subgroups, 

individuals are more sensitive to marginal gains than to marginal losses, i.e. 

1 2v v<<<< . Within all the estimated results for the three parameters, 1v varies from 

0.41 to 0.64, 2v  varies from 0.55 to 1.25 and λ  varies from 2 to 4.12. 

• Gender effect. On average, females are more loss averse than males; meanwhile 

females are more risk averse than males in the region of gains and more risk 

seeking in the region of losses, although this effect is not very significant 

according to our survey results.  

• Age effect. Individual’s risk attitudes are very sensitive to age. They become 

more loss averse when they grow old (with 2.37λ =  for individuals aged between 

18 and 24, and 4.12λ =  for individuals aged over 65). For all the age bands, 

people are more sensitive to marginal gains than to marginal losses, i.e. 1 2v v<<<< . 

Unsurprisingly, people also become more risk averse (with respect to gains) when 

they grow old and approach retirement. Here, it is interesting to note that our 

estimation results for individuals aged between 18 and 24 are close to the results 

suggested by Tversky and Kahneman (1992) ( 1 0.88v = , 2 0.88v =  and 2.25λ = ). 

• Geographic location effect. In terms of loss aversion ratio λ , people living in 

Scotland are least loss averse, while people living in Yorks and Humber are most 

loss averse. While there can be various reasons causing the outlier with Scottish 

people, there is some consistency between their relatively lower  λ  (meaning 

being less loss averse) and higher 2v  (meaning being less risk seeking with 

respect to losses). 

• Working status effect. Self-employed and retired individuals have the highest loss 

aversion ratios; students have the lowest loss aversion ratios ( 2.22λ = ). In 

addition, students are least risk averse with respect to gains and least risk seeking 

with respect to losses. 
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• Education effect. The effect of education received on individuals’ risk attitudes is 

not very significant according to our survey results. However, it is interesting to 

note that the risk attitudes of well educated individuals (with terminal education 

age over 19 in our survey) move towards the least educated group (with terminal 

education age under 16 in our survey). Of course, this is not conclusive. 

• Marital status effect. Individual’s risk attitudes are very sensitive to marital status 

as well. Unmarried (single and living with partner) individuals are less loss averse 

than individuals who are married or were married (widowed/divorced/separated). 

• Household effect. From the survey results, we can see status of household (i.e. 

whether with a male or female head of household) does not have a strong impact 

on individuals’ risk attitudes.  

 

 

3.3.2 Behavioural features 

 

Financial knowledge 

The survey results shows lots of people have little interest and knowledge about saving 

and investment. We can see from Table 5 below that, 364 (38%) respondents “don’t 

know” the “current rate of interest level of saving account”, and another 38% respondents 

give the wrong answers. Only 22% of total sample seem to know the base rate.  

 

Table 5 Financial knowledge: base rate 
 

0.1-0.9% 5(1%)  

1.0-1.9% 33(3%)  

2.0-2.9% 48(5%)  

3.0-3.9% 114(12%)  

4.0-4.9% 162(17%)  

5.0+% 217(22%)  

No interest 23(2%)  

Don’t know 364(38%)  

 
Sample: 966 

 

Also, as shown in Table 6, when we ask “if a person spreads their investments over a 

number of assets or assets types successfully, what do you expect to happen to the level 
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of risk in their portfolio” (Question 9 in our survey), 78 (8%) respondents “don’t 

understand the question”, 282 (29%) have “no ideas”, 251 (26%) think it will “go up”, 

147 (15%) think it will “stay the same”, only 208 respondents (22%) give the right 

answer.  

 

Table 6 Financial knowledge: diversification 
 

Go up 251 (26%) 

Stay the same 147 (15%) 

Go down 208 (22%) 

No idea 282 (29%) 

Do not understand 78 (8%) 

 
Sample: 966 

 

 

Overconfidence 

Figure 9 shows the current age and planning retirement age of 269 respondents, who 

gave quantitative answers to the question 3 - “when plan to retire”. Clearly, individuals 

are over confident in planning retirement and they will change and postpone their 

expected retirement ages over time when they grow old.   

 

 

Figure 9: Planning Retirement Age (total respondents: 269) 
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Framing effect 

Three pairs of questions (i.e. Q13 and Q16, Q14 and Q17, Q15 and Q18) with the same 

gambling amount in the terms of loss or gain are asked to investigate the framing effect. 

We find framing effect plays an important role in affecting people’s financial decision 

makings. For example, as shown in Table 7, among 453 risk-averse individuals 

according to their answers to question 16, 13% of them change to be risk-seeking in 

question 13 and 29% decline to take part, with another 5% saying that they do not know 

this time. Also, it seems that framing effect becomes stronger with the increase of 

gambling amount. For example, when the gambling amount increases, within the initial 

risk-averse sample (453 individuals), fewer people would stick to their risk attitudes 

(with percentages dropped from 88% to 86% in Q17 and Q18, from 53% to 30% in Q13 

and Q15).  

 
 

Table 7 Framing effect 
 

 “loss” sense questions “gain” sense questions 

 Q13 Q14 Q15 Q16 Q17 Q18 

Risk-averse answers 
239/453 

(53%) 

194/453 

(43%) 

138/453 

(30%) 

398/453 

(88%) 

389/453 

(86%) 

risk-seeking answers 
58/453 
(13%) 

47/453 
(10%) 

54/453 
(12%) 

6/453 
(1%) 

0/453 
(0%) 

Would not take part 
132/453 
(29%) 

190/453 
(42%) 

238/453 
(53%) 

45/453 
(10%) 

54/453 
(12%) 

Don’t know 
24/453 
(5%) 

22/453 
(5%) 

23/453 
(5%) 

Sensible 

answers 

(453 risk-

averse 

subjects) 
4/453 
(1%) 

10/453 
(2%) 

 
 

 

3.3.3 Other 

 

In the survey, we proposed five questions which we think can help us understand how 

individuals make investment decisions. The results are shown in Table 8 below. Some 

observations are:  

� A majority of individuals (72%) of individuals insist that they will never or only 

occasionally make decisions in a spontaneous or unplanned way. However, only 50% 
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of the sample will always make plans and stick to them; while only 55% of the 

respondents think they are able to always control impulsive feelings.  

� In terms of the frequency of reviewing savings and investments, only 36% of the 

respondents are willing to review their savings and investment frequently (weekly, 

monthly or quarterly). 

� 42% of the respondents prefer to “have one pot of money for all different needs”.  
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Table 8 Behavioural questions 
 
 

 (%) 

Total sample (966)  

  

Q6. How to allocate money for retirement needs  

You allocate different pots of money to different needs 30% 

You have different pots of money, but do not allocate them to different needs 15% 

You have one pot of money for all your different needs 42% 

Do not know 13% 

  

Q8. How often to review savings and investments?   

Weekly 16% 

Monthly 14% 

Quarterly 9% 

Annually 30% 

Never 16% 

Do not have savings/investments 10% 

Do not know 4% 

Refused 1% 

  

Q10. Do you act in a spontaneous or unplanned way?   

Yes, always 26% 

Occasionally 43% 

No, never 29% 

Do not know 2% 

  

Q11. Do you make plans and stick to them?  

Yes, always 50% 

Occasionally 40% 

No, never 9% 

Do not know 1% 

  

Q12. Are you able to control impulsive feeling?   

Yes, always 55% 

Occasionally 36% 

No, never 8% 

Do not know 1% 
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3.4   Discussion 

 

Motivated by the existing behavioural finance and loss aversion theory literature, we 

conducted a face-to-face survey on 966 randomly selected UK residents (for more details, 

see Appendix 02). The main contribution of this paper is to provide UK empirical 

evidence on individuals’ risk attitude in terms on loss aversion parameters ( 1v , 2v  and λ ). 

This enables us to compare and contrast UK case study evidence with existing US 

findings (e.g. Tversky and Kahneman (1992)). 

 

The median estimated results of the loss aversion parameters are: 

• the loss aversion ratio is 3.4λ = , 

• the curvature for gains is 1 0.53v = , and 

• the curvature for losses is 2 0.77v = . 

 

The results are broadly consistent with the well known prospect theory setting ( Tversky 

and Kahneman (1992)) and suggest that UK investors are more loss averse than the 

Tversky and Kahneman’s original group of US students. To further investigate the loss 

aversion parameters of individual investors, we also separate individuals into several 

subgroups according to their gender, age, standard region, working status, terminal 

education age, marital status and household status, and estimate the loss aversion 

parameters for each group. The results help us to understand the relevant sensitivities of 

these factors on individuals’ risk attitudes. 

 

In addition, the survey results show many individual struggle to understand and make 

saving and investment decision. This is consistent with the principles of behavioural 

finance theory, which suggests individuals’ decision makings are not always in a rational 

and unbiased manner assumed by expected utility theory. 
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Chapter 4  

 

Loss Aversion Model 

 

 

 

4.1 Introduction 

 

As discussed in Chapter 2 and Chapter 3, the idea of “loss aversion” was first proposed 

by Kahneman and Tversky (1979) within the framework of prospect theory19. As one of 

the distinguishing features, the loss aversion value function is defined on gains and losses 

of wealth relative to a reference point, rather than absolute levels of total wealth (as is the 

case with the more traditional ideas of utility theory). Specifically, the loss aversion 

utility function is defined as follows: 

 

( )

1

2

1

2

( )
if 

( )
if 

v

v

X F
X F

v
V x

F X
X F

v
λ

 −
≥


= 

−− <


 

[11] 
 

where 

• X is the wealth amount, 

• F  is the reference wealth level,  

                                                 
19 Kahneman and Tversky (1979) developed this theory to remedy the descriptive failures of subjectively expected 
utility (SEU) theories of decision making.  
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• 1v  and 2v  are the curvature parameters for gains and losses respectively, with 

10 1v< <  and 20 1v< < , and 

• 0λ >  is the loss aversion ratio (i.e. investors are assumed to be λ  times more 

sensitive to losses than to gains). 

 

The two key properties of the loss aversion utility function are: 

(i) it is S-shaped (i.e. convex below the reference point and concave above it), 

implying that individuals are risk seeking in the domain of losses and risk 

averse in the domain of gains; and 

(ii) it is asymmetric (i.e. steeper below the reference point than above, because of 

the effect of the loss aversion ratio λ ), implying that individuals are more 

sensitive to losses than to gains.  

 

Loss aversion theory has become increasingly popular in recent economic studies of asset 

allocation issues, largely because it can better explain many observed behavioural traits 

in investment decision-making that are hard to rationalise in an expected utility setting. 

For example, as mentioned in Section 2.2.2, Benartzi and Thaler (1995) explain the 

“equity premium puzzle” in terms of myopic loss aversion (MLA) by investors, whereby 

investors are both loss averse and evaluate their portfolios too frequently. And, Rabin and 

Thaler (2001) argue that expected utility theory does not always explain the behaviour of 

investors in a risky environment (especially the hesitation over risky monetary prospects 

even when they involve an expected gain) and the authors comment that they “have also 

been surprised by economists’ reluctance to acknowledge the descriptive inadequacies of 

expected utility theory”.  

 

 

This chapter considers the optimal age-dependent investment strategy for defined 

contribution (DC) pension plans when plan members experience loss aversion. We use a 

two-asset, dynamic-programming-based numerical model with uninsurable labour 

income and borrowing constraints. Members are assumed to be loss averse with respect 
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to a target replacement ratio20 on retirement at age 65 and a series of interim targets at 

regular intervals prior to retirement which reflect the discounted value of the target fund 

level. They are also assumed to make asset allocation decisions with the aim of 

maximising the discounted sum of the expected present value (EPV) of the LA functions 

(one for each reference point to be defined later) over the period until retirement. Within 

this proposed framework, it will be shown that the optimal dynamic asset allocation 

strategy is the target-driven strategy known as “threshold” or “funded status” that was 

considered in Blake et al (2001). With this strategy, the weight in equities is increased if 

the accumulating fund is below target and is decreased if the fund is above target. Over 

time, as the retirement date approaches, the overall equity weight falls. Although this is 

similar to what happens in “lifestyle” strategies, the target-driven strategy is very 

different. Whilst “deterministic” lifestyle strategies typically involve switching from 

100% equities only in the last 5 to 10 years before retirement and often end up holding 

100% of the fund in bond-type assets at retirement, the optimal strategy under loss 

aversion involves a much more gradual reduction in the equity holding, beginning at 

about age 40, and retains a significant equity holding of around 40% at retirement.  We 

also show that under loss aversion, the risk of failing to attain the desired replacement 

ratio at retirement is significantly reduced in comparison with target-driven strategies 

derived from maximising either a quadratic or a power utility function.  

 

In a DC pension plan, a member contributes part of his/her salary each year to building a 

pension fund for retirement. The accumulated fund is then used to buy a life annuity to 

provide a pension income after retirement. Deterministic lifestyle investment strategies 

are widely used by many such pension plans as the default investment option, with the 

aim of achieving the desired replacement ratio at retirement. However, as will be shown 

below, there can be substantial uncertainty over the size of the fund at retirement when a 

lifestyle investment strategy is used and this makes it difficult for the plan member to be 

confident about the level of retirement income.21  Thus, for DC plan members seeking 

                                                 
20 The ratio of pension income divided by salary level at retirement. 
21 This is based on the assumption that members pay a constant contribution rate each year (as assumed by most 
researchers in the literature). In the real world, members would be able to assist in achieving the desired target 
replacement ratio by adjusting the annual contribution rate. However, previous behavioural research findings (e.g. 
Madrian and Shea (2001)) suggest that, once enrolled, plan members make few active changes to the contribution rates 
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greater certainty in their retirement planning, the plan’s investment strategy needs to be 

far more focused on achieving the target pension.  

 

We will assume that plan members evaluate the plan’s investment performance on an 

annual basis. Members have a final target replacement ratio at retirement and a series of 

discounted final targets before retirement. They are assumed to be loss averse with 

respect to these targets (which define the reference points in the LA framework outlined 

above) and to make asset allocation decisions to maximise the discounted sum of the 

EPV of the LA functions at each age until retirement.  

 

Having target fund levels when formulating the optimal investment strategy for a DC 

pension plan is not a new idea. Vigna and Haberman (2001, 2002) derive a dynamic-

programming-based formula for the optimal investment allocation in DC plans. In their 

model, members are assumed to face a quadratic cost (or disutility) function each year 

based on actual and targeted fund levels and to make investment decisions that minimise 

the cost of deviations of the fund from these corresponding targets. Their analysis 

suggests that a lifestyle investment strategy remains optimal for a risk averse member and 

that the age at which the member begins to switch from equities to bonds depends on 

both the member’s risk aversion and age when the plan started: the more risk averse the 

member or the longer the accumulation period prior to retirement, the earlier the switch 

to bonds. However, as the authors acknowledge, one obvious limitation of this approach 

is that the quadratic cost function equally penalises both under- and over-performance 

relative to the specified targets.  

 

 

 

Our proposed model differs from existing literature in three significant respects:  

(i) Loss aversion utility. As discussed above, most of the existing studies (e.g. 

Haberman and Vigna (2002), Gerrard et al. (2004)) assume that the individual 

plan member has a quadratic utility function with respect to deviations in the 

                                                                                                                                                 
or investment decisions. This is known as the “inertia effect”. 
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actual fund from the corresponding targets. Given the behavioural traits 

exhibited by many investors, we believe it is more appropriate to use a loss 

aversion utility function instead in the asset allocation model of a DC pension 

plan;   

(ii) Stochastic salary process. Previous studies (e.g. Haberman and Vigna (2001)) 

have been based on a simplistic deterministic salary model, whereas this paper 

uses a more realistically-calibrated stochastic salary model; and 

(iii) Choice of the investment targets. To choose an appropriate investment target is 

crucial in this type of target driven approach. Previous studies have been 

oversimplified by assuming fixed interim and final targets (based in a constant 

investment return). In our model, both the interim and final fund targets are path-

dependent (and vary over time in accordance with the member’s actual current 

salary and required replacement ratio at retirement).   

 

Our baseline simulation draws on empirical evidence from UK households, with the loss 

aversion parameters estimated from the results of a specially commissioned survey of 

almost 1,000 randomly selected individual investors on attitudes to risk and loss (see 

Blake et al (2008a)). This survey suggests that UK investors are significantly more loss 

averse than was suggested by the original Kahneman and Tversky study (which was 

based on a much smaller survey of US graduate students only).  

 

The rest of the chapter is organised as follows. Section 4.2 formulates the target driven 

asset allocation problem for a DC pension plan and outlines our model including 

optimisation method and Section 4.3 presents the empirical part of this paper including 

the parameter calibration for our baseline simulation; in Section 4.4, we provide some 

justifications for the use of loss aversion utility first and then analyse the simulation 

results of the optimal asset allocations from our model, with the main conclusions 

described in Section 4.5.  
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4.2 Asset Allocation Problem for a DC Pension 

Plan 

 

In this section, we describe the two-asset discrete-time model with constant investment 

opportunity set 22  (i.e. a constant risk-free rate, constant risk premium and constant 

volatility of return on the risky asset) used in the simulation process. All investment 

returns in the model are in real term (i.e. inflation is not considered in the model). 

 

A number of assumptions have been made: 

(i) Members are assumed to join the pension scheme at age 20 (without bringing a 

transfer value) and the retirement age is fixed at 65 (i.e. at time 45T = ); 

(ii) Contributions, expressed as a percentage of current salary, are assumed to be fixed 

and paid annually in advance; 

(iii) We assume that members target a chosen replacement ratio at retirement (in practice, 

this would often be 0.5 or, even, 0.667), which then enables us to estimate a target 

value for the pension fund at retirement (based on projected final salary and the 

expected purchase price for a whole of life annuity at the date of retirement); 

(iv) Members are assumed to evaluate the investment performance of the portfolio 

annually before retirement. At each age prior to retirement, the final target fund is 

adjusted (to reflect actual current salary and, hence, projected final salary), and 

members can also be considered to have a series of future interim targets in the 

period prior to retirement  (corresponding to the discounted value of the final target 

at each future age, allowing for the then future contributions to be paid);  

(v) At each age, we give the same weight to all future interim targets and a higher weight 

to the final target (to reflect the fact that final target is more important than interim 

                                                 
22 This assumption is made to facilitate the numerical optimisation method used in the model. In real life, investment 
returns of some risky assets, e.g. equities may be mean reverting. This will mean that the optimal asset allocation in 
such risky asset needs to be slightly higher at each year, compared to what our model suggests. 
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targets). These weighting coefficients are used to balance the importance of these 

interim and final targets; and 

(vi) members are assumed to be loss averse and to make investment decisions with the 

aim of maximising the expected present value (EPV) of the loss aversion utility 

function (see Section 2.3 below).  

 

4.2.1 Financial assets 

 

There are two underlying assets in which the pension plan can invest: 

• a risk-free asset (e.g. a cash fund), and 

• a risky asset (e.g. an equity fund) 

 

The risk-free asset is assumed to yield a constant return of r  per annum. The annual 

return on the risky asset in year t , tR , is given by23:     

 

1,t tR r Zµ σ= + + ×  

                                                                                                                                                                    [12] 
where 

• µ  is the annual risk premium on the risky asset, 

• σ  is the annual volatility of return on the risky asset, and 

• 1,tZ  is a series of independent and identically distributed standard Normal random 

variables. While we realise that the normal distribution of risky asset return is a 

simplified assumption, this help facilitate the numerical optimisation method.  

 

 

                                                 
23 In our current model, the investment opportunity set is assumed constant. This will greatly facilitate the numerical 
method of calculating optimal asset allocation. However, it will certainly be an important improvement to investigate 
the loss aversion model under a stochastic interest rate (e.g. Cox-Ingersoll-Ross model), which will allow us to 
incorporate the annuity risk (with annuity price based on stochastic interest rate) into the model. Also, the normal 
distribution assumption is made help facilitate the numerical optimisation method. One potential improvement is to 
assume that equity returns are regime switching. We will leave this to our future research.  
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4.2.2 Labour income process 

 

Before retirement, the annual rate of labour income growth in year t , 
tI , is given by: 

 

1
1 1, 2 2,

1

t t
t I t t

t

S S
I r Z Z

S
σ σ−

−

−
= + + × + ×  

[13] 
where 

• Ir  is the long-term annual rate of growth in national average earnings, reflecting 

productivity growth;  

• tS  is the salary scale or career salary profile (CSP) at time t , so that 1

1

t t

t

S S

S

−

−

−
 

reflects the promotional salary increase between time 1t −  and t ; 

• 1σ  represents the volatility of a shock from equity returns. In this way, we allow 

for possible correlation between labour income growth and equity returns24. 

• 2σ  represents the volatility of the annual rate of salary growth, and 

• 2,tZ  is a series of independent and identically distributed standard Normal random 

variables. 

 

Figure 10 shows the expected salary process over time up to retirement, allowing for 

both productivity growth (at a rate, Ir , of 2% p.a.) and promotional salary increases (i.e. 

career salary profile, CSP). 

 

 

 

 

 

 

                                                 
24 Same approach has been used by other researchers, e.g. Cairns, Blake and Dowd (2006). Here, it is worth noting that 
this correlation might not be instantaneous in real life, given it is normal to a lagged effect between the stock market 
and labour income shocks. But this is out of the scope of our model. 
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Figure 10 Labour income process 
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4.2.3 Pension fund accumulation and target levels 

 

The level of the pension fund at time ( )1t + , denoted by 1tf + , is given by: 

 

          ( )1 1 1, 11 ( )t t t t tf f π Y r Zθ µ σ+ + = + × × + + × + ×                             

[14] 
 

for 0,1, 2, , 1t T= −…  , where 

• 45T =  is the time of retirement; 

• tf  is the fund level at time t , with 0 0f = ; 

• 
tY  is the labour income received at time t  

o where ( )1 expt t tY Y I−= × , and 0 1Y = ; 

• π  is the fixed contribution rate, payable annually in advance; and 

• tθ  is the proportion of fund invested in risky asset during year ( , 1)t t +  
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• a non-borrowing constraint is imposed, so that 0 1tθ≤ ≤ . 

 

 

Setting the final target 

 

We will assume that member has a target replacement ratio at retirement of 2
3

 × salary at 

retirement. Given a risk-free interest rate (in real term) of 2%r =  per annum and using 

mortality in accordance with the projected PMA92 table25, the price of a whole life 

annuity (payable annually in arrears) on retirement at exact age 65 is 2%

65 14.87a = . 

Assuming an initial salary at age 20 of 0 1Y =  unit, the expected salary at retirement, 

denoted by ( )0 45TE Y = , is 5.7526 units. Then, at time 0, the target final fund level at 

retirement is ( )
0

2
5.75 14.87 57

3
F T = × × =  units.  

 

After age 20, for each year before retirement, the final target fund level will depend on 

the current actual salary level and expected growth rate up to retirement. Thus, given a 

salary of tY  units at time t , the expected salary at retirement is ( )
( )

( )
0 45

0

T

t T t

t

E Y
E Y Y

E Y

== ×  

(allowing for actual salary growth prior to time t  and expected salary growth after time 

t ). Then, the final target fund level at retirement is 

( )
( ) ( )0 0

5.75
0.667 14.87 57 t

t t

t t

Y
F T Y

E Y E Y
= × × × = ×  (i.e. the final target fund level is 

adjusted to reflect actual salary growth up to time t ).  

 

 

 

 

                                                 
25 PMA92 is a mortality table for male pension annuitants in the UK based on experience over the period 1990-92.In 
this case, we use the projected mortality rates for 2010, denoted PMA92 (C2010), published by the Continuous 
Mortality Investigation (CMI) Bureau in February 2004. 
26 Based on real labour income growth of 2% per annum and using the salary scale described later in Section 3.2. 
 



 70 

 

Setting the discounted interim targets 

 

By assuming a suitable discount rate, denoted by discountr , and an annual contribution rate 

of π , the interim targets in the period before retirement can then derived recursively from 

the final target. Thus, at time t , the path-dependent interim target levels can be derived 

recursively as follows: 

 

( ) ( ) ( )1 (1 )t t s t discountF s E Y F s rπ+ × = + × +
                                      

[15] 

 

for 0,1, , 1t T= −…  and , , 1s t T= −… , with ( )
0 0 0F =  and ( ) ( )057t t tF T Y E Y= × . 

 

In this paper, we use the yield on AA-grade corporate bonds with a term in excess of 15 

years as the discount rate to calculate discounted final target. This is consistent with the 

method for valuing the liabilities of defined benefit pension plans applied by global 

pension accounting standards (e.g. FAS 158, FRS 17 or IAS 19). As of 30 September 

2008, the credit spread on Iboxx Sterling-denominated Corporate AA Over 15 years was 

2.3%, so we use 0.023discountr r= +  in our model. 

  

Figure 11 shows the discounted interim targets and final target at age 20, using this 

approach together with an annual contribution rate of 10%π = . 
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Figure 11 Expected path of target at age 20 
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4.2.4 Formulation of the target driven process 

 

Based on the current actual fund level at time t , tf , and the current target fund level 

(reflecting past and expected future salary growth), ( )
tF t , we assume that a plan member 

faces a loss aversion utility function each year defined as: 

 

 

( )( )
( )

( )
( )

1

2

1

2

if 

( )
( )

if 

v

t t

t t

v

t t

t t

f F t
f F t

v
U t

F t f
f F t

v
λ

 −
 ≥


= 
−

− <


 

[16] 
 

However, it is reasonable to assume that, at any time t  prior to retirement, the final target 

is significantly more important to members than the interim target. So, we apply a 

weighting coefficient, 1ω , to the final target and lower weighting coefficient, 0ω , to each 
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of the interim targets. Then, at time t , the present value of the total loss aversion utility 

function up to retirement is given by: 

 

            ( ) ( )
1

0 1

T
s t T t

t

s t

G β U s U Tω β ω
−

− −

=

= × × + × ×∑                               

[17] 

 

for 0,1, 2, , 1t T= −… , where β  is the intertemporal discount factor. Thus, the model 

proposed here is to maximise the expected present value of the total utility prior to 

retirement by focusing on both the interim and final targets. 

 

It is important to note that the formulation of equation [17] can be interpreted as a 

generalisation of the optimal asset allocation problem of DC pension plans considered in 

much of the existing literature. In particular, two different methodologies have been used 

to investigate the optimal dynamic asset strategy of DC plans: 

• Cairns et al. (2006) maximised the expected utility of the terminal replacement 

ratio at retirement, which can be represented a special case in this model with 

( ) 0tF t =  (for all t T< ) and 0 0ω = ; or 

• Vigna and Haberman(2001) minimised the expected present value of the total 

disutility at each age prior retirement, which can be represented in the above 

framework with utility function 2( ) ( )
t t

U t f F= −  

 

 

4.2.5 Optimisation and numerical method 

 

Then, the set of optimal equity allocation proportions at each time t , 

{ }: 0,1, 2, , 1θ = −…t t T , can be determined as follows: 

 

            
1

0 1
:0 1
max ( )
t t

T
s t T t

s t

E β U(s) U T
θ θ

ω β ω
−

− −

≤ ≤
=

 
× × + × × 

 
∑                               
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[18] 
 

subject to the constraint that ( )1 1 1,1 ( )t t t t tf f π I r Zθ µ σ+  = + × × + + + ×  .   

 

An analytical solution to this problem does not exist because we do not have an explicit 

solution for the expectation in above expression. Thus, we must use numerical dynamic 

programming methods to maximise the value function and derive the optimal control 

parameters for the asset allocation proportions. 

 

The idea is to use the terminal utility function on retirement at age 65, (65)U , to compute 

(from equation [18]) the corresponding value function at age 64) and then to iterate this 

procedure backwards. 

 

A crucial first step in the stochastic dynamic programming approach requires us to 

discretise the state space and shocks in the stochastic processes (i.e. equity return and 

labour income growth). Thus, wealth and labour income level are discretised into 100 and 

10 evenly-spaced grid points respectively in computation. Also, the normally-distributed 

shocks in both the equity return and labour income growth are discretised into 9 nodes. 

The expected utility level at time t , ( )U t , is then computed using these nodes and the 

relevant weights attached to each 27 . Clearly, the choice of the number of nodes is 

subjective, but it is felt that this choice represents an appropriate trade-off between 

accuracy and speed of computation. After determining the optimal value of the control 

variable 
tθ  at each grid point, we then substitute these values in to equation [18] and 

solve the maximisation problem for the previous age. This process is then iterated 

backwards until age 20. Details of the dynamic programming and integration process are 

illustrated in Appendix 02. 

 

 

                                                 
27 This method is known as Gaussian quadrature numerical integration. For more details, see Judd (1998), page 257-
266. 
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4.3  Empirical analysis and parameter calibration 

 

The baseline simulation of the optimal asset allocation for a typical member of our model 

defined contribution pension plan draws on empirical evidence of loss aversion 

parameters and salary scales from UK households.  

 

 

4.3.1 Loss aversion parameters 

 

As discussed in previous section, in the existing literature on loss aversion, the curvature 

parameter for gains, 1v , and for losses, 2v , are commonly assumed between 0 and 1, 

which implies that individuals are risk averse with respect to gains and risk seeking with 

respect to losses. 

 

Based on an experiment conducted on a group of 25 graduate students, Tversky and 

Kahneman (1992) suggest that US individuals are 2.25 times more sensitive to losses 

than to gains (i.e. 2.25λ = ) and have gain and loss curvature parameters both equal to 

0.88 (i.e. 1 2 0.88v v= = ). And, Hwang and Satchell (2005) use 20 years of monthly UK 

and US asset allocation data to empirically investigate admissible ranges for the loss 

aversion parameters. Their study proposes a long-term average value of 3λ =  for the loss 

aversion ratio, and suggest that this value should be adjusted upwards and downwards by 

1.5 for bull and bear markets respectively. They suggest curvature parameters of 

1 0.75v = and 2 0.95v = , again implying that investors are risk averse with respect to gains 

and risk seeking with respect to losses. However, Levy and Levy (2002), amongst others, 

suggest that both 1v  and 2v  should be greater than one (implying that investors are risk 

seeking with respect to gains and risk averse with respect to losses), so favouring the 

reversed ‘S’-shaped utility function proposed by Markowitz (1952). 
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To estimate the loss aversion parameters for UK investors, we conducted a face-to-face 

survey on 966 randomly selected UK residents in 2005 (see Appendix 2 for more details). 

The result suggests that: 

 

• the loss aversion ratio is 3.4λ = , 

• the curvature for gains is 1 0.53v = , and 

• the curvature for losses is 2 0.77v = 28 

 

This means that, as suggested previously, members are risk seeking with respect of the 

wealth level below a specified reference point and risk averse above the reference point. 

Also, given a value of 3.4λ = , these findings suggest that UK investors are significantly 

more loss averse29 than would be implied by the Tversky and Kahneman framework 

(based, as mentioned above, on a much smaller sample of US graduate students).  

 

4.3.2 Salary scale 

 

Real salary growth for a pension plan member is assumed to consist of a stochastic 

element reflecting general growth in national average earnings and a deterministic 

promotional increase element (in line with a specified age-dependent salary scale). 

Following the work of Blake et al. (2007), we use the following quadratic function to 

model the salary scale: 

2

20 1 21 1 1 4 3
45 45 45

t

t t t
S k k+

    
= + × − + + × − + × + ×    

    
 

[19] 
 

The parameters 1k  and 2k  are estimated by least square method using average male 

salary data (across all occupations) reported in the 2005 Annual Survey of Hours and 

                                                 
28 with the 25% quartile being 1 0.36v = , 2 0 47.v ==== and 2=λ , and 75% quartile being 1 0 69.v ==== , 

2 1 21.v ==== and 12.4=λ ). More details can be found in a forth coming paper by Blake, Wright and Zhang. 
29 They are 3.4 times as sensitive to losses as to gains. In other words, when failing to achieve a target fund level, 
members in the loss-aversion framework feel 3.4 times as much pain as members in an equivalent power utility model. 
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Earnings. The estimated parameter values are 1 0.1865k = −  and  2 0.7537k =  for all male 

workers, which leads to the age-dependent promotional scale illustrated in Figure 12 

below. The results suggest that individuals can expect to achieve maximum earnings (in 

real terms) in their early 50s, with income reducing thereafter (when many choose to 

work part-time as retirement approaches). 

 

Figure 12 Salary scale (scaled to 100 at age 65) 
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4.3.3 Parameter calibration 

 

In the baseline case, we begin with a set of parameter values as follows: 

 

Asset returns  Labour income process  

Risk-free return, r  0.02 
Ir  0.02 

Equity risk premium, µ  0.04 hedgeable volatility, 1σ  0.05 

Volatility of equity return, σ  0.2 non-hedgeable volatility, 2σ  0.02 

Discount factor, β  0.97 1k  -0.1865 

  2k  0.7537 

Loss aversion parameters    

Loss aversion ratio, λ  3.4 Other  

Curvature for gains, 1v  0.53 Contribution rate, π  9% 

Curvature for losses, 1v  0.77 Weight of final target, 1ω  2.0 

  Weight of interim targets, 0ω  1.0 
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  Price of annuity on retirement, 
2%

65

ra =
��  

14.87 

    

 

 

It is assumed members join the plan with no transfer value (i.e. 0 0f = ) and the annual 

contribution rate is fixed at 9%. Using an equity premium of 4% per annum30 (as opposed 

to the historical long-term average of closer to 6% per annum) is a fairly common choice 

in recent literature (e.g. Gomes and Michaelides (2005)).  

 

As mentioned above, it is reasonable to assume that fund members will consider the final 

target to be significantly more important than each of the interim targets. Thus, following 

the work of Vigna and Haberman (2001), we assume initially that final target is twice as 

important as interim target in our baseline case (i.e. 0 1.0ω =  and 1 2.0ω = ). However, in 

Section 4.4, we will analyse the sensitivity of the results obtained to using different final 

target weights. 

  

As for the loss aversion utility function parameters ( 1v , 2v  and λ ), we use our survey 

estimate ( 1 0.53v = , 2 0.77v =  and 3.4λ = ) to run the baseline simulations. Sensitivity of 

the results to the chosen loss aversion utility parameters will also be examined later. 

 

 

 

4.4  Simulation and results 

 

4.4.1 The use of loss aversion utility in a target driven model 

 

The use of loss aversion utility can be justified by the empirical behavioural research 

evidence which shows it is a more realistic representation of investors’ financial decision 

                                                 
30 Recent research in the area of lifecycle asset allocation tends to use a conservative equity premium setting mainly 
because the presence of labour income substantially increases the demand for stocks. 
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making, as we discussed earlier. However, it is also of interest to see if there is any 

tangible added value to use loss aversion utility in an asset allocation model of DC 

pension plans in terms of absolute final fund level or the certainty of achieving final 

target level. 

 

As explained in section 4.1, previous researchers (e.g. Vigna and Haberman (2001, 2002)) 

propose a target-based asset allocation model for DC plans based on a quadratic disutility 

(cost) function. Several important assumptions made in their models include: 

(i) No labour income risk is considered (i.e. salary process is deterministic); 

(ii) Target of annual investment return is fixed;  

(iii) The expected present value (EPV) of total cost function until retirement is 

minimised to derive optimal asset allocation.  

 

Using the same target driven approach (with deterministic salary process) and baseline 

parameter settings (as shown in section 4.3.3 before), we have compared our loss 

aversion utility based model with the quadratic model as used in Vigna and Haberman 

(2001). Specially, to keep the two models comparable, the annual salary growth rate 

(equation [13]) is simplified to 1

1

t t
t I

t

S S
I r

S

−

−

−
= + , to remove the stochastic component; 

Also, the target annual investment return is fixed at 4.4% p.a. (representing an investment 

strategy consisting 60% in equities and 40% in cash). The final target level is still 57.0 in 

this case. 

 

The optimisation problem is to maximise ( ) ( )
1

0 1

T
s t T t

t

s t

G β U s U Tω β ω
−

− −

=

= × × + × ×∑ , 

while different utility functions are to be used: 

 

(i) For our loss aversion utility based model, as defined in equation [16] before, we 

have; 
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t t

t t

v

t t

t t

f F t
f F t

v
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− <


 

 

(ii) For quadratic utility model, we have 2( ) ( )t tU t f F= − − . 

 

The result of the optimisation process is a set of optimal control variables (i.e. equity 

allocation proportions at each time, tθ , for 0,1, 2, , 1t T= −… ) on each grid point for each 

time period. We now generate 10,000 simulations of the future economic experience over 

the period up to retirement based on the shocks on risky asset return ( 1,tZ ) and derive the 

optimal asset allocation for each path. 

 

Figure 13 and Table 9 below show the results of optimal asset allocation and final fund 

level over 10000 simulations.  From Figure 14 and Table 9, we can see that the use of 

loss aversion increases both mean and median level of final fund level at retirement. The 

discontinuity in the frequency distribution in Figure 14 occurs because of the 

discontinuity in the loss aversion utility function. This is as expected because under loss 

aversion utility based model, the outperformance over target is not penalised and plan 

members are also encouraged to take more risk when the fund underperforms targets. As 

a result, the optimal investment strategy adopted is more aggressive.  
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Figure 13 Loss aversion Vs. quadratic utility 
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Table 9 Levels of replacement ratios under loss aversion and quadratic utility 
model (over 10k simulations), without salary risk 

      Loss aversion utility Quadratic utility 

Target  66.7% 66.7% 

Mean 70.0% 66.7% 

25% 61.2% 58.6% 

Median 73.7% 66.7% 

75% 80.0% 74.6% 

Probability of achieving target 65.9% 50.5% 
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Figure 14 Histogram (LA Vs. Quadratic utility model) 
 

 

 

4.4.2 Baseline case 

 

Having justified the use of loss aversion utility in a target driven framework, let us look 

at the simulation results of the model. Now, stochastic salary process (i.e. equation [3]) is 

used in the model. Again, we generate 10,000 simulations of the future economic 

experience over the period up to retirement based on the shocks on risky asset return ( 1,tZ ) 

and uninsurable labour income growth ( 2,tZ ). In each time period, as we can only tell the 

optimal asset allocation on each grid point in the 100 by 10 state variable matrix, bilinear 

interpolation method is used to derive the optimal value for the control variables (
tθ ) for 

scenarios which lie in the state space but on the grid points. 
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The mean of the optimal equity allocation over 10000 simulations at each age is shown in 

Figure 15.  

  

 

Figure 15 Mean optimal equity asset allocation 
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These results confirm the suitability of a lifestyle asset allocation strategy, which is 

widely adopted by many investment managers in defined contribution pension plans 

worldwide. However, as shown in Figure 16, the range of potential levels of replacement 

ratio at retirement from a traditional 5-year lifestyle strategy31 is huge. This makes it very 

difficult for a DC member to have any idea of what level of retirement income they can 

expect. The final fund levels from our loss aversion based dynamic asset allocation are 

also shown in the histogram in Figure 16. We can see that the dynamic target driven 

model significantly improve the certainty of traditional lifestyle strategy in terms of 

probability of achieving replacement ratio target at retirement.     

 

                                                 
31 In this case, under the 5-year deterministic lifestyle strategy, member’s investment in equity fund will be gradually 
switched into cash fund as follows (100% before age 61, 80% at age 61. 60% at age 62, 40% at age 63, 20% at age 64 
and 0% at age 65). 
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Figure 16 Histogram of replacement ratio: baseline case Vs. 5-year lifestyle 

 

 

Table 10 Levels of replacement ratios under dynamic loss aversion model and 5-
year lifestyle (over 10k simulations) 

      Loss aversion utility 5-year lifestyle 

Target  66.7% 66.7% 

Mean 68.9% 67.2% 

25% 60.4% 42.9% 

Median 72.3% 65.0% 

75% 78.8% 89.9% 

Probability of achieving target 63.8% 47.2% 

 

 

We can also compare this dynamic investment strategy with other investment strategies 

with fixed asset allocation. As shown in Table 11 below, the optimal dynamic strategy 

has the largest probability of achieving final replacement ratio target (63.8%). 
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Table 11 Reliability of different asset strategies 
 

 Optimal Fixed asset decision  

Equity weight dynamic 100% 90% 75% 50% 

Target replacement ratio 66.7% 66.7% 66.7% 66.7% 66.7% 

Mean 68.9% 70.9% 61.2% 60.0% 52.7% 

Median 72.3% 69.73% 58.5% 56.9% 49.6% 

Probability of achieving target 63.8% 50.7% 41.3% 38.4% 29.6% 

 

If members invest 100% of portfolio in equity throughout the period, they have a 50.7% 

chance of achieving final target. If they follow a binding 50% equity-50% cash strategy, 

they only have a 29.6% chance of achieving the final target. The dynamic investment 

strategy we proposed is much more focused on achieving targets. The plan members in 

our model surrender some chances to get a very high replacement ratio and in return 

achieve a more certain level of living standard at retirement (as measured by replacement 

ratio). 

 

4.4.3 Sensitivity analysis 

 

In the following paragraphs, we will investigate more about sensitivity and importance of 

the loss aversion ratio, curvatures, interim and final targets.  

 

Loss aversion ratio 

Loss aversion function [16] is S-shaped. When λ  increases, the member becomes more 

loss averse (i.e. more sensitive to losses than to gains). As a result, as illustrated in 

Figure 17, the greater the value of the LA ratio, λ , the lower the optimal proportion of 

the fund invested in the risky asset at each age.  
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Figure 17 Sensitivity: loss aversion coefficient (Lamda) 
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Loss aversion curvatures 

In addition, the loss aversion value function does not need to be S-shaped (i.e. 11 <v  

and 12 <v ). In this section, we investigate the change of asset strategy under different 

curvature settings. We have 3 different cases: case 1 ( 11 <v  and 12 <v ), case 2 ( 11 >v  

and 12 >v , i.e. a reversed S-shaped curve) and case 3 ( 11 <v  and 12 >v , i.e. a kinked 

power utility curve).  A larger curvature on losses than gains means investors are more 

sensitive to the changes in losses than to the equivalent changes in gains (and vice versa). 

 

Table 12 Loss aversion curvatures 
 

 Case1 Case2 Case3 

Curvatures (v1,v2) 
v1=0.53, 
v2=0.77 

v1=0.77, 
v2=0.77 

v1=0.53, 
v2=0.53 

v1=1.4,
v2=1.4 

v1=1.4, 
v2=1.6 

v1=0.53,
v2=1.4 

Target level of 
replacement ratio 

66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 

Mean actual final level 68.9% 69.9% 70.2% 71.7% 72.0% 69.1% 

Median actual final level 72.3% 73.3% 73.4% 67.7% 68.2% 67.9% 
Probability of achieving 
target 

63.8% 65.7% 65.8% 55.1% 56.1% 54.9% 

 

 

Case 1: S-shaped ( 11 <v  and 12 <v ) 
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In case one, we have 11 <v  and 12 <v . Investors are risk averse with respect to the fund 

level above the target point and risk seeking with respect to the level below the target 

point (see Figure 18).  

 

 

 

Figure 18 Case 1:V1<1 and V2<1 (S-shaped) 

 

We present two different cases on 1v  and 2v  here.  Keeping the other curvature 

parameter unchanged, we increase the value of 1v  or reduce the value of 2v .As illustrated 

in Figure 19, when the curvature for gains ( 1v ) increase, investors become less risk 

averse with respect of gains, so the asset strategy becomes more aggressive. When the 

curvature for losses ( 2v ) decreases, investors become more risk seeking with respect of 

losses. Because the loss aversion ratio λ remains the same (which means individuals’ 

sensitivities to loss are still the same), this change will not affect the shape of dynamic 

asset allocation much. However, it is interesting to notice from Table 12 that this change 

does significantly increase the probability of achieving final target.  

 

 

 

 

 

Case1: v1<1 and v2<1 (S-shaped)

Gain

Value

v1=0.53;v2=77 (baseline) v1=v2=0.77 v1=v2=0.53
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Figure 19 Mean optimal equity asset allocation for case 1 
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Case 2: reverse S-shaped ( 11 >v and 12 >v ) 

When 11 >v and 12 >v , investors are instead risk loving for gains and risk averse for 

losses (as suggested by Levy and Levy (2002)), favouring a reverse S-shaped curve as 

shown in the Figure 20 below.    

 

Figure 20 Case 2: v1>1 and v2>1 (reverse S-shaped) 
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In this case, the member’s dynamic asset allocation decision strategy becomes more 

volatile. Because when the actual fund level goes above the target, the member will be 

more willing to increase equity investment and achieve a very good level of pension 

income; however, when the actual fund level falls below the target, the member will be 

more risk averse and less willing to increase the investment in equities and this makes it 

difficult to get fund level back to the target. Therefore, it is harder to achieve the final 

target. As a result, the frequency distribution will be more volatile and more positively 

skewed. Figure 22 and Table 12 confirm this effect.  

 

Figure 21 Mean optimal equity asset allocation for case 2 
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Case2: v1>1 and v2>1 (reversed S-shaped) 

Gain

Value

v1=1.4;v2=1.6 v1=v2=1.4
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Figure 22 Histogram of replacement ratios: baseline case Vs. Reverse S-shaped utility 
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Case 3: kinked power utility (v1<1 and v2>1) 

When v1<1 and v2>1, the members are risk averse for both gains and losses (see Figure 

23). 

 

Figure 23 Case 3: v1<1 and v2>1 (kinked power utility) 
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In this case, same as loss investors in our baseline simulations, investors are risk averse 

with respect of the fund level below the reference point. Meanwhile, when the actual fund 

falls below the target point, they will still be risk averse and less willing to increase 

equity investment. As shown in Figure 24, the asset strategy will be more conservative 

compared with baseline setting (in which members become risk lovers with respect to 

loss). 

 

And we can tell from Figure 25 that it significantly reduces the probability of achieving 

final target (with a chance of 54.9% in our simulations).  

 

 

 

 

 

 

 

 

 

 

 

 

Case3: v1<1 and v2>1 (kinked power utility)

Gain

Value

v1=0.53;v2=1.4;lamda=3.4
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Figure 24 Mean optimal equity asset allocation for case 3 
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Figure 25 Histogram of replacement ratios: baseline case Vs. kinked power utility 
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Final target weight 

 
When the final target weight becomes larger, it becomes more important to the member 

to achieve the final target and investors are less committed to meeting interim targets. In 

this case, as shown in the Figure 26 below, we need a more aggressive strategy to 

increase the probability of achieving the final target. We can see from Table 13, in terms 

of the probability of achieving final target, the benefits of applying a weighting factor of 

more than 10 on final target (and adopting a more aggressive investment strategy) is 

marginally diminished. The results seem suggest our baseline setting ( 1 2ω = ) is sensible. 

 

Table 13 Final target weight (v1=0.53, v2 =0.77 and lamda=3.4) 
      

Final target weight 1 2(baseline) 10 100 100k 

Target replacement ratio 66.7% 66.7% 66.7% 66.7% 66.7% 

Mean 68.8% 68.9% 70.2% 70.5% 70.9% 

Median 71.9% 72.3% 73.3% 73.3% 73.4% 

Probability of achieving target 62.4% 63.8% 65.8% 66.3% 66.6% 

 

 

Figure 26 Sensitivity: final target weight  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 25 30 35 40 45 50 55 60

Age

O
p
ti
m

a
l 
a
s
s
e
t 

a
llo

c
a
ti
o
n
 i
n
 e

q
u
it
ie

s

omega1=2(baseline)
omega1=10
omega1=100
omega1=100000

 

 

 

 

 



 93 

Final target only case 

An extreme case is when only the final target is considered important, i.e. there is no 

feedback information before retirement (and thus no interim targets). To investigate the 

optimal asset allocation in this case, we can assume all the interim target equal to zero 

and set the weight on final target to infinity. We generate the same random shocks as in 

the baseline case, and find the optimal asset allocation for each path. We have the results 

in Table 14, compared with the baseline case (i.e. the dynamic strategy which considers 

both final and interim targets). The results suggest the importance of considering interim 

targets when we model the optimal investment strategies for a DC pension plan. We can 

see that the dynamic strategy considering both interim and final targets significantly 

enhances the security of the schemes (with higher probability of achieving final target).  

 
 

Table 14 Only final target case 
 

   

Optimal equity weight 
Considering 

interim targets Final target only 

Target level of replacement ratio 66.7% 66.7% 

Mean actual final level 70.9% 68.2% 

Median actual final level 73.4% 70.5% 

Probability of achieving target 66.6% 60.7% 

 

 

 

Comparison with power utility model 

It may be not very surprising to know that a dynamic investment strategy considering 

interim targets can bring more security (in terms of the likelihood of achieving final 

target). Thus, it is of interest to see how our model compares with existing models where 

members are assumed to only care about final target and do not have any utility on 

achieve interim ones before retirement. 

 

Further to the discussion in above section and the assumption of no interim targets, we 

can also compare our loss aversion model with a power utility model, where members 

have a power utility on final fund level. This power utility framework has been used by 

many other authors, such as Boulier et al. (2001), Cairns et al. (2006). 
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Specifically, this is done by setting the reference wealth level, F , in the loss aversion 

function shown in equation [16] to zero (leading to a concave utility function, as shown 

in Figure 27) and setting the final target weight to infinity (i.e. 1 100kω = ). In this case, 

the member is always risk averse: ( )
( ) 1

1

v

t

t

f
U f

v
=  ,where 1 0.53v = . 

 

 

Figure 27 Power utility case 

 

 

 

Figure 28 shows the mean optimal allocation in the risky asset at each age for both the 

loss-aversion and the power utility models, based on 10,000 simulations (and using the 

same random shocks in both the asset return and income growth processes). We can see 

that, compared with power utility settings, loss averse investors are more committed to 

meeting final target and therefore adopt a more conservative dynamic asset allocation 

strategy. 
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Figure 28 Loss aversion utility Vs. power utility 
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Figure 29 Histogram of replacement ratio: baseline case Vs. power utility 
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Table 15 Loss-aversion model Vs. Power utility 
 

   

 Loss aversion model Power utility model 

Target level of replacement ratio 66.7% 66.7% 

Mean actual final level 70.9% 60.0% 

Median actual final level 73.4% 57.1% 

Probability of achieving target 66.6% 39.0% 
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As illustrated in Figure 29 and Table 9, the dynamic asset allocation strategy under the 

loss aversion model increases the probability of achieving final target (from 39.0% to 

66.6%, in our simulations). This is because power utility maximisers only make 

investment decisions with the aim to maximise expected final fund level at retirement; on 

the contrary, loss averse investors adjust their investment decisions dynamically with the 

aim of achieving the target at retirement. In other words, when the expected final 

replacement ratio is better than the target, loss averse members will reduce the equity 

investment to avoid potential “loss”; when the expected final replacement ratio falls 

below the target, they will increase the equity investment dramatically in order to get 

back to the target quickly. In Table 9, the higher replacement ratio and probability under 

loss aversion model demonstrates the value of using loss aversion utility function in asset 

allocation strategy models of DC pension schemes.  

 

Tversky-Kahneman setting 

Given the prospect theory setting is well recognised and widely used, we have run 10000 

simulations for members with the loss aversion parameters suggested by Tversky and 

Kahneman (1992), i.e. 88.021 == vv  and 25.2=λ . The mean of the optimal equity 

weight at each age, for both this case and the baseline case above (i.e. 3.4=λ , 53.01 =v  

and 77.02 =v ), are shown below. As illustrated in Figure 30, compared to our baseline 

case, the Tversky-Kahneman case has a smaller loss aversion ratio ( 4.325.2 <=λ ), 

which implies that the member is less sensitive to losses, and has a lower relative risk 

aversion in both the gain and loss regions ( 53.011 1 −<− v , 77.011 2 −<− v ), implying 

the member is willing to take more risk in both gain and loss regions. Thus, we have a 

more aggressive asset allocation strategy. Table 15 shows that the investment strategy 

suggested by the prospect theory calibration leads to a lower probability of achieving 

target at retirement. 
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Figure 30 baseline Vs. prospect theory setting 
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Table 16 Loss-aversion model Vs. Prospect theory model 
 

   

 Loss aversion model Prospect theory model 

Target level of replacement ratio 66.7% 66.7% 

Mean actual final level 70.9% 70.6% 

Median actual final level 73.4% 74.0% 

Probability of achieving target 66.6% 65.1% 
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4.5  Conclusions 

 

In this chapter, we propose a loss aversion based numerical model to solve the optimal 

asset allocation problem of defined contribution pension plans. The risks from a 

traditional deterministic lifestyle strategy are much higher than generally understood. For 

DC plan members who seek greater certainty in their retirement planning, the investment 

strategies need to be far more focused on achieving their retirement targets. 

 

A new type of target driven approach is used to derive the dynamic optimal asset 

allocation. The key findings of this paper include: 

 

• Based on the results of a face-to-face survey on 966 randomly selected UK 

residents conducted in 2005, we suggest that UK households are more loss averse 

than Tversky and Kahneman’s original group of students. Specially, our survey 

results suggest 1v =0.53, 2v =0.77 and λ =3.4, which means investors are 3.4 times 

as sensitive to losses as to gains and they are more sensitive to marginal losses 

than the equivalent marginal gains (i.e. 1 2v v< ).  

• The new dynamic asset allocation strategy is much more focused on achieving 

their retirement targets. Compared with traditional deterministic lifestyle 

investment strategies, the target driven investment strategy used in this chapter 

significantly improve the certainty of members’ retirement planning in a DC plan. 

As a trade off, under this dynamic target driven strategy, members need to 

surrender some potential good results of pension income at retirement. 

• Compared with an equivalent power utility model which also has been used by 

other researchers, loss averse investors are more committed to achieving interim 

and final targets fund levels and therefore adopt a more conservative asset 

allocation strategy. And for loss averse investors, the more important the final 

target is, the more aggressive the dynamic asset allocation strategy is required. 
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How often the members are given fund performance information is likely to 

influence the relative importance of interim targets. 

• Interim targets are essential in this loss-aversion-based model. To incorporate 

interim targets can significantly enhances the security of the schemes. In our 

simulations, the probability of achieving final target is 60.6% when interim 

targets are considered compared with a chance of 51.6% if only final fund level at 

retirement is targeted.   

• By comparing with quadratic function as used in previous studies, we demonstrate 

the value of using loss aversion utility in a target driven asset allocation model. 

Loss aversion model helps to increase both mean and median of final fund level. 

 

Recently, a number of fund managers have launched dynamic de-risk investment 

solutions for DC pension plans with targets defined on investment return or annuity 

amount. A standard feature of these solutions is that when the fund outperforms the pre-

determined target, additional assets above the target level are “banked” by switching to 

risk-free investment (e.g. cash). So while they have some features in common with our 

framework, they do not explicitly consider issues such as path-dependent targets or 

members’ utility. Our framework is therefore much more general than the solutions 

currently being implemented in practice. In addition, the model is reasonably easy to 

implement as well. The outputs of our dynamic asset allocation model are a set of optimal 

control variable (portfolio weight to equities) on each grid points for each age. With 

information of the member’s actually salary and pension fund level, an optimal 

investment strategy can be derived immediately. 

 

In this chapter, we justified the added value of using loss aversion utility function. 

However, we notice that this is based on the assumption of fixed contribution rates. In 

real life, if the expected utility theory still hold, power utility maximisers are to increase 

equity investment as their wealth increase; but meanwhile they can reduce the amount of 

contribution paid into their pension plans so that they get more utility from consumption 

before retirement. In the next chapter, we try to address this issue and look at the  optimal 

investment strategy when members are allowed to change contribution decisions. 
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Chapter 5  

 

Recursive Utility Model 

 

 

 

5.1  Introduction 

 

5.1.1 Allocation of consumption across the life cycle 

 
A typical individual’s life cycle consists of a period of work followed by a period of 

retirement.  Individuals therefore need to reallocate consumption from their working life 

– when the lifetime’s income is earned – to retirement – when there might be no other 

resources available, except possibly a subsistence level of support from the state. A 

defined contribution (DC) pension plan can achieve this reallocation in a way that is 

consistent with the preferences of the individual plan member. There are three key 

preferences to take into account.  

 

The first relates to the desire to smooth consumption across different states of nature in 

any given time period. The second relates to the desire to smooth consumption across 

different time periods. Saving for retirement involves the sacrifice of certain consumption 

today in exchange for, generally, uncertain consumption in the future. This uncertainty 

arises because both future labour income and the returns on the assets in which retirement 

savings are invested are uncertain. The plan member therefore needs to form a view on 

both the trade-off between consumption in different states of nature in the same time 

period and the trade-off between consumption in different time periods. Attitudes to these 
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trade-offs will influence the optimal funding and investment strategies of the pension 

plan.  

 

In a DC pension plan, the member allocates part of the labour income earned each year to 

the pension plan in the form of a contribution and, thus, builds up a pension fund prior to 

retirement. Then, on retirement, the member uses a proportion of the accumulated 

pension fund to purchase a life annuity. The decisions regarding the contribution rate 

each year before retirement (i.e., the funding strategy) and the annuitisation ratio (i.e., the 

proportion of the fund at retirement that is used to purchase a life annuity) are both driven 

by the member’s preference between current and future consumption, as well as the 

desire to leave a bequest, the third key preference that we need to take into account. 

Should the member die before retirement, the entire accumulated pension fund will be 

available to bequest; after retirement, only that part of the residual pension fund that has 

not been either annuitised or spent can be bequested.    

 

The investment strategy (i.e., the decision about how to invest the accumulated fund 

across the major asset categories, such as equities and bonds) will influence the volatility 

of the pension fund and, hence, consumption in different time periods, and so will be 

influenced by the member’s attitude to that volatility.  

 

In this chapter, we investigate the optimal funding and investment strategies in a DC 

pension plan32. To do this, we use a model that differs radically from existing studies in 

this field in three key respects. 

 

The first key feature of the model is the assumption of Epstein-Zin recursive preferences 

by the plan member. This enables us to separate relative risk aversion (RRA) and the 

elasticity of intertemporal substitution (EIS). Risk aversion is related to the desire to 

stabilise consumption across different states of nature in a given time period (e.g., an 

                                                 
32 This research focuses on the investment and funding strategies for a DC plan during the accumulation 
stage and the only form of saving we allow is pension saving. Non-pension saving, housing-related 
investments and post-retirement investment strategies are beyond the scope of this study.  
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individual with a high degree of risk aversion wishes to avoid consumption uncertainty in 

that period, and, in particular, a reduction in consumption in an unfavourable state of 

nature) and the EIS measures the desire to smooth consumption over time (e.g., an 

individual with a low EIS wishes to avoid consumption volatility over time, and, in 

particular, a reduction in consumption relative to the previous time period) 33.  Thus, risk 

aversion and EIS are conceptually distinct and, ideally, should be parameterised 

separately. In this paper, we consider four different types of member according to 

different RRA and EIS combinations, as shown in Table 17.  

 

Table 17 Pension plan member types 
 

 High RRA (risk averse) Low RRA (risk tolerant) 

Low EIS 
(likes 

consumption 
smoothing) 

 

• risk-averse member who 
dislikes consumption 
volatility over time 

• low equity allocation, 
particularly as retirement 
approaches 

• e.g., low income member 
with dependants  

 

 

• risk-tolerant member who 
dislikes consumption 
volatility over time 

• high equity allocation at all 
ages 

• e.g., low income member 
without dependants  

 

High EIS 
(accepts 

consumption 
volatility) 

 

• risk-averse member who 
does not mind consumption 
volatility over time 

• low equity allocation, 
particularly as retirement 

 

• risk-tolerant member who 
does not mind consumption 
volatility over time 

• high equity allocation at all 
ages 

                                                 
33 The EIS is defined as 
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where 1tc   is consumption in period t1 and ( )1tU c′   is the marginal utility of 1tc , etc. The sign and size of 

the EIS reflects the relationship between the substitution effect and income effect of a shock to a state variable, such 

as an increase in the risk-free interest rate. The substitution effect is always negative, since current consumption 
decreases when the risk-free rate increases because future consumption becomes relatively cheap and this encourages 
an increase in savings. The income effect will be positive if an increase in the risk-free rate (which induces an increase 
in wealth) leads to an increase in current consumption; it will be negative otherwise. If the income effect dominates, the 
EIS will be negative and an increase in the risk-free rate leads to an increase in current consumption. If the substitution 
effect dominates (which is the usual assumption), the EIS will be positive and an increase in the risk-free rate leads to a 
decrease in current consumption. If the income and substitution effects are of equal and opposite sign, the EIS will be 
zero and current consumption will not change in response to an increase in the risk-free rate: in other words, 
consumption will be smooth over time in response to interest rate volatility. 
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approaches 

• e.g., high income member 
with dependants 

 

• e.g., high income member 
without dependants 

 

 

Within the commonly used power utility framework, the coefficient of relative risk 

aversion (RRA) is the reciprocal of EIS (see, for example, Campbell and Viceira (2002)). 

This restriction has been criticised because it does not reflect empirical observations. For 

example, based on the consumption capital asset pricing model34, Schwartz and Torous 

(1999) disentangle these two concepts using the term structure of asset returns. Using US 

data, their best estimate for RRA is 5.65 (with a standard error of 0.22) and their best 

estimate of the EIS is 0.226 (with a standard error of 0.008). Thus, a high RRA is 

associated with a low level of EIS, but the estimated parameter values do not have the 

reciprocal relationship assumed by power utility. Blackburn (2006) also rejects the 

reciprocal relationship on the basis of a time series of RRA and EIS parameters estimated 

from observed S&P 500 option prices for a range of different expiry dates between 1996 

and 200335. 

 

The second key feature of the model is the recognition that the optimal investment 

strategy will depend not just on the properties of the available financial assets, but also on 

the plan member’s human capital.  A commonly used investment strategy in DC pension 

plans is “deterministic lifestyling”. With this strategy, the pension fund is invested 

entirely in high risk assets, such as equities, when the member is young. Then, at some 

arbitrary date prior to retirement (e.g., 10 years), the assets are switched gradually (and 

usually linearly) into lower risk assets such as bonds and cash. However, there has been 

no strong empirical evidence to date demonstrating that this is an optimal strategy.  

 

If equity returns are assumed to be mean reverting over time, then the lifestyle strategy of 

holding the entire fund in equities for an extended period prior to retirement may be 

justified, as the volatility of equity returns can be expected to decay over time (as a result 

                                                 
34  Breeden’s 1979 extension of the traditional CAPM which estimates future asset prices based on aggregate 
consumption rather than the return on the market portfolio. 
35 In particular, Blackburn (2006) found that, over the period 1996 to 2003, the level of risk aversion changed 
dramatically whilst the level of elasticity of intertemporal substitution stayed reasonably constant.   
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of the effect of “time diversification”). However, there is mixed empirical evidence about 

whether equity returns are genuinely mean reverting: Blake (1996), Lo and Mackinley 

(1988) and  Poterba and Summers (1988) find supporting evidence for the UK and US, 

while Howie and Davies (2002) and Kim et al (1991) find little support for the 

proposition in the same countries. We would therefore not wish an optimal investment 

strategy to rely on the assumption of mean reversion holding true in practice. 

 

A more appropriate justification for a lifestyle investment strategy comes from 

recognising the importance of human capital in individual financial planning. Human 

capital (i.e., the net present value of an individual’s future labour income) can be 

interpreted as a bond-like asset in which future labour income is the “dividend” on the 

individual’s implicit holding of human capital. Young pension plan members therefore 

implicitly have a significant holding of bond-like assets and, thus, should weight the 

financial element of their overall portfolio towards equity-type assets36. But to date, there 

has been no quantitative research exploring the human capital dimension in a DC pension 

framework. 

 

This chapter presents an intertemporal model to solve the life-cycle asset allocation 

problem for a DC pension plan member. The model assumes two assets (a risky equity 

fund and a risk-free cash fund), a constant investment opportunity set (i.e., a constant 

return on the risk-free asset, and a constant expected return and volatility on the risky 

asset) and stochastic labour income. We consider two aspects of labour income risk: the 

volatility of labour income and the correlation between labour income and equity returns 

which determines the extent to which labour income affects portfolio choice (e.g., a 

positive correlation reduces the optimal asset allocation to equities). 

 

The third key feature of the model concerns the annuitisation decision at retirement. A 

member with a strong “bequest” savings motive will not wish to annuitise all the 

accumulated pension wealth. In our model, the member chooses to annuitise a proportion 

                                                 
36  Note this argument might not be appropriate for more entrepreneurial individuals whose pattern of future labour 
income growth corresponds more to equity than to bonds. 
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of the accumulated pension fund at retirement by buying a life annuity which will 

generate a return linked to bonds. We denote this proportion the “annuitisation ratio”. 

This ratio is chosen to maximise the expected utility level at retirement when annuity 

income replaces labour income. The member invests the residual wealth that is not 

annuitised in higher returning assets in line with the RRA. The member can draw an 

income from the residual wealth to enhance consumption in retirement, but, unlike the 

life annuity, the residual wealth can be bequeathed when the individual dies.  

 

Before considering the model in more detail, we will review Epstein-Zin utility. 

 

 

5.1.2  Epstein-Zin utility  

The classical dynamic asset allocation optimisation model was introduced by Merton 

(1969, 1971), and shows how to construct and analyse optimal dynamic models under 

uncertainty. Ignoring labour income, in a single risky asset and constant investment 

opportunity setting, the optimal portfolio weight in the risky asset for an investor with a 

power utility function ( ) ( )
1

( ) 1U W W
−

= −
γ

γ  (where W  is wealth and γ  is the 

coefficient of relative risk aversion) is given by: 

 

2

µ
α

γσ
=  

[20] 
 

where µ and 2
σ  are the excess return on the risky asset and the variance of the return on 

the risky asset, respectively. The investment opportunity set is assumed to be constant. 

 

Equation [20] is appropriate for a single-period myopic investor, rather than a long-term 

investor such as a pension plan member. Instead of focusing on the level of wealth itself, 

long-term investors focus on the consumption stream that can be financed by a given 

level of wealth. As described by Campbell and Viceira (2002, p37), “they consume out of 

wealth and derive utility from consumption rather than wealth”. Consequently, current 
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saving and investment decisions are driven by preferences between current and future 

consumption. 

 

To account for this, Epstein and Zin (1989) proposed a discrete-time recursive utility 

function37. Recursive utility preferences focus on the trade-off between current-period 

utility and the utility to be derived from all future periods. The following Epstein-Zin 

recursive utility has become a standard tool in intertemporal investment models, but has 

not hitherto been applied to pension plans: 

 

( ) ( )

1
1 11 1

1
1

1 1
11

ϕ ϕ
γϕ γβ β

− −
−

− −
+

 
  = − +  
 
 

t t t tV C E V  

[21] 
where 

• tV  is the utility level at time t , 

• β  is the individual’s personal discount factor for each year, 

• tC  is the consumption level at time t , 

• γ  is the coefficient of relative risk aversion (RRA), and 

• ϕ  is the elasticity of intertemporal substitution (EIS). 

 

The recursive preference structure in [21] is helpful in two ways: first, it allows a multi-

period decision problem to be reduced to a series of one-period problems (from time t  to 

time 1+t ); and second, as mentioned previously, it enables us to separate RRA and EIS.  

 

Then, ignoring labour income, for an investor with Epstein-Zin utility, there is an 

analytical solution38 for the optimal portfolio weight in the risky asset given by: 

                                                 
37 Kreps and Porteus (1978) first developed a generalised iso-elastic utility function which distinguishes attitudes to risk 
from behaviour toward intertemporal substitution. Following the KP utility function, Epstein and Zin (1989, 1991) 
proposed a discrete-time recursive utility function that allows the separation of the risk aversion parameter from the 
EIS parameter. Duffie and Epstein (1992) then extended the Epstein-Zin discrete recursive utility in a continuous-time 
form called a stochastic differential utility (SDU) function.  
38 For more details, see Merton (1973) and Campbell and Viceira (2002). 
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( )1 1

2 2

cov ,1
1

µ
α

γσ γ σ
+ +− 

= + − × 
 

t t tt
t

t t

R V
 

[22] 
 

This shows that the demand for the risky asset is based on the weighted average of two 

components. The first component is the short-term demand for the risky asset (or myopic 

demand, in the sense that the investor is focused on wealth in the next period). The 

second component is the intertemporal hedging demand, which is determined by the 

covariance of the risky asset return with the investor’s utility per unit wealth over time. 

Thus, ignoring labour income, the optimal portfolio weights are constant over time, 

provided that the investment opportunity set remains constant over time (i.e., 
t =µ µ  and 

2 2

t =σ σ  in [22]). 

 

In a realistic life-cycle saving and investment model, however, labour income cannot be 

ignored. It is risky and cannot be capitalised and traded. But, allowing for labour income 

volatility in the optimisation process means that an analytical solution for the optimal 

asset allocation cannot be obtained. To address this, the recent literature has employed a 

number of numerical methods39 to approximate the solution of the dynamic portfolio 

optimisation problem. 

 

In the presence of income risk, the optimal portfolio weight in the risky asset is not 

constant, but instead follows a lifestyle strategy, as shown by Coco et al. (2005). This can 

be explained as follows: human capital or wealth can be thought of as the expected net 

                                                 
39 By far, the most popular approach is value function iteration. Specifically, this involves the discretisation of the state 
variables by setting up a standard equally-spaced grid and solves the optimisation for each grid point at the next-to-last 
time period. The expectation term in the resulting Bellman equation is approximated by using quadrature integration 
and then the dynamic optimisation problem can be solved by backward recursion. In this case, it is possible that the 
accumulated state variable values from the previous time period are not represented by a grid point, in which case, an 
interpolation method (e.g., bilinear, cubic spline, etc.) must be employed to approximate the value function. However, 
this approach requires knowledge of the distribution of each of the shocks to the process, so that appropriate quadrature 
integration (e.g., Gauss quadrature) can be used. Furthermore, this approach cannot handle a large number of state 
variables. To overcome these limitations, Brandt et al. (2005) proposed a simulation method based on the recursive use 
of approximated optimal portfolio weights. The idea is to estimate asset return moments using a large number of 
simulated sample paths, and then to approximate the value function using a Taylor series expansion. If the return is 
path-dependent, it is necessary to regress the return variable on the simulated state variables from previous time period, 
before using the Taylor expansion with conditional return moments.  
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present value (NPV) of future labour income. Thus, an individual’s labour income can be 

seen as the dividend on the individual’s implicit holding of human capital. Hence, the 

ratio of human to financial wealth is a crucial determinant of the life-cycle portfolio 

composition. In early life, as shown in Figure 31, this ratio is large since the individual 

has had little time to accumulate financial wealth and expects to receive labour income 

for many years. Given that long-term average labour income growth is of a similar order 

of magnitude as average long-run interest rates in the UK over the last century, as 

explained in Cairns et al. (2006), labour income can be thought of as an implicit 

substitute to investing in the risk-free asset. Thus, younger individuals have a significant 

holding in this non-tradable risk-free asset and, therefore, should allocate most of their 

financial wealth to the risky asset to keep the overall portfolio composition constant, as 

suggested by Equation [22] above. As they grow older, individuals accumulate more 

financial wealth and draw down human capital. They should therefore rebalance their 

financial portfolio towards risk-free assets as age increases.  

 

 

Figure 31: Decomposition of total wealth over the life cycle 
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More recently, life-cycle asset allocation models with a stochastic labour income process 

have been extended to include the use of a recursive utility function to allow a separation 
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of RRA and EIS by, for instance, Weil (1989) and Campbell and Viceira (2002). By 

including a fixed first-time risky-asset entry cost and adopting Epstein-Zin utility, Gomes 

and Michaelides (2005) present a life-cycle asset allocation model to explain the 

empirical observations of low stock market participation and moderate equity holdings 

for participants40.  

 

Turning to DC pension plans, most of the existing literature investigates their optimal 

dynamic asset allocation strategy by assuming a fixed contribution rate (e.g., 10% of 

salary per annum prior to retirement) and maximising the utility of the replacement ratio 

(i.e., pension as a proportion of final salary) at retirement (for example, Cairns et al. 

(2006)) or by minimising the expected present value of total disutility 41  prior to 

retirement (for example, Haberman and Vigna (2002)). The EIS is implicitly assumed to 

be zero and there is no facility for adjusting the contribution rate in response to changes 

in salary level or in asset performance. However, in practice, most DC plans allow 

members to make additional voluntary contributions, and often set upper and lower limits 

on the contribution rate per annum. 

 

Our aim in this study is to investigate the optimal asset allocation strategy for a DC plan 

member with Epstein-Zin utility, so that an individual member’s investment strategy 

depends on the pattern of preferred consumption levels over the member’s entire lifetime. 

We also derive the optimal profile of contribution rates over the accumulation stage of a 

DC plan. The rest of the chapter is structured as follows. Section 5.2 outlines the discrete-

time model with Epstein-Zin utility including the parameter calibration process and 

optimisation method used. In Section 5.3, we generate simulations of the two key state 

variables (i.e., wealth and labour income) and derive the optimal funding and investment 

strategies for the DC pension plan; we also conduct a sensitivity analysis of the results. 

Section 5.4 concludes. 

 

                                                 
40 Gomes and Michaelides (2005, page 871) argue that the less risk-averse investors have a weaker incentive to pay the 
fixed entry cost of equity investment, and therefore stock market participants in aggregate tend to be more risk averse. 
 
41 The disutility is normally defined using the deviation of actual fund level from interim and final target fund levels.  
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5.2 The model 

 

5.2.1 The model structure and optimisation problem 

 
We propose a two-asset discrete-time model with a constant investment opportunity set. 

To ensure conformity with a DC pension plan, a number of constraints need to be 

specified: 

(i) pension wealth can never be negative, 

(ii) in any year prior to retirement, consumption must be lower than labour income, 

(iii) short selling of assets is not allowed, 

(iv) members are not allowed to borrow from future contributions42.  

 

Members are assumed to join the pension plan at age 20 (denoted time 0=t  below) 

without bringing in any transfer value from a previous plan and the retirement age is 

fixed at 65. Neither income tax nor inheritance tax is considered. We work in time units 

of one year and members are assumed to live to a maximum age of 120ω = . In this model, 

members are allowed to make decisions on contribution rates, which is the main 

difference compared with the previous model setting is chapter 4. 

 

 

Preferences 

We assume the plan member possesses the discrete-time recursive utility function 

proposed by Epstein and Zin (1989): 

                                                 
42 Some studies have assumed that the member can borrow from future contributions (i.e., to incorporate a loan in the 
portfolio, which amounts to the present value of future contributions). In this way, Boulier et al. (2001) and Cairns et al. 
(2006) investigate the optimal asset allocation of DC pension plan with guaranteed benefit protection. However, there 
are arguments against this assumption. In most cases, this would not be allowed in practice. Also, the loan amount 
depends on assumptions about the level of future contributions and, in practice, there can be a lot of uncertainty about 
future contributions. 
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W

b
V p C E p V p b      

[23] 
where 

• 20+tV  is the utility level at time t  (or age 20 + t ), 

• 20+tW  is the wealth level at time t , 

• 20+tC  is the consumption level at time t , 

• γ  is the coefficient of relative risk aversion (RRA), 

• ϕ  is the elasticity of intertemporal substitution (EIS), 

• β  is the discount factor for each year, and 

• 20+tp  is the one-year survival probability at time t  (i.e., the probability that a 

member who is alive age 20 + t  survives to age 20 1+ +t ). 

 

The parameter b  is the “bequest intensity” and determines the strength of the bequest 

motive. If a member dies during the year of age 20 + t  to 20 1+ +t , the deceased member 

will give the remaining wealth at the end of the year, 120 ++tW , a utility measure of 

( ) ( )
1

20 1 1tb W b
−

+ +× −
γ

γ . Thus, a higher value of b  implies that the member has a 

stronger desire to bequest wealth on death.  

 

In the final year of age ( )1,ω ω− , where we have 1 0ω− =p , equation [23] reduces to: 
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W

b
V C E b  

[24] 
which provides the terminal condition for the utility function.  

 

 

Financial assets 

We assume that there are two underlying assets in which the pension plan can invest43: 

(i) a risk-free asset (i.e., a cash fund), and 

(ii) a risky asset (i.e., an equity fund). 

 

The risk-free asset yields a constant rate of interest r , and the return on the risky asset in 

year t  is given by: 

 

20 20µ ε+ += + +t tR r  

[25] 
where 

• µ  is the (constant) risk premium on the risky asset, and 

• 20 1,20ε σ+ += ×t tZ , where σ is the (constant) volatility of the risky asset and 1,20+tZ  

is an independent and identically distributed (iid) standard Normal random 

variable 

 

Whilst not necessarily corresponding with the real world, the simplified assumption of iid 

returns on the risky asset considerably facilitates the numerical method used. In addition, 

other non-pension assets such as housing is not considered in the model although they 

play an important role in the members’ financial planning over lifetime as well. 

 

                                                 
43 Asset returns are both in real term because inflation is not considered in our model. 
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Labour and pension income 

Before retirement, the member receives an annual salary at the start of each year and 

contributes a proportion π t  of this into the pension plan at time t . We adopt the 

stochastic labour income process used in Cairns et al. (2006) which is illustrated in 

Figure 32. The growth rate in labour income prior to retirement is given by: 

 

20 1 20
20 1 1,20 2 2,20

20

σ σ+ + +
+ + +

+

−
= + + × + ×t t

t I t t

t

S S
I r Z Z

S
 

[26] 
 

where 

• Ir  is the long-term average annual real rate of salary growth (reflecting 

productivity growth in the economy as a whole), 

• 20+tS  is the “career salary profile” (CSP), or salary scale, at time t , so that the 

term ( )20 1 20 20t t tS S S+ + + +−  reflects the promotional salary increase between time 

t  and time 1+t , 

• 1σ  represents the volatility of a shock that is correlated with equity returns, 

• 2σ  represents the volatility of the annual rate of salary growth, and 

• tZ +20,2  is an iid standard Normal random variable. 

 

Equations [25] and [26] are subject to a common stochastic shock, 1,20+tZ , implying that 

the correlation between the growth rate in labour income and equity returns is given by 

( )2 2

1 1 2+σ σ σ .  

 

Figure 32: Labour income process 
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Following the work of Blake et al. (2007), we use a quadratic function to model the CSP: 

2

20 1 2

4
1 1 1 3*

45 45 45
+

    
= + × − + + × − + +    

    
t

t t t
S h h  

[27] 
 

On retirement at age 65, the member is assumed to annuitise a proportion k  of the 

accumulated pension fund by buying a life annuity, where k , the annuitisation ratio, is 

chosen to maximise the member’s utility level at retirement. The amount of annuity 

income received depends on the accumulated wealth level at retirement, the annuitisation 

ratio and the price of a life annuity. In this model, the price of a life annuity is calculated 

using the risk-free return on the cash fund, so it is fixed over time and no annuity risk is 

considered. After retirement, the member invests the residual wealth that is not annuitised. 

Retirement income therefore comes from two sources: the annuity and possible 

withdrawals from the residual fund until death. 

 

 

Wealth accumulation 

Before retirement, the growth in the member’s pension wealth will depend on the 

investment strategy adopted, the investment returns on both the risk-free asset and the 

risky asset, and the chosen contribution rate. 
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The contribution rate at time t  is given by ( )20 20 20 20t t t tY C Y+ + + += −π  (for 0 44≤ ≤t ), 

where 20+tY  is the labour income level at time t . We require the contribution rate to be 

non-negative, so that 20 20+ +≥t tY C  before retirement. The contribution rate is allowed to 

vary over time, so that consumption in any period can adjust to changes in income level 

and investment performance.  

 

We also need to impose the restriction 20 0+ ≥tW  (for 1000 ≤≤ t ), to ensure that the 

wealth level is always non-negative at each age over the life cycle. 

 

A proportion, 20α +t , of the member’s pension account is assumed to be invested in the 

risky asset at time t . Then, for 0 43≤ ≤t  (i.e., up to and including the year prior to 

retirement), we have the following recursive relationship for the wealth process: 

 

( ) ( )20 1 20 20 20 20 201π α µ ε+ + + + + + + = + × + + + t t t t t tW W Y r  

[28] 
 

As mentioned above, we assume that short selling of assets is not allowed and therefore 

impose the restriction that 200 1α +≤ ≤t .  

 

At the start of the year in which the member is aged between 64 and 65, the member 

receives the final salary payment and makes the final contribution to the pension fund. So, 

we have:  

( ) ( )65 64 64 64 64 641π α µ ε−  = + × + + + W W Y r  

[29] 
 

At the end of this year, the member retires and chooses the annuitisation ratio k , giving a 

residual wealth on retirement at exact age 65 of ( )65 651 −= − ×W k W . The annuitisation 
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ratio k  is chosen to maximise the utility level at retirement. This control variable does 

not appear in the utility function, but rather in the wealth constraint in the retirement year. 

 

After retirement, the member invests a proportion 20α +t
 (for 45≥t ) of the residual 

wealth (i.e., that which was not annuitised) in the risky asset and receives annuity 

payments rather than labour income at the start of each year, provided that the member is 

still alive, so that the recursive relationship for the wealth accumulation process at this 

stage of the member’s life cycle is given by: 

 

( )65
20 1 20 20 20 20

65

1 α µ ε
−

+ + + + + +

 ×
 = + − × + + +   

 ��
t t t t t

k W
W W C r

a
 

[30] 
 

where 65a��  is the price of a life annuity at age 65 (and, hence, 65 65k W a
−× ��  represents the 

annual annuity income after retirement). 

 

Finally, we must constrain consumption after retirement such that 

( )20 20 65 65t tC W k W a−
+ +≤ + × �� . 

 

 

The optimisation problem and solution method  

The model has three control variables: the asset allocation at time t , 20α +t , the 

consumption level at time t , 20+tC , and the annuitisation ratio at retirement, k .  

 

The optimisation problem is then: 

( )
20 20

20
, ,

max
α + +

+
t t

t
C k

E V  

[31] 
 

subject to the following constraints:  

(i) for 0 43≤ ≤t , we have: 
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a) a wealth accumulation process satisfying: 

( ) ( )20 1 20 20 20 20 201 0π α µ ε+ + + + + + + = + × + + + ≥ t t t t t tW W Y r , 

b) an allocation to the risky asset satisfying 10 20 ≤≤ +tα , and 

c) a contribution rate satisfying 20 0π + ≥t ; 

 

(ii) for 44=t , we have: 

a) a wealth accumulation process satisfying: 

( ) ( ) ( )( )65 64 64 64 64 641 1 0π α µ ε = − × + × + + + ≥ W k W Y r , 

b) an allocation to the risky asset satisfying 640 1α≤ ≤ , 

c) a contribution rate satisfying 64 0π ≥ , and 

d) an annuitisation ratio at age 65 satisfying 10 ≤≤ k ; 

 

(iii) and, for 45≥t , we have: 

a) a wealth accumulation process satisfying: 

( )65
20 1 20 20 20 20

65

1 0α µ ε
−

+ + + + + +

 ×
 = + − × + + + ≥   

 ��
t t t t t

k W
W W C r

a
, 

b) an allocation to the risky asset satisfying 10 20 ≤≤ +tα , and 

c) consumption satisfying 65
20 20

65

−

+ +

 ×
≤ + 
 ��

t t

k W
C W

a
. 

 

The Bellman equation at time t  is: 
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[32] 
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An analytical solution to this problem does not exist, because there is no explicit solution 

for the expectation term in the above expression. Instead, we must use a numerical 

solution method to maximise the value function and derive the optimal control 

parameters. We use the terminal utility function at age 120 to compute the corresponding 

value function for the previous period and iterate this procedure backwards, following a 

standard dynamic programming strategy.   

 

To avoid choosing a local maximum, we discretise the control variables (i.e., asset 

allocation, consumption and annuitisation ratio) into equally spaced grids and optimise 

them using a standard grid search. As an important step in implementing the stochastic 

dynamic programming strategy, we need to discretise both the state space and shocks in 

the stochastic processes (i.e., equity return and labour income growth) first. Wealth and 

labour income level are discretised into 30 and 10 evenly-spaced grid points, respectively, 

in the computation44. Also, the shocks in both the equity return and labour income growth 

processes are discretised into 9 nodes45. 

 

The expected utility level at time t  is then computed using these nodes and the relevant 

weights attached to each (i.e., Gauss quadrature weights and interpolation nodes) 46. The 

advantage of using this set of nodes is that the state variables can be computed more 

quickly and precisely; however, because we have a fine grid on the control variables and 

a much coarser grid on the shocks, we may have some state variable values outside of the 

grid points in the next time period. In this case, cubic spline interpolation is employed to 

approximate the value function. While this approach does not significantly reduce the 

accuracy of the results obtained, use of a much finer grid for the shocks in the equity 

return and labour income growth processes would significantly increase computing time, 

as mentioned previously. 

 

                                                 
44 Clearly, the choice concerning the number of nodes is subjective, but we felt that this choice represents an 

appropriate trade-off between accuracy and speed of computation. 
45  Again, nine nodes represents a balance between accuracy and computing time, and is a standard setting in the 

existing literature.  
46 For more details, see Judd (1998, page 257-266). 
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For each age 20 + t  prior to the terminal age of 120, we compute the maximum value 

function and the optimal values for the control variables at each grid point. Substituting 

these values in the Bellman equation, we obtain the value function of this period, which 

is then used to solve the maximisation problem for the previous time period. Details of 

the dynamic programming and integration process are given in Appendix 03. The optimal 

asset allocations at different ages are shown in Appendix 04. The computations were 

performed in MATLAB47.  

 

 

5.2.2 Parameter calibration 
 

We begin with a standard set of baseline parameter values (all expressed in real terms) 

presented in Table 18. 

                                                 
47 http://www.mathworks.com/products/matlab/. The code is available on request from the authors. 
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Table 18 Baseline parameter values 
 

Asset returns 
 

 Preference parameters  

risk-free rate, r  0.02 RRA, γ  5 

equity premium, µ  0.04 EIS, ϕ  0.2 

volatility, σ  0.2 bequest intensity, b  1 

  discount factor, β  0.96 

    
Mortality  Labour income process  
mortality table PMA92 (see 

Appendix 2) 
starting salary, 20Y  1 

  average salary growth, 
Ir  0.02 

Annuity  volatility of shock correlated with 

equity returns, 1σ  

0.05 

annuity price, 65
��a  15.87 

(based on 
PMA92 and a 
risk-free rate of 
0.02) 

volatility of annual rate of salary 

growth, 2σ  

0.02 

  
1h  -0.276 

  
2h  0.75835 

 

 

 

The constant net real interest rate, r , is set at 2% p.a., while, for the equity return process, 

we consider a mean equity premium, µ , of 4% p.a. and a standard deviation, σ , of 20% 

p.a.. Using an equity risk premium of 4% p.a. (as opposed to the historical average of 

around 6%) is a common choice in recent literature (e.g., Fama and French (2002), 

Gomes and Michaelides (2005)). This more cautious assumption reflects the fact that the 

historical equity risk premium might be higher than can reasonably be expected in future, 

and thus will reduce the weight given to equities in the optimal portfolios obtained. We 

use the projected PMA92 table48 (see Appendix 05) as the standard male mortality table, 

and hence, using a (real) interest rate of 2% p.a., the price of a whole life annuity from 

age 65 is 15.87. 

 

                                                 
48 PMA92 is a mortality table for male pension annuitants in the UK based on experience between 1991 and 1994; here, 
we use the projected rates for the calendar year 2010, i.e., the table PMA92(C2010), published by the Continuous 
Mortality Investigation (CMI) Bureau in February 2004.  
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We start by presenting results for what might be considered as a relatively standard plan 

member, with RRA of 5γ = , EIS of 0.2ϕ =  and discount factor 0.96β = 49 . As 

mentioned above, the bequest intensity, b , plays an important role in life-cycle saving 

and investment. We set b  equal to unity in the baseline case (which represents a 

moderate level of bequest saving motive). We later conduct a sensitivity analysis on these 

parameter values.  

 

The starting salary is normalised on unity. All absolute wealth and income levels are 

measured in units of the starting salary. In line with post-war UK experience, the 

annualised real growth rate of national average earnings is assumed to be 2% p.a. with a 

standard deviation of 2% p.a. (i.e., 0.02Ir =  and 2 0.02=σ ). Following the work of 

Blake et al. (2007), we estimate the CSP parameters 1h  and 2h  using average male salary 

data (across all occupations) reported in the 2005 Annual Survey of Hours and Earnings.  

The estimated values are 1 0.276= −h  and 2 0.75835=h  (see [27]). 

 

 

5.3 Results 

 

5.3.1 Baseline case 
 
 
Optimal asset allocation assuming no bequest motive or labour income risk 

As suggested by equation [22] above, the optimal portfolio composition should be 

constant when there is no bequest motive and labour income risk is ignored. Figure 33  

shows the optimal equity weight for the final time period (i.e., age 119 to 120) with no 

bequest motive for different fund and (pension) income level. As expected, we can see 

that when the accumulated wealth level is large (and labour income is small in 

comparison), the optimal asset allocation is close to the result suggested in equation [22], 

so that we have: 

                                                 
49 This parameter constellation is common in the literature (e.g., Gomes and Michaelides (2004)). The values of RRA 
and EIS are also consistent with power utility for the baseline case.    
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 120 120

2 2

cov( , )1
1 0.2

µ
α

γσ γ σ

  −
= + − × ≈ 

 

R V
 

[33] 
 

This result shows that we can approximate an analytical solution numerically reasonably 

accurately, thereby justifying the use of our grid search numerical method. 

 

 

Figure 33: Optimal equity asset allocation for the final time period 
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Simulation output 

The output from the optimisation exercise is a set of optimal control variables (i.e., asset 

allocation, 20 tα + , and consumption level, 20 tC + ) for each time period and the optimal 

annuitisation ratio, k , at retirement age 65. We generate a series of random variables for 
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both the equity return and labour income shocks, and then generate 10,000 independent 

simulations of wealth and labour income levels.  

 

Figure 34 shows the simulation means of labour income and optimal wealth and 

consumption levels for ages 20, 21, …, 120, and Figure 35 shows the consumption 

profile on a larger scale. We have bequest and retirement saving motives in this model. In 

the early years of the life cycle (i.e., up to age 45 or so), wealth accumulation is driven by 

the bequest intensity (i.e., the extent of the desire to protect dependants if the member 

dies) and by the attitude to risk (i.e., the degree of aversion to cutting consumption in 

unfavourable states)50. Consumption increases smoothly during this period. Then, as the 

member gets older, the retirement motive becomes more important as the member 

recognises the need to build up the pension fund in order to support consumption after 

retirement. From age 45 to the retirement age of 65, the retirement savings motive 

dominates and the pension fund grows significantly. As a result, consumption remains 

almost constant during this period. After retirement, there is a large fall in consumption 

compared with the period immediately prior to retirement51 and thereafter consumption 

remains stable for the remainder of the member’s lifetime.  

 

 

 

 

 

 

 

 

 

                                                 
50 This will become clearer in section 5.3.2. 
51 We are investigating this issue in our further research. In the wealth accumulation process of this model, we assume 
members annuitise the accumulated pension wealth at retirement and the “cash-in-hand” after retirement will be 
unannuitised wealth and pension income every year. If members choose to annuitise a large proportion of accumulated 
wealth at retirement, their “cash-in-hand” level will drop significantly after buying annuity.  In the further research, we 
are trying to consider the present value of future pension income in the wealth accumulation process after retirement. 
However, to split the wealth into disposable and non-disposable wealth will involve a different numerical optimisation 
method which is out of the scope of this thesis. 
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Figure 34: Mean of simulated wealth, consumption and labour income 
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Figure 35: Mean of consumption 
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Figure 36 shows the expected NPV of total future labour income (i.e., human capital). 

We can see that human capital increases until about age 35. This is because of the very 

high rate of salary growth in the early years (relative to the discount rate applied to future 

labour income).  
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Figure 36: Human capital 
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Figure 37 shows six possible optimal asset allocation profiles for equities at each age 

before retirement, 20 tα + . Each profile coincides with a particular quantile from the 

distribution of outcomes from 10,000 simulations. These profiles are consistent with the 

investment strategy called “stochastic lifestyling”, first outlined in Cairns et al (2006)52, 

with a high equity weighting at younger ages and a gradual switch from equities to the 

risk-free financial asset as the retirement age approaches. Prior to around age 35, the 

member should invest all financial wealth in the risky asset, because the implicit holding 

in the non-tradable riskless asset (i.e., human capital) is increasing, as illustrated in 

Figure 36.  However, after age 35, human capital starts to decline. The member should 

then begin to rebalance the financial wealth portfolio towards the risk-free financial asset 

to compensate for the decline in human capital. This is because the risk-free financial 

asset and human capital are substitutes, with the degree of substitutability inversely 

related to the correlation between labour income growth and equity returns, 

( )2 2

1 1 2σ σ σ+ 53. Specifically, when this correlation coefficient is high, the member’s 

salary growth will tend to move in line with the equity investment performance. As a 

result, over the life cycle, the change of the ratio of human to financial wealth becomes 

                                                 
52 See details in section 4.2.4. 
53 This will be discussed in detail in section 5.3.2. 



 126 

more gradual. As discussed earlier, this ratio is a crucial determinant of the portfolio 

composition. Therefore, the optimal portfolio weight will switch from equities to the risk-

free financial asset in a more gradual way. 

 

The investment strategy is known as “stochastic lifestyling” because the optimal equity 

weighting over the life cycle depends on the realised outcomes for the stochastic 

processes driving the state variables, namely labour income and the risky financial asset. 

The profiles have a similar shape which can be characterised as three connecting (and 

approximately) linear segments. The first is a horizontal segment involving a 100% 

equity weighting (approximately) from age 20 to an age somewhere in the range of 40-47. 

The second is a steep downward segment that involves a reduction in equities to 

somewhere between 10-40% over a seven year period. The third is a more gentle 

downward sloping segment that reduces the equity weighting to somewhere between 0-

10% by the retirement age. It is important to note that the profiles in Figure 37 are not, 

however, consistent with the more traditional “deterministic lifestyling” strategy, which 

involves an initial high weighting in equities with a predetermined linear switch from 

equities to cash in the period leading up to retirement (typically the preceding 5 or 10 

years).  
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Figure 37: Optimal equity asset allocation prior to retirement 
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Figure 38 plots six quantiles from the distribution of optimal contribution rates, 

corresponding to the optimal asset allocation strategies shown in Figure 37. Considering 

the profile corresponding to the mean, the initial annual contribution rate at age 20 is just 

under 8% p.a.. It then decreases steadily to below 1% by age 35. This fall reflects a trade-

off between the bequest motive and risk aversion, on the one hand, and the increase in 

human capital, on the other.  Prior to age 35, when labour income is growing very rapidly 

and human capital is increasing, the member wishes to increase consumption and does so 

by reducing the contribution rate into the pension plan, despite being both risk averse and 

having a bequest motive54.  After age 35, however, labour income growth slows down 

and human capital begins to decline, and the retirement savings motive starts to become 

important. The contribution rate then increases steadily to almost 15% p.a. by age 48. 

Labour income flattens out after age 48 (see Figure 32) and the contribution rate then 

remains roughly constant until retirement.  

 

 

 

                                                 
54 Note that pension contributions will fall by less than the contribution rate since income is growing. 
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Figure 38: Optimal contribution rate 
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The most interesting finding from Figure 38 is that the optimal contribution rate in a DC 

pension plan is age-related, rather than constant.  It exhibits a U-shaped pattern between 

age 20 and age 48 and it is only (approximately) constant after age 48. As a consequence, 

the contribution rate is very variable, ranging from, in the case of the mean profile, below 

1% (at age 35) to almost 15% (at ages 48 and above). The other quantiles have a very 

similar shape: they are relatively close to the mean during the U-shaped phase, but have a 

wider range of post-age-48 constant rates (ranging between 10 and 20%).   

 

An age-related pattern of contribution rates is not common in real world DC plans: for 

example, in the UK, there is typically a fixed standard (combined employer and 

employee) contribution rate varying between 8 and 10% (GAD (2006, Table 8.2)). 

Although age-related contribution rates are not common, minimum contributions are 

more so. Figure 39 illustrates the mean optimal contribution rate over the life cycle when 

a lower limit of 5% p.a. is imposed on the contribution rate (the original unconstrained 

mean contribution rate profile is shown for comparison). In this case, the member 

accumulates greater pension wealth when young and, therefore, can afford a lower 
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contribution rate as retirement approaches. Further, because of the higher accumulated 

pension wealth, the member switches to the risk-free asset earlier, as shown in  

 

Figure 40 (the original unconstrained mean optimal asset allocation is shown for 

comparison). Nevertheless, there is a cost from imposing this constraint: expected utility 

at age 20 drops by around 1% (from 2.349 to 2.329).  

 

In our model, neither income tax not inheritance tax is considered. However, it is worth 

noting that this is a simplified assumption because, in real life, the tax factors (especially 

the tax relief on pension contribution and inheritance tax) will affect members’ 

consumption and contribution decisions. If the income tax and tax relief on pension 

contribution is considered, members (especially the higher-rate tax payers) will tend to 

contribute a higher percentage of their gross income before retirement, which will lead to 

a more conservative investment strategy. If members need to pay inheritance tax on their 

bequeathed wealth, they will have weaker bequest motive – the impact of bequest motive 

on the model outputs will be discussed later on in the sensitivity analysis section 5.3.2.   
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Figure 39: Mean optimal contribution rate (with lower limit of 5% per annum, dotted) 
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Figure 40: Mean optimal equity asset allocation (with lower limit on contribution rate of 

5% per annum, dotted) 
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5.3.2 Sensitivity analysis 

 
RRA and EIS 

We now conduct a sensitivity analysis, by considering the simulation results for plan 

members with different RRA and EIS. As shown in Table 19 (see also Table 17), we 

have four types: 

 

● low RRA and low EIS (Type 1): 

o risk-tolerant member who dislikes consumption volatility over time 

o e.g., low income member without dependants 

● low RRA and high EIS (Type 2): 

o risk-tolerant member who does not mind consumption volatility over time 

o e.g., high income member without dependants 

● high RRA and low EIS (Type 3): 

o risk-averse member who dislikes consumption volatility over time 

o e.g., low income member with dependants 

● high RRA and high EIS (Type 4): 

o risk-averse member who does not mind consumption volatility over time 
o e.g., high income member with dependants 

 

The baseline case in Section 5.3.1 dealt with Type 3 (highlighted in Table 19), a member 

with a high RRA and a low EIS (i.e., 5=γ  and 0.2=ϕ ). 

 
Table 19 RRA and EIS values for the different types of plan member 

 

 RRA, γ  EIS, ϕ  

Type 1 2 0.2 

   

Type 2 2 0.5 

   

Type 3 5 0.2 

   

Type 4 5 0.5 
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Figure 41 shows the different patterns of optimal contribution rates corresponding to 

these four types. For risk-tolerant members with low RRA (i.e., Types 1 and 2), 

contributions prior to age 50 are negligible. From age 50 or so, the retirement savings 

motive kicks in and contributions into the pension plan begin. The contribution rate is 

lower for Type 1 (low EIS) than for Type 2 (high EIS) members (by approximately 3-4% 

p.a.). This lower retirement savings intensity is the result of a stronger aversion to cutting 

consumption: due to the lower EIS level, cuts in consumption needed to fund the pension 

plan are more heavily penalised in the utility function of Type 1 members than of Type 2 

members. 

 

 

Figure 41: Mean optimal contribution rate (for different RRA/EIS combinations) 
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As a result of the lower mean contribution rates (particularly at younger ages), risk-

tolerant members, ceteris paribus, accumulate a lower level of pension wealth. They 

therefore need (and are, of course, willing to accept) a much higher average equity 

weighting (and the corresponding equity premium) in the financial portfolio in an attempt 

to produce the desired level of retirement savings. As shown in Figure 42, the mean 
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equity allocation decreases only gradually and still exceeds 70% at retirement. The risk-

tolerant member with a low EIS level (i.e., Type 1) chooses a higher equity weighting at 

retirement (by approximately 10%) than the risk-tolerant member with a high EIS level 

(i.e., Type 2). This is because, as discussed above, the annual contribution rate is lower 

and the reliance on the equity premium is correspondingly greater.  

 

 

Figure 42: Mean optimal asset allocation (for different RRA/EIS combinations) 
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For risk-averse members with high RRA (i.e., Types 3 and 4), Figure 41 shows that the 

bequest motive leads to much larger initial contributions (in excess of 7% p.a. at age 20 

on average) than for members with low RRA, and the retirement savings motive leads to 

a significant rise in contributions after age 40, again compared with low RRA members. 

For those risk-averse members with low EIS (i.e., Type 3), the variability of the 

contribution rate over the working life is much less pronounced  than is the case for those 

risk-averse members with high EIS (i.e., Type 4). The contribution rate is also lower 

particularly at very young and very old ages (e.g., by around 5% p.a. at both age 20 and 

60 on average). The explanation is the same as given above (i.e., the reluctance of 

members with a lower EIS level to tolerate cuts in current consumption to fund future 

consumption in retirement). The fall in the contribution rate to an average of around 1% 



 134 

between age 20 and age 35 for risk averse members is explained by the increase in human 

capital over this period which increases the desire for current consumption at the expense 

of saving for retirement. 

 

As a result of higher contribution rates, risk-averse members accumulate a much higher 

level of pension wealth and, as can be seen in Figure 42, switch away from equities 

much earlier (from about age 40) and hold less than 10% of the pension fund in equities 

at retirement on average. Again, we find that a lower EIS leads to a higher equity 

weighting during the accumulation phase of the pension plan. 

 

 
Bequest motive 

Investors with a desire to bequeathe wealth to their dependants on death would be 

expected to save more than those who do not. Figure 43 shows the mean optimal pattern 

of contribution rates for the baseline case of  5γ =  and 0.2ϕ =  and different bequest 

intensities. When the bequest motive is absent (b = 0), members consume almost all of 

their earnings in the early years of their working lives, and have very negligible 

contributions into their pension plans. By contrast, members with a high bequest intensity 

(b = 2.5) make very high contributions in the early years (14% at age 20). They also 

make higher contributions throughout their working lives55, but the differences after age 

35 are much less.  

 

Figure 44 shows that the optimal equity weight in the portfolio is lower, the higher the 

bequest intensity. However, the effect is small because: first, the mortality rate does not 

vary much before retirement, and second, and more importantly, the annuitisation ratio (k) 

is a control variable in our model and, thus, a member with a high bequest intensity could 

choose to annuitise a smaller ratio of the pension fund at retirement, instead of assuming 

significant equity risk in an attempt to accumulate more wealth prior to retirement56. 

                                                 
55 Although it is still pulled down to below 1% between ages 20 and 35 by the effect of the increase in human capital. 
56 This is confirmed in Table 3.2 below. 
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Figure 43: Mean optimal contribution rate (for different levels of bequest motive) 
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Figure 44: Mean optimal equity asset allocation (for different levels of bequest motive) 
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Personal discount factor 

Figure 45 and Figure 46 show the outcome from conducting a sensitivity analysis on β , 

the individual’s personal discount factor, on the mean optimal contribution rate and asset 

allocation. 

 

Individuals with a low personal discount factor (or high personal discount rate) value 

current consumption more highly than future consumption in comparison with 

individuals with a high personal discount factor. This will lead, ceteris paribus, to a 

lower contribution rate into the pension plan as shown in Figure 45.  There will be a 

correspondingly slower accumulation of financial wealth and therefore a higher ratio of 

human to financial wealth throughout the working life. This, in turn, leads to an optimal 

lifestyle strategy with a higher portfolio allocation to the risky asset throughout the 

working life, together with a shorter switching period, as shown in Figure 46.   
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Figure 45: Mean optimal contribution rate (for different levels of personal discount factor) 
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Figure 46: Mean optimal equity asset allocation (for different levels of personal discount 
factor) 
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Correlation between labour income growth and equity returns 

In our model, the degree of correlation between labour income growth and equity returns 

is controlled by ( )2 2

1 1 2σ σ σ+ . As explained in Section 5.3.1 when this correlation 

coefficient is high, the member’s salary growth will tend to move in line with the equity 

investment performance. As a result, the optimal portfolio weight will switch from 

equities to the risk-free financial asset in a more gradual way because the change of the 

ratio of human to financial wealth becomes more gradual over the life cycle. 

 

We assume a high correlation of 0.93 in our baseline case. Figure 47 and Figure 48 

show outcomes from conducting a sensitivity analysis on this correlation coefficient. As 

expected, with a lower correlation between labour income growth and equity returns (0.7), 

the downward switching segments become steeper. 
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Figure 47: Mean optimal contribution rate (for different correlation between labour 
income and equity returns) 
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Figure 48: Mean optimal equity asset allocation (for different correlation between labour 
income and equity returns) 
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Annuitisation ratio 

Although the annuitisation ratio (k) is part of the budget constraint not the utility function, 

it is still a control variable in our model, and is chosen to maximise ( )64E V , conditional 

on the values for RAA, EIS and the personal discount factor (see Section 5.2.1 above). 

Table 20 shows the mean optimal values of k corresponding to different values for RAA, 

EIS and the personal discount factors. 

 

The Table shows that there are positive relationships between RAA and k and between 

EIS and k, although the relationship in each case is not very strong. There is, 

unsurprisingly, a much stronger relationship between the bequest intensity (b) and k. 

When there is no bequest motive, the member annuitises the largest ratio (99.35%) of his 

pension wealth57 . According to Yaari (1965), when there is no bequest motive, the 

member should annuitise the entire accumulated pension fund at retirement. Davidoff et 

al (2005) extend Yaari’s framework to include imperfect credit markets and habit 

formation (low IES) and show it is optimal to annuitise less than 100% of wealth, but the 

optimal proportion is still very high. We find that this is the case even when we impose a 

significant reduction in the discount factor ( β ). A discount factor of 0.9, implying a huge 

personal discount rate of 10% (and massive preference for current over future 

consumption) only reduces the optimal annuitisation ratio to 88%.  

 

                                                 
57 The fact that 99.35% is slightly less than 100% is due to the numerical methods used to solve the 
problem and the estimation error caused by interpolation approximations. 
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Table 20 The effect of the preference parameters on the mean optimal 
annuitisation ratio 

 

Preference parameter Optimal annuitisation ratio (mean %) 

RRA, γ   

2 93.17 

5 94.72 

EIS, ϕ   

0.2 94.72 

0.5 95.88 

Bequest intensity, b  

0 99.35 

1 94.72 

2.5 90.03 

Discount factor, β   

0.90 87.66 

0.96 94.72 

0.99 96.43 

 

Note: All parameters are at their baseline values (see Table 18) unless 

otherwise stated 
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5.4 Conclusion 

In this chapter, we have examined optimal funding and investment strategies in a DC 

pension plan using a life-cycle model that has been extended in three significant ways: 

(i) the assumption of Epstein-Zin recursive preferences by the plan member which 

enables a separation between the RRA and EIS, 

(ii) the introduction of human capital as an asset class along with financial assets, 

such as equities and cash, and 

(iii) endogenising the decision about how much to annuitise at retirement. 

 

We also considered two important motives for saving: bequest and retirement. In addition, 

a plan member’s personal discount rate influenced the optimal strategies. 

 

We found that the optimal funding strategy typically exhibits a U-shaped pattern for the 

contribution rate in early working life and then stabilises in the period leading up to 

retirement. The initial high level is explained by a high bequest intensity combined with a 

high degree of risk aversion. The falling part of the U is explained by the increase in 

human capital inducing an increase in consumption at the expense of savings, while the 

rising part of the U is explained by the retirement savings motive. A higher personal 

discount rate lowers contributions at each age, while preserving the general shape of the 

optimal contribution profile. A lower bequest intensity reduces contributions to the 

pension plan in early career and in the extreme case of a zero bequest intensity 

completely eliminates them until mid-career when the retirement savings motive kicks in. 

The effect of lower risk aversion is to delay the start of contributions into the pension 

plan: contributions do not begin until late in the working life, but then increase steadily 

until the retirement age. The effect of lower EIS is to reduce contributions into the plan at 

all ages, since members with low EIS are reluctant to accept cuts in consumption to “pay 

for” the pension contributions.  
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We found that the optimal investment strategy is stochastic lifestyling rather than the 

more conventional deterministic lifestyling. While the optimal weighting in equities is 

initially very high and subsequently declines as the retirement date approaches, it does 

not do so in a predetermined manner as in the case of deterministic lifestyling. Instead the 

optimal equity weighting over the life cycle depends on the realisations of the stochastic 

processes determining labour income and equity returns. Stochastic lifestyling is justified 

by recognising the importance of human capital and interpreting it as a bond-like asset 

which deteriorates over the working life. An initial high weighting in equities is intended 

to counterbalance human capital in the combined “portfolio” of human capital and 

pension wealth. In time, the weighting in equities falls, while that in bonds rises as human 

capital deteriorates over the working life. When the correlation between labour income 

and equity returns is high, the human capital and pension wealth tend to move in line 

with each other; the optimal portfolio weight will therefore switch from equities to the 

risk-free financial asset in a more gradual way. The size of the pension fund is a crucial 

determinant of the optimal asset allocation. The greater the pension wealth accumulated, 

the more conservative the optimal asset allocation strategy will be, for a given RAA, EIS 

and discount rate. Also, the higher the contribution rate, the earlier the switch out of 

equities can be made. In our model, risk-tolerant members who value both current 

consumption over future consumption as smooth consumption profiles over time (i.e., 

have a low RRA, a high discount rate and a low EIS) accumulate the lowest pension 

wealth levels and therefore need to adopt the most aggressive investment strategy. 

 

Finally, we found that the optimal annuitisation ratio was typically very high, suggesting 

that longevity protection is a hugely valuable feature of a well-defined DC pension plan 

to a rational consumer. It was negatively related to the bequest intensity and the discount 

rate, but not very sensitive to RRA or EIS. 

 

The results in this chapter have some important implications for the optimal design of DC 

pension plans: 
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• An investment strategy involving a switch from equities to bonds as members 

approach retirement is appropriate for DC pension plans, even when equity 

returns are not mean reverting. However, the switch out from equities is not 

predetermined, but depends on what happens to equity returns. Nevertheless, the 

switch should typically be made earlier than in traditional lifestyle strategies (i.e., 

from age 45 or so rather than age 55, which is more common in practice). Also, 

the optimal equity weight in the portfolio typically never reduces to zero (even 

immediately prior to retirement), as is common in traditional lifestyle strategies. 

 

• It is very important to incorporate the salary process in the optimal design of a DC 

pension plan58. The nature of this implicit bond-like asset (i.e., human capital) has 

a direct impact on the optimal contribution rate and asset allocation decisions.  

However, for senior plan members whose salary levels (including bonus and 

dividends from their own stock holdings) may have a strong link with corporate 

profitability, the labour income growth rate may be much higher than a risk-free 

rate of return. In this case, this “human capital” asset may instead be thought of as 

more equity-like in nature (and, hence, the optimal investment strategies are likely 

be more weighted towards the risk-free asset). 

 

• The results provide some justification for age-related contribution rates in DC 

plans. Because members tend to prefer relatively smoothed consumption growth, 

a plan design involving a lower contribution rate (e.g., 5% p.a. or less) when 

members are young, and a gradually increasing contribution rate as members get 

older (reaching on average 15% p.a. in the period prior to retirement) offers 

higher expected utility than fixed age-independent contribution rates. Greater 

contribution rate flexibility will be especially welcomed by members with high 

EIS. Such members are more sensitive to changes in financial incentives and thus 

are more desirous of flexible contribution rates. If they were allowed to make 

additional voluntary contributions (AVCs), the optimal asset allocation strategy 

would actually become more conservative as they approach retirement. 

                                                 
58 This was first pointed out by Blake et al (2007). 



 145 

 

 

• An annuity is an important component of a well-designed plan. The optimal 

annuitisation ratio is very high, even when there is a strong bequest motive and 

the plan member values current consumption highly. This is true despite the well-

known aversion to annuitisation documented in Friedman and Warshawsky 

(1990) and Mitchell et al (1999). 
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Chapter 6  

 

Conclusions 

 

 

 

6.1 Summary 

 
The aim of the thesis is to investigate the dynamic asset allocation of defined contribution 

pension funds. The main results obtained and conclusions drawn from the thesis are 

summarised below. 

 

In a DC pension plan, many members do not have particularly firm convictions about 

their desired saving and investment behaviour. Chapter 2 tells us that the plan design and 

investment option offering will have substantial implications to the DC pension plan 

members. Important relevant behavioural features of plan members are reviewed and 

discussed. It is important that the education, communication and investment option 

offerings of DC pension plans are carried out with the knowledge of these members’ 

potential biases in decision making. 

 

On the basis of realising the importance of plan design of a DC pension plan, we put 

more attention on investigating the optimal dynamic investment strategies for DC plan 

members. Deterministic lifestyle strategy (e.g. with a 5-year switching period) is widely 

used as the default option by many DC plans. However, there has been no strong 

empirical evidence to date demonstrating that this is an optimal strategy. More innovative 

investment solutions are needed in this area. In this thesis, motivated by the recent 

research findings in behavioural utility and non expected utility theories, we investigate 

two possible alternative solutions: loss aversion utility and Epstein-Zin utility preference. 
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Chapter 3 provides the empirical support of the loss aversion model. A face-to-face based 

survey was conducted on 966 random selected UK households. The results are broadly 

consistent with the well known prospects theory setting and suggest that UK investors are 

more loss averse than the Tversky and Kahneman’s original group of US students. 

 

Chapter 4 is devoted to a loss aversion based model, where members are assumed to be 

loss averse with a target fund level at retirement and a series of suitably defined interim 

targets prior to retirement. The baseline simulation draws on empirical evidence we got 

from Chapter 3. We argue that, for DC plan members who seek greater certainty in their 

retirement planning, the asset strategies need to be far more focused on achieving their 

retirement targets. While this type of target-driven modelling approach has been used by 

other researchers, e.g. Vigna and Haberman (2001,2002), our study differs from existing 

studies in two respects:  

(i) Under existing research, members are assumed to have a quadratic utility function 

over the deviations of the fund from the corresponding targets. However, this will 

equally penalise both outperformance and underperformance relative to the target. 

We believe a loss aversion utility based model is a better reflection of members’ 

behaviour in real life; 

(ii) In our model, the salary process of the member is realistically calibrated in a 

stochastic (rather than deterministic as assumed in other existing studies) way. 

(iii) Previous studies have been oversimplified by assuming fixed interim and final targets (based 

in a constant investment return). In our model, both the interim and final fund targets are 

path-dependent (and vary over time in accordance with the member’s actual current salary 

and required replacement ratio at retirement). 

 

By comparing with the equivalent quadratic utility, we demonstrate that use of a loss 

aversion framework can significantly increase the probability of achieving final targets. 

Relevant sensitivities on loss aversion utility parameters are also studied. 
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Recently, a number of fund managers have launched dynamic de-risk investment 

solutions for DC pension plans with targets defined on investment return or annuity 

amount. A standard feature of these solutions is that when the fund outperforms the pre-

determined target, additional assets above the target level are “banked” by switching to 

risk-free investment (e.g. cash). So while they have some features in common with our 

framework, they do not explicitly consider issues such as path-dependent targets or 

members’ utility. Our framework is therefore much more general than the solutions 

currently being implemented in practice. In addition, the model is reasonably easy to 

implement as well. The outputs of our dynamic asset allocation model are a set of optimal 

control variable (portfolio weight to equities) on each grid points for each age. With 

information of the member’s actually salary and pension fund level, an optimal 

investment strategy can be derived immediately. 

 

In Chapter 5, we use a model that differs radically from existing studies. We assume the 

optimal funding and investment strategies depend on the members’ desired pattern of 

consumption over the lifetime. We investigate these strategies under the assumption that 

the member has an Epstein-Zin utility preference, which allows a separation between risk 

aversion and the elasticity of intertemporal substitution, and we also take into account the 

member’s human capital. 

 

We show that a stochastic lifestyle approach, with an initial high weight in equity-type 

investments and a gradual switch into bond-type investments as the retirement date 

approaches is an optimal investment strategy. In addition, the optimal contribution rate 

each year is not constant over the life of the plan but reflects trade-offs between the desire 

for current consumption, bequest and retirement savings motives at different stages in the 

life cycle, changes in human capital over the life cycle, and attitude to risk. 
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6.2 Future Developments 

 

This thesis attempts to shed new light on the innovative dynamic asset allocation issue 

within a DC pension scheme framework. It is hoped that this work will lead to some 

further developments in this increasingly important field. There are various areas in 

which the analysis undertaken in this thesis may be extended and improved. 

 

• Stochastic interest rate 

In Chapter 4 and 5, the investment opportunity set is assumed constant. This will greatly 

facilitate the numerical method of calculating optimal asset allocation. However, it will 

certainly be an important improvement to investigate optimal investment strategies under 

a stochastic interest rate model (e.g. Cox-Ingersoll-Ross model), which will allow us to 

incorporate the annuity risk (with annuity price based on stochastic interest rate) into the 

model as well.  

 

• Non-pension saving  

In Chapter 5, for simplicity, we do not consider any non-pension saving in this paper. In 

practice, the pension scheme members will have other savings to act as a buffer to 

smooth consumption over time. However, in this case, it will be difficult to adopt this 

intertemporal model, unless we make some assumptions about the investment returns on 

these other savings too. Also, as the pension wealth will be reduced accordingly, the asset 

allocation strategy should be more aggressive (i.e. with a higher proportion invested in 

risky equity-type assets).  

 

• Disposable and non-disposable wealth 

In Chapter 5, under our current model setting, when plan members decide to annuitise a 

large proportion of the accumulated fund at retirement, the wealth level reduces 

significantly. This is based on the assumption that capital value of annuity investment can 

not be bequeathed. One possible adjustment to the model is to split the wealth into 
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disposable wealth (i.e. the residual wealth after annuitisation) and non-disposable wealth 

(i.e. the present value of future pension income) after retirement. This change will require 

some further adjustments in the Epstein-Zin utility function and a new state variable in 

the numerical optimisation process. We are investigating this issue in our further research. 

Full details and results will be concluded in a forthcoming paper.  

 

 

• Housing-related and other consumption.  

In Chapter 5, the model could be further improved by including other consumptions, such 

as mortgage repayments. But, it is out of the scope of this paper. 
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Appendices  

A 01 – Risk attitude survey 

 

Section A- Classification 

Sex 
1=Male 

2=Female 

Age 
Ageband: 1="18-24"; 2="25-34"; 3="35-44"; 4="45-54"; 5="55-64"; 6="65+" 

Class 
1=AB 
2=C1 
3=C2 
4=DE 
Standard region 
1=North 
2=Yorks and Humber 
3=East Midlands 
4=East Anglia 
5=South East 
6=South West 
7=Wales 
8=West Midlands 
9=North West 
10=Scotland 
Working Status 
1=Full-time 
2=Part-time 
3=Self-employed 
4=Student 
5=Retired 
6=Unemployed 
7=Other not working 

Terminal education age 
1=Under 16 
2=16-17 
3=18 
4=19+ 
Marital Status 
1=Married 
2=Living with partner 
3=Single 
4=Widowed/Divorced/Separated 
Household status 
1=Male hoh 
2=Female hoh 
3=Not hoh 
Household income 
1=Under £6500 
2=£6500-£9499 
3=£9500-£15499 
4=£15500-£19499 
5=£20000-£24999 
6=£25000-£34999 
7=£35000-£49999 
8=£50000+ 

Q.1 Total value all savings 
1=£2000 or less 
2=£2,001-£10,000 
3=£10,001-£20,000 
4=£20,001-£50,000 
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5=£50,001-£100,000 
6=£100,001-£500,000 
7=£500,001-£1,000,000 
8=£1,000,000+ 
9=Don't know 
10=Refused 

Q.2 Value all borrowing 
1=None 
2=£2000 or less 
3=£2,001-£10,000 
4=£10,001-£20,000 
5=£20,001-£50,000 
6=£50,001-£100,000 
7=£100,001-£500,000 
8=£500,001-£1,000,000 
9=£1,000,000+ 
10=Don't know 
11=Refused 

Q.3 When plan to retire 
1=5 years or less 
2=6-10 years 
3=10-20 years 
4=20+ years 
5=Never 
6=Don't know 

Q.4 In good health 
1=Yes 
2=No 
3=Refused 
 

Section B-Behavioural Characteristics and Financial Knowledge 

Q.5 Savings account rate of interest 
Type in answer 
No interests 
Don’t know 
Q.6 How allocate money for retirement needs 
1=You allocate different pots of money to different needs 
2=You have different pots of money, but don't allocate them to 
3=You have one pot of money for all your different needs 
4=Don't know 

Q.7 Level of risk with each pot of money 
1=Take different levels of risk with each 
2=Take the same level of risk with each 
3=Don't know 

Q.8 How often review savings and investments 
1=Weekly 
2=Monthly 
3=Quarterly 
4=Annually 
5=Never 
6=Do not have savings / investments 
7=Don't know 
8=Refused 

Q.9 Level of risk with spread assets 
1=Go up 
2=Stay the same 
3=Go down 
4=No idea 
5=Do not understand the question 

Q.10 Act in spontaneous or unplanned way 
1=Yes - always 
2=Occasionally 
3=No - never 
4=Don't know 

Q.11 Make plans and stick to them 
1=Yes - always 
2=Occasionally 
3=No - never 
4=Don't know 

Q.12 Ability to control impulsive feelings 
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1=Yes - always 
2=Occasionally 
3=No - never 
4=Don't know 
 

Section C- Attitudes To Risk 

Q.13 In a coin tossing contest, what would the minimum prize money have to be to persuade you to take part if you stood 

to lose £100? 
Type in answer (0 to 1,000,000) 
Would not take part 
Don’t know 
Q.14 In a coin tossing contest, what would the minimum prize money have to be to persuade you to take part if you stood 

to lose £1000? 
Type in answer (0 to 1,000,000) 
Would not take part 
Don’t know 
Q.15 In a coin tossing contest, what would the minimum prize money have to be to persuade you to take part if you stood 

to lose £10000? 
Type in answer (0 to 1,000,000,000) 
Would not take part 
Don’t know 
Q.16 In a coin tossing contest, what is the maximum amount of money you would be prepared to lose if the prize money 

was £100? 
Type in answer (0 to 10,000) 
Would not take part 
Don’t know 
Q.17 In a coin tossing contest, what is the maximum amount of money you would be prepared to lose if the prize money 

was £1000? 
Type in answer (0 to 10,000) 
Would not take part 
Don’t know 
Q.18 In a coin tossing contest, what is the maximum amount of money you would be prepared to lose if the prize money 

was £10000? 
Type in answer (0 to 10,000) 
Would not take part 
Don’t know 
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A 02 – Numerical method of loss aversion model 

The optimisation problem is
1

0 1( , )
t

T
s t T t

t t t t S T

s t

J f I Max E β V V
θ

ω β ω
−

− −

=

 
= + 

 
∑ , subject to the 

constraints that, ( )1 1 1,1 ( )t t t t tf f πI r Zθ µ σ+  = + + + +  .  

 
 

At age 64, the value function is ( ) [ ]
64

64 64 64 0 64 1 64 65, ( )J f I Max V E V
θ

ω βω= + . To avoid 

choosing local optima, we discretise the control variable (i.e. asset allocation in risky 

asset) into equally spaced grids and optimise them using a standard grid search. As an 

important step of stochastic dynamic programming, we need to discretise the state space 

and shocks first. Wealth and labour income level are discretised into 100 and 10 even 

grids respectively in computation, so that we can calculate optimal control variable and 

value function for each grid point, as shown in Figure 49 below. 

 

Figure 49: Optimal equity asset allocation at age 64 
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To solve the non-linear expectation part in above Bellman equation, i.e. ( )64 65E V , Gauss-

Hermite quadrature method is used, given the assumptions of normally distributed equity 

returns and the income growth rate. The idea is to approximate the value function by 

using several significant nodes of the distribution and their relevant weights. Equity 

return shock 1Z and income shock 2Z  are both discretised into 9 nodes, and the procedure 

of discretising 1Z  and 2Z  is to substitute 1,2 mZ and 2,2 nZ for them respectively. So, 

( ) ( ) ( ) ( )[ ]65,65,2,165

9

1

9

1

1

21216565656564 ;2,2,,
,2,1

IfZZVwwdZdZZZfIfVVE nmZ

m n

Z nm∑∑∫ ∫
= =

−

∞

∞−

∞

∞−

≈= π

, where 
1,mZw , 

2,nZw and 1,mZ , 2,nZ  are the Gauss-Hermite quadrature weights and nodes.  

 

The advantage of this definition of nodes is that state variables can be computed more 

precisely and it costs less CPU time; however, because we have quite fine grids on 

control variable and much looser grid on shocks, we may have some state variable values 

not in grid points of next time period. Bilinear interpolation method is employed to 

approximate value function in this case. 

 

Then, for every age t  prior toT , we compute the value function and the optimal variables 

at each grid point. Substituting these values in the Bellman equation, we obtain the value 

function for this period, which is then used to solve the maximisation problem of the 

previous period. For example, at age 64t < , the Bellman equation for this problem is 

given by, ( ) ( )
1

0 1 0 1( , ) ( )
t t

T
s t T t

t t t t t t

s t

J f I Max E β V(s) V T Max V t E J
ϑ θ

ω β ω ω β
−

− −

+

=

 
= + = +    

 
∑ . 

We set up the same 100 by 10 grids for state variables. Bilinear interpolation method is 

employed to approximate value function. After we get the optimal control variable at 

each grid point, we then substitute them in the Bellman equation and used it to solve the 

maximisation problem of previous time period. This process is iterated backwards until 

age 20. Figure 50 illustrates the optimal equity weight at age 20. 
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Figure 50: Optimal equity asset allocation at age 20 

0

20

40

60

80

100

1200

2

4

6

8

10

0

0.5

1

SalaryActual fund level

O
p
ti
m

a
l 
e
q
u
it
y
 w

e
ig

h
t

 



 163 

 

A 03 – Numerical solution for the dynamic 

programming and integration process 

 

The Epstein-Zin utility function at time t  is as follows: 

( ) ( )

1
1 11 1

1 1

20 1
1

1
1

20 20 20 20 20 20 1 201 1
1

ϕ ϕ
γ γ

γϕβ β
γ

− −

− −

+ +

−
−

+ + + + + + + +

 
             = − + × + − × ×   −        
  

t

t t t t t t t

W

b
V p C E p V p b  

  

In the last period ( )1,ω ω− , where 1 0ω− =p , the terminal value function is given by: 

( )
1 1 1

1
1 11 1

1 1

1
1

1 1 1 20
0 ,0 1

max
1ω ω ω

ϕ ϕ
γ γ

ω

ϕ
ω ω ω

α
β

γ− − −

− −

− −

−

− − − +
≤ ≤ ≤ ≤

 
         = + × × 

 − 
   

 
 

T
C W

W

b
J W C E b  

 

The optimisation problem is then: 

( )
20 20

20
, ,

max
α + +

+
t t

t
C k

E V  

subject to the constraints given by: 

• ( ) ( )20 1 20 20 20 20 201π α µ ε+ + + + + + + = + × + + + t t t t t tW W Y r , when 0 43≤ ≤t ; 

• ( ) ( ) ( )( )65 64 64 64 64 641 1π α µ ε = − × + × + + + W k W Y r , when 44=t ; 

• ( )65
20 1 20 20 20 20

65

1 α µ ε
−

+ + + + + +

 ×
 = + − × + + +   

 ��
t t t t t

k W
W W C r

a
, when 45≥t ; 

• 200 1α +≤ ≤t ; and 

• 10 ≤≤ k .  
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The Bellman equation is given by: 

(a) for 430 ≤≤ t , we have: 

 

( )

( ) ( )
20 20

20 20 20

1
1 11 1

1 1

20 1
1

1
1

20 20 20 20 20 1 20
,

,

max 1 1
1

ϕ ϕ
γ γ

γϕ

α
β β

γ+ +

+ + +

− −

− −

+ +

−
−

+ + + + + + +

 
             = − + × + − × ×   −        
  

t t

t t t

t

t t t t t t
C

J W Y

W

b
p C E p J p b

 

 

(b) for 44=t , we have: 

 

( )

( ) ( )
64 64

64 64 64

1
1 11 1

1 1

65
1

1
1

64 64 64 64 65 64
, ,

,

max 1 1
1

ϕ ϕ
γ γ

γϕ

α
β β

γ

− −

− −

−
−

 
             = − + × + − × ×   −        
  

C k

J W Y

W

b
p C E p J p b

 

 

(c) and, for 45≥t , we have: 

 

( )

( ) ( )
20 20

20 20 20

1
1 11 1

1 1

20 1
1

1
1

20 20 20 20 20 1 20
,

,

max 1 1
1

ϕ ϕ
γ γ

γϕ

α
β β

γ+ +

+ + +

− −

− −

+ +

−
−

+ + + + + + +

 
             = − + × + − × ×   −        
  

t t

t t t

t

t t t t t t
C

J W Y

W

b
p C E p J p b

 

 



 165 

To solve the non-linear expectation part in the Bellman equation above, i.e., ( )1

20 20 1t tE J γ−

+ + + , 

Gauss-Hermite quadrature is used to discretise 1Z and 2Z  into 9 nodes, and the procedure 

of discretising 1Z  and 2Z  is to substitute 1,2 mZ  and 2,2 nZ  for them respectively. 

So, we have: 

( ) ( )
1, 2,

9 9 1
1 1

20 20 1 20 1 1, 2, 20 1, 20 1

1 1

2 , 2 ;
γ

γ π
−

− −

+ + + + + + + + +
= =

 ≈
 ∑∑ m nt t Z Z t m n t t

m n

E J w w J Z Z W Y

 

where 
1,mZw , 

2,nZw and 1,mZ , 2,nZ  are the Gauss-Hermite quadrature weights and nodes, 

and π  is the mathematical constant.  

 

To avoid choosing a local maximum, we discretise both control variables (i.e., 

consumption and asset allocation) into 20 equally-spaced grids and optimise using a 

standard grid search. Wealth and labour income level are discretised in 30 and 10 

equally-spaced grids, respectively. 

 

Substituting the expectation with the Gauss-Hermite approximated function in the 

Bellman equation at time t , we compute the maximum value function and optimal 

variables at each grid point.  We then iterate the procedure back to age 20. For a point in 

the state space other than grid points, cubic spline interpolation is employed to 

approximate the optimal results. 
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A 04 – Optimal asset allocation at different ages 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

0

2

4

6

8

10

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

Salary

A4.5 Optimal asset allocation at age 20
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A 05 – Survival probabilities table 

 

Age Prob. Age Prob. Age Prob. 

20 0.999812 54 0.998682 88 0.867459 
21 0.999813 55 0.998465 89 0.855528 
22 0.999813 56 0.998212 90 0.843024 
23 0.999814 57 0.997917 91 0.829980 
24 0.999815 58 0.997576 92 0.816432 

25 0.999816 59 0.997180 93 0.802424 

26 0.999816 60 0.996723 94 0.788008 
27 0.999817 61 0.996108 95 0.773236 

28 0.999817 62 0.995388 96 0.758172 

29 0.999816 63 0.994549 97 0.742880 

30 0.999816 64 0.993575 98 0.727427 

31 0.999814 65 0.992448 99 0.711888 

32 0.999813 66 0.991149 100 0.696334 

33 0.999810 67 0.989657 101 0.680840 

34 0.999807 68 0.987949 102 0.665482 

35 0.999802 69 0.986001 103 0.650334 

36 0.999797 70 0.983787 104 0.635468 

37 0.999789 71 0.981282 105 0.620956 

38 0.999781 72 0.978456 106 0.606867 

39 0.999769 73 0.975280 107 0.593266 

40 0.999755 74 0.971726 108 0.580214 

41 0.999737 75 0.967762 109 0.567769 

42 0.999715 76 0.963360 110 0.555986 

43 0.999689 77 0.958487 111 0.546967 
44 0.999657 78 0.953118 112 0.538703 

45 0.999618 79 0.947223 113 0.531220 

46 0.999571 80 0.940777 114 0.524541 

47 0.999515 81 0.933759 115 0.518687 

48 0.999448 82 0.926146 116 0.513674 
49 0.999367 83 0.917925 117 0.509516 

50 0.999271 84 0.909084 118 0.506224 

51 0.999158 85 0.899615 119 0.503806 

52 0.999024 86 0.889516 120 0.000000 

53 0.998867 87 0.878794 120+ 0.000000 
 

 

 Source: CMI mortality table PMA92(C2010). 

 


