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AN IMPROVED CONVOLUTION ALGORITHM FOR
DISCRETELY SAMPLED ASIAN OPTIONS

ALE� µCERNÝ AND IOANNIS KYRIAKOU

Abstract. We suggest an improved FFT pricing algorithm for dis-
cretely sampled Asian options with general independently distributed re-
turns in the underlying. Our work complements the studies of Carverhill
and Clewlow (1990), Benhamou (2002), and Fusai and Meucci (2008),
and, if we restrict our attention only to lognormally distributed returns,
also Veµceµr (2002). While the existing convolution algorithms compute
the density of the underlying state variable by moving forward on a
suitably de�ned state space grid our new algorithm uses backward price
convolution, which resembles classical lattice pricing algorithms. For
the �rst time in the literature we provide an analytical upper bound for
the pricing error caused by the truncation of the state space grid and
by the curtailment of the integration range. We highlight the bene�ts of
the new scheme and benchmark its performance against existing �nite
di¤erence, Monte Carlo, and forward density convolution algorithms.

1. Introduction

Asian options represent a class of derivative securities whose payo¤ de-
pends on an average price of the underlying asset during a prespeci�ed time
window. Their appeal stems partly from the fact that average price is harder
to manipulate by unscrupulous traders and partly because the averaging re-
duces the volatility of the underlying asset and thus leads to lower option
prices.
The manner of averaging has a signi�cant impact on the analytical tracta-

bility of Asian options. The literature distinguishes geometric versus arith-
metic averaging and continuous versus discrete sampling of the underlying
price. While the geometric average admits a closed-form solution in the

Date : October 8, 2009.
1991 Mathematics Subject Classi�cation. Primary 91B28; Secondary 60H05, 60J60,

93E20.
Key words and phrases. Asian options, discrete sampling, convolution, FFT.
We would like to thank Gianluca Fusai and Jan Veµceµr for helpful discussions. We are

also grateful to two anonymous referees for helpful comments and suggestions. The work
of Ioannis Kyriakou was supported by the Cass Business School Doctoral Programme and
the EPSRC.

1



 Electronic copy available at: http://ssrn.com/abstract=1323252 Electronic copy available at: http://ssrn.com/abstract=1323252

2 ALE� µCERNÝ AND IOANNIS KYRIAKOU

Black-Scholes model (cf. Turnbull and Wakeman 1991), for the more preva-
lent arithmetic average no simple analytical solution exists1. The Asian case
is complicated by the fact that one wishes to achieve a reduction in the
number of state variables. This reduction, foreshadowed in Ingersoll (1987)
and employed in Rogers and Shi (1995), Andreasen (1998), Veµceµr (2001) and
Veµceµr (2002), uses a change of measure and requires the option pay-o¤ to be
a homogeneous function of the weighted average of stock prices. The same
applies to the PIDE of Veµceµr and Xu (2004) which is implemented numeri-
cally for continuously monitored Asians under jump-di¤usions in Bayraktar
and Xing (2008).
Most Asian options are not sampled continuously, indeed it is typical for

the underlying price to be recorded only once a day or once a week. The
above PDE techniques2 can be modi�ed to accommodate discrete sampling
(cf. Andreasen 1998, Veµceµr 2002), but they do not exploit discrete sam-
pling to their advantage. If anything, discrete sampling has a detrimental
e¤ect on the �nite di¤erence algorithms by making the PDE coe¢ cients dis-
continuous and therefore eroding the quadratic convergence in time of the
Crank-Nicolson scheme.
There are three existing papers, Carverhill and Clewlow (1990), Ben-

hamou (2002) and Fusai and Meucci (2008), which are speci�cally tailored
to discretely sampled Asians while simultaneously exploiting a state space
reduction similar to the one mentioned above, using so-called Carverhill-
Clewlow-Hodges factorization. In all three papers the computation works
by evaluating the density of the average price going forward. These papers
have a signi�cant advantage over the PDE techniques in that they are easily
extended to allow for leptokurtic returns in the underlying without being
restricted to jump-di¤usions.
By exploiting the notion of a reverse �ltration we are able to replace the

Carverhill-Clewlow forward density convolution by a backward price con-
volution. We demonstrate below that this has substantial numerical and
theoretical advantages. The paper is organized as follows: In Section 2 we
introduce the notation and the Carverhill-Clewlow-Hodges factorization. In
Section 3 we develop the main theoretical results for the backward price

1See Linetsky (2004) and references therein for transform methods and their numerical
implementation.

2All the above PDEs, apart from Veµceµr (2002), su¤er from instability under standard
(explicit, implicit or Crank-Nicolson) �nite di¤erence schemes. The instability occurs
because the drift may dominate the di¤usion coe¢ cient in some regions of the grid. The
instability can be remedied by �upwind�di¤erences, at the cost of lower convergence speed
in spatial dimension (cf. Kushner and Dupuis 2001). Therefore, of the PDE schemes
surveyed here, only Veµceµr (2002) is numerically competitive.



IMPROVED CONVOLUTION ALGORITHM FOR ASIAN OPTIONS 3

convolution scheme, and in Section 4 we discuss its implementation via dis-
crete Fourier transform. In Section 5 we describe parametrization of log
return distribution for the Black-Scholes model and two Lévy process mod-
els, the tempered stable and normal inverse Gaussian. Section 6 concludes
by comparing the speed and accuracy of our scheme with previous studies.

2. Preliminaries

Fix n 2 N, and let fZkgnk=1 be a collection of independent random vari-
ables on the probability space f
;F ; Pg such that 0 < Var(exp(Zk)) < 1.
Let F := fFkgnk=1 be the information �ltration generated by the random
variables fZkg, with F0 trivial. Fix a constant S0 > 0 and de�ne the price
process of a risky asset

Sj := S0 exp(

jX
k=1

Zk); j = 1; : : : ; n;

and a risk-free bank account with total return Rk in period k 2 f1; : : : ; ng.
We assume period k dividend payment of the size (Dk � 1)Sk�1; Dk � 1.
We interpret P as a risk-neutral measure. In the presence of dividends

we therefore have

E(eZk) = Rk=Dk := �k for k = 1; : : : ; n:

The collection fZkgnk=1 is completely general at this stage. In speci�c ap-
plications one may allow Zk-s to follow a non-parametric distribution or
identify them with increments of a speci�c Lévy process (see Section 5). In
the Black�Scholes model with sampling dates t1; : : : ; tn one has

Zk � N((r � �2=2)(tk � tk�1); �2(tk � tk�1));
Rk = exp(r(tk � tk�1));
Dk = exp(�̂(tk � tk�1));

where � represents the volatility of log returns, r is the risk-free rate and �̂
the dividend yield.
Fix a deterministic process � and de�ne a process of partial sums

Ij :=

jX
k=0

�kSk: (2.1)

Pricing of �xed or �oating strike call/put options amounts to calculating

E(I+n ); (2.2)

for di¤erent choices of process � (this uni�cation is described in Veµceµr 2002)
shown in Table 1. With appropriate choice of � one can also capture forward
start options and in-progress options.
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Option type �0 �1; : : : ; �n�1 �n

Call, �xed strike 

n+
 �

K
S0

1
n+


1
n+


Call, �oating strike � 
�
n+
 � �

n+
 1� �
n+


Put, �xed strike K
S0
� 


n+
 � 1
n+
 � 1

n+


Put, �oating strike 
�
n+


�
n+


�
n+
 � 1

Table 1. Choice of � corresponding to di¤erent types of
Asian options. � > 0 is the coe¢ cient of partiality for �oat-
ing strike options. Coe¢ cient 
 takes value 1 (0) when S0 is
(is not) included in the average.

The computational di¢ culty stems from the fact that I is not a Markov
process under P . More speci�cally S is Markov and (S; I) are jointly Markov
under P which means, when evaluating (2.2) recursively, that the conditional
expectation E(I+n jFt) depends on both St and It: This implies pricing must
be performed on a 3-dimensional grid (I; S; time).
Let us now de�ne a new �ltration G := fGigni=1

Gi = �fZn; Zn�1; : : : ; Zn�i+1g;

and process X by setting

Xk := �n�k +Xk�1 exp(Zn+1�k); (2.3)

X0 := �n:

We can now state a generalized version of the Carverhill-Clewlow-Hodges
factorization3.

Proposition 2.1. Consider deterministic coe¢ cients f�kgnk=0 and processes
I;X de�ned in (2.1), (2.3). The following statements hold:

(1) The random variables In; Xn satisfy

In = S0Xn; (2.4)

(2) Process X is Markov in �ltration G under measure P .

Proof. (1) follows by recursive substitution. (2) follows from the stochastic
independence of variables fZkgnk=1: �

3We do not require � to be constant or of the same sign and we do not need variables
Z to be identically distributed.
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3. Backward price convolution algorithm

Proposition 2.1 signi�es that one can price the Asian option by evaluating
S0E(X

+
n ) recursively in �ltration G. Now assume that �i � 0 for i =

1; : : : ; n: This, by virtue of (2.3), implies Xk > 0 for 0 � k < n and in turn
we obtain

Xk � �n�k > 0 for 1 � k < n:

Thus we can write (2.3) alternatively as

ln(Xk � �n�k) = lnXk�1 + Zn+1�k: (3.1)

Carverhill and Clewlow (1990), Benhamou (2002) and Fusai and Meucci
(2008) use this transition equation to compute the unconditional risk-neutral
density of ln(Xn � �0) which they subsequently use to price a �xed strike
Asian call option. This is done recursively, evaluating the density of ln(Xk�
�n�k) as the convolution of densities of lnXk�1 and Zn+1�k in line with
equation (3.1). In the �rst two papers the convolution is computed by
Fourier transform, in the third paper it is computed directly.
In all three papers the di¢ culty is that the density of ln(Xk � �n�k)

spreads out as k increases. This problem is not speci�c to Asian options,
the same situation would occur if one applied the density method iteratively
to plain vanilla options in the Black-Scholes model. Ideally, one should use
a dense and narrow grid for ln(X1 � �n�1) and wide and relatively sparse
grid for ln(Xn � �0). Clewlow and Carverhill use the same equidistantly
spaced grid for all variables ln(Xk � �n�k): Benhamou (2002) models re-
centered variables ln(Xk � �n�k) on a common grid. Fusai and Meucci
(2008) use a �xed grid that is not equidistant to take advantage of Gaussian
numerical integration. Simultaneous recentering and rescaling has not been
implemented in the literature, to the best of our knowledge, although the
methodology of Fusai and Meucci (2008) allows this in principle.
The main di¤erence in our approach to the foregoing papers is that we

model the price of the Asian option directly, not the density of the underlying
average. This allows us to bypass the computation of the density altogether.
Our method thus resembles backward pricing in a lattice, as opposed to for-
ward density convolution. In the next theorem we write down our recursive
pricing algorithm together with some price bounds needed later. Note that
smoothness of densities ffkgnk=1 is not required, therefore our result is ap-
plicable also to models where the density has a singularity. This occurs,
for example, in the variance-gamma or CGMY models at very short time
horizons.
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Theorem 3.1. Assume that for all k the CDF of Zn+1�k has a density fk
with respect to the Lebesgue measure on R, satisfying

�k :=

Z
R
ezfk(z)dz <1:

Consider constants �k > 0; 0 < k � n and �0 2 R. De�ne functions
pk : R! R for 0 < k � n and qk; hk : R! R for 0 � k < n as follows

pn(y) := (ey + �0)
+;

hk(y) := ln(ey + �n�k); 0 < k < n;

qk�1(x) :=

Z
R
pk(x+ z)fk(z)dz; 0 < k � n; (3.2)

pk�1(y) := qk�1(hk�1(y)); 1 < k � n: (3.3)

The following statements hold:

(1) The forward price of an Asian call contract with parameters f�jgnj=0
is given by

E(I+n ) = S0E(X
+
n ) = S0q0(ln�n):

(2) There are positive constants ak; bk such that for all x; y 2 R

0 � pk(y) � akey + bk; (3.4)

0 � qk(x) � akex + bk+1: (3.5)

These constants are given recursively by

an = 1; bn = �
+
0 ; (3.6)

ak�1 = ak�k; (3.7)

bk�1 = bk + ak�1�n�k+1: (3.8)

In numerical applications we must curtail the range of integration in (3.2).
In the next theorem we estimate the pricing error caused by the curtailment
and provide a constructive method for �nding the curtailed ranges.

Theorem 3.2. Consider the following (exponential) tail moments

Fk(z;�) =

Z z

�1
e�xfk(x)dx;

Gk(z;�) =

Z 1

z
e�xfk(x)dx:

Under the assumptions of Theorem 3.1 Fk(z; 1) +Gk(z; 1) = �k and

lim
z!�1

Fk(z;�) = lim
z!1

Gk(z;�) = 0 for � = 0; 1:
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Consider compact intervals f[lk; uk]gnk=1 and de�ne compact intervals f[Lk; Uk]gnk=1;
f[ �Lk; �Uk]gn�1k=0 by setting

�L0 = �U0 = ln�n; (3.9)

Lk = �Lk�1 + lk; Uk = �Uk�1 + uk; 0 < k � n; (3.10)
�Lk = ln(eLk + �n�k); �Uk = ln(e

Uk + �n�k); 0 < k < n: (3.11)

De�ne functions ~qk; ~pk by setting

~qk�1(x) := (

Z
R
~pk(x+ z)fk(z)dz)1[ �Lk�1; �Uk�1](x); 0 < k � n;

~pk�1(y) := ~qk�1(hk�1(y))1[Lk�1;Uk�1](y); 1 < k � n;
~pn(y) := pn(y)1[Ln;Un](y)

Let ~an = ~bn = 0 and for 0 < k � n recursively de�ne

~ak�1 = ~ak�k + ak(Fk(lk; 1) +Gk(uk; 1));

~bk�1 = ~ak�1�n�k+1 +~bk + bk(Fk(lk; 0) +Gk(lk; 0));

where ak; bk are given by (3.6-3.8).

(1) The pricing error has the following bounds

0 � q0(ln�n)� ~q0(ln�n) � ~b0; (3.12)

and ~b0 > 0 can be made arbitrarily small by suitable choice of f[lk; uk]gnk=1:
(2) For k < n and positive constants ck de�ned recursively by cn =

0; ck�1 = ck + ak�1�n�k+1 we have

0 � ~p0k(y) � akey + ck for y 2 (Lk; Uk); (3.13)

0 � ~q0k(x) � ak�1ex + ck for x 2 (�Lk; �Uk) (3.14)

(3) Functions f~pkgn�1k=1 ; f~qkg
n�1
k=0 are continuously di¤erentiable on the in-

terior of their support.
(4) For 0 � k < n and x 2 (�Lk; �Uk)

~qk�1(x) = F�1(F(~pk)��k)(x); (3.15)

where F denotes the Fourier transform (see Appendix A), �k is the
characteristic function of Zn�k

�k(u) :=

Z
R
eiuzfk(z)dz;

and ��k denotes its complex conjugate.

It is straightforward to modify Theorem 3.1 to obtain price sensitivities
(greeks). This involves taking the derivative of the price with respect to the
parameter of interest, which amounts, roughly speaking, to interchanging
the order of integration and di¤erentiation in equation (3.2). The same
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principle is used in Lord et al. (2008) for the computation of the delta and
gamma of a European plain vanilla option, and more generally in the case
of Bermudan options with multiple exercise dates. Using this method the
computational e¤ort for sensitivities is of the same order as computational
e¤ort for prices.

4. Numerical implementation

De�nition 4.1. Consider two uniform grids x = fx0 + j�xgn�1j=0 and u =
fu0 + k�ugm�1k=0 and vector a = fajgn�1j=0 . We de�ne a generalized discrete
Fourier transform (DFT) of a from x onto u as the m-dimensional vector
b = fbkgm�1k=0 satisfying

bk =
n�1X
j=0

aje
ixjuk =

n�1X
j=0

aje
i(x0+j�x)(u0+k�u):

We write b = D(a;x;u):

This is a very slight generalization of transforms that feature prominently
in the signal processing literature. When x0 = u0 = 0 we obtain so-called
fractional Fourier transform with fractionality coe¢ cient � = n�x�u

2� . When
furthermore m = n and � = 1 we obtain the standard DFT. In this paper
we compute the generalized DFT by means of so-called chirp z-transform4

(CZT), which is readily available in MATLAB.

De�nition 4.2. Consider vector a = fajgn�1j=0 , and parameters m 2 N,
A;w 2 C: The chirp z-transform of a with parameters A;w;m is the vector
b = fbkgm�1k=0 satisfying

bk =
n�1X
j=0

aj(Aw
�k)j :

We write b = czt(a;A;w;m):

Proposition 4.3. Consider two uniform grids x = fx0 + j�xgn�1j=0 and u =
fu0 + k�ugm�1k=0 and vector a = fajg

n�1
j=0 . We have

D(a;x;u) = eix0uczt(a; eiu0�x; e�i�x�u;m): (4.1)

Proof. Straightforward algebra. �

Our numerical algorithm proceeds as follows:

4CZT pre-dates FrFT by more than 20 years, see Rabiner et al. (1969). It is more
general in form but has the same computational cost. It can be evaluated at the cost of 3
standard DFTs, using so-called Bluestein (1968) algorithm. For more details on the speed
and implementation in the context of option pricing see µCerný (2004).
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(1) For a given contract we �nd values of lk; uk that achieve a prede-
termined pricing precision given by (3.12). We evaluate the tail
moments by Fourier inversion

Fk(x;�) = � 1

2�
lim
c!1

Z c

�c

�k(u� i(� + �))
iu+ �

e�(iu+�)xdu;

Gk(x;�) =
1

2�
lim
c!1

Z c

�c

�k(u� i(� + �))
iu+ �

e�(iu+�)xdu;

for suitably chosen constants � < 0; � > 0 (cf. Strawderman 2004).
(2) We then determine the grid ranges [Lk; Uk] and [ �Lk; �Uk] for functions

~pk; ~qk via (3.9-3.11).
(3) We select a uniform grid u symmetric around zero. The range of

values in u is determined to ensure j�kj < � outside u. The value
of � is guided by the desired precision, i.e. we pick � = 10�7 when
computing results to 7 decimal places.

(4) Suppose the values approximating ~pk are given on a uniform grid y
and the values of �k are given on a uniform grid u. By abuse of
notation we denote the function values on the grid by ~pk and �k,
respectively. We evaluate Pk := D(~pk;y;u) as a discrete approx-
imation of the transform F(~pk): We then approximate the inverse
Fourier transform (3.15) by computing ~qk�1 =

D(Pk��k;�u;x)
2� where

x is a uniform grid on the interval [ �Lk�1; �Uk�1]. The generalized
DFT is implemented via fast CZT using the conversion (4.1).

(5) We approximate ~qk�1 inside grid x by a cubic interpolating spline
�tted to the nodes (x; ~qk�1) using not-a-knot endpoint conditions.
Outside x we approximate ~qk�1 by extrapolating linearly in ex. We
compute ~pk�1 = ~qk�1(hk�1(y)) and continue with item 4.

Theoretically we expect quadratic convergence of the price as a function of
the grid spacing for grids x;y;u. Let �n be a numerical price corresponding
to multiplier 2�n of the original spacing on grids x;y;u. We expect �n �
�n+1 � 4(�n+1��n+2) and we indeed observe �n��n+1 = (4�10�2)(�n+1�
�n+2) for n su¢ ciently high. At this point if two consecutive Richardson
extrapolations agree to the desired precision we terminate the algorithm.
We then increase grid range for u and run the whole computation again to
con�rm that the results agree to the desired number of decimal places.

5. Leptokurtic stock returns

We evaluate option prices numerically based on three distributions of log
returns: normal (Gaussian), tempered stable (CGMY) and normal inverse
Gaussian (NIG). All three are in�nitely divisible and therefore consistent
with a continuous-time Lévy model for the log stock price. Denoting the
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underlying Lévy process by L the risk-neutral characteristic function � is
given by the formula

E(eiuLt) = e�̂(iu)t; (5.1)

�̂(u) = �(u) + u(r � �̂ � �(1));

where t is the time horizon measured in years and �̂ is the dividend yield.
The cumulant generating functions �(u) for the di¤erent models are given
as follows,

�G(u) = �2u2=2;

�CGMY(u) = C� (�Y ) ((M � u)Y �MY + (G+ u)Y �GY );
�NIG(u) = (1�

p
1� 2��u� ��2u2)=�:

By a standard result (cf. Cont and Tankov 2004, Section 2.2.5) L has the
following unconditional moments

E(Lt) = �̂0(0)t = (�0(0) + r � �̂ � �(1))t;
Var(Lt) = �̂00(0)t = �00(0)t;

skew(Lt) =
�̂000(0)

(�̂00(0))3=2
t�1=2 =

�000(0)

(�00(0))3=2
t�1=2;

kurt(Lt) = 3 +
�̂(4)(0)

(�̂00(0))2
t�1 = 3 +

�(4)(0)

(�00(0))2
t�1:

We calibrate the three models to achieve
p
Var(L1) 2 f0:1; 0:3; 0:5g and for

the non-Gaussian distributions we further require

skew(L1) = �0:5; (5.2)

kurt(L1) = 3:7: (5.3)

These moments are broadly consistent with risk-neutral densities �tted to
option price data by Madan et al. (1998) and Carr et al. (2002). The �tted
parameters, rounded to four leading digits, are summarized in Table 2.

Gaussian NIG tempered stable

� � � � C G M Y

0.1 0.1222 0.0879 -0.1364 0.2703 17.56 54.82 0.8
0.3 0.1222 0.2637 -0.4091 0.6509 5.853 18.27 0.8
0.5 0.1222 0.4395 -0.6819 0.9795 3.512 10.96 0.8

Table 2. Calibrated model parameters
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6. Numerical results

6.1. Black-Scholes model. Our algorithm is a major improvement over
existing density convolution pricing procedures. In Table 3 we present our
results with precision �10�7; alongside the original numbers of Carverhill
and Clewlow (1990) and Benhamou (2002). We observe that the original
results are at best precise to 3 decimal places, but often not even to 2 decimal
places. The precision is better for low volatilities.

vol strike µCerný & Ben- error Carverhill error
Kyriakou hamou & Clewlow

80 22.7771749 22.7838 0.007 22.78 0.003
90 13.7337773 13.7347 0.001 13.73 -0.004

0.1 100 5.2489927 5.2438 -0.005 5.25 0.001
110 0.7238324 0.7211 -0.003 0.72 -0.004
120 0.0264092 0.0336 0.007 0.02 -0.006

80 23.0914378 23.0733 -0.018 23.09 -0.001
90 15.2207610 15.2231 0.002 15.29 0.069

0.3 100 9.0271888 9.0110 -0.016 9.08 0.053
110 4.8349071 4.8338 -0.001 4.86 0.025
120 2.3682854 2.3545 -0.014 2.4 0.032

80 24.8242581 24.8324 0.008 25.01 0.186
90 18.3316740 18.3207 -0.011 18.5 0.168

0.5 100 13.1580456 13.1811 0.023 13.47 0.312
110 9.2345134 9.2300 -0.005 9.45 0.215
120 6.3719536 6.3615 -0.010 6.68 0.308

Table 3. Comparison with Benhamou (2002) and Carverhill
and Clewlow (1990) for lognormal returns. Asian call option
parameters T = 1; n = 50; S0 = 100.

The relative lack of precision is typical for the density convolution method
because one does not obtain monotone convergence in the number of grid
points. This is apparent also in the most recent density convolution imple-
mentation, due to Fusai and Meucci (2008), which is in itself a substantial
improvement over Carverhill and Clewlow (1990) and Benhamou (2002). In
Table 4 we reproduce Fusai and Meucci�s results for 1000, 5000 and 10000
quadrature points, respectively. In an ideal world the results with higher
number of quadrature points should also be more precise. However, we note
that the error for 1000 gridpoints is in two cases smaller than the error for
5000 and 10000 grid points. The error for 5000 points is smaller than the



12 ALE� µCERNÝ AND IOANNIS KYRIAKOU

error for 10000 points in further four cases. This makes it hard for users
of the density convolution method to gauge the precision of their scheme.
Correspondingly, one can see that the results in Fusai and Meucci can be
substantially less precise than the reported 5 decimal places.

n strike
µCerný &
Kyriakou

Fusai & Meucci error �10�5

�10�7 10000 5000 1000 10000 5000 1000

90 11.9049157 11.90497 11.90498 11.90428 5 6 -64
12 100 4.8819616 4.88210 4.88212 4.88199 14 16 3

110 1.3630380 1.36314 1.36314 1.36371 10 10 67

90 11.9329382 11.93301 11.93299 11.93339 7 5 45
50 100 4.9372028 4.93736 4.93738 4.93711 16 18 -9

110 1.4025155 1.40264 1.40262 1.40199 12 10 -53

90 11.9405632 11.94068 11.94069 11.94137 12 13 81
250 100 4.9521569 4.95233 4.95239 4.94942 17 23 -274

110 1.4133670 1.41351 1.41350 1.41290 14 13 -47

Table 4. Comparison with Fusai and Meucci (2008) for
lognormal returns. Parameters T = 1; � = 0:17801; r =

0:0367; n = 50; S0 = 100. Numbers 1000, 5000, 10000 in
the last 6 columns signify the number of grid points used by
Fusai and Meucci.

The execution time is in our favour since our control variate Monte Carlo
takes longer than that of Fusai and Meucci (for n = 50 F&M need 130
seconds to run 1,000,000 MC trials while we need 190 seconds) but our
pricing procedure is substantially faster (we need under 1 second to achieve
guaranteed 5 decimal place precision while F&M require 5 seconds with 1000
quadrature points to achieve a variable precision of 3-4 decimal places; see
our timings in Table 7).
Monte Carlo is typically too slow to compete with lattice-based methods

at low dimensions. However, in the Asian case this is not a foregone con-
clusion because geometric Asian options provide a control variate technique
that works extremely well (cf. Kemna and Vorst 1990). In Table 5 we report
standard errors and timings for the control variate method. The conclusion
is that even with a very e¤ective control variate the Monte Carlo method
is not competitive as it requires 19 seconds to achieve 3 decimal places of
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accuracy (at 99% con�dence level) while our method needs under 1 second
to obtain 5 decimal places.

n strike CVMC std 99% CI CPU
�10�5 �10�5 sec

90 11.90347 67 172
12 100 4.88162 54 139 9

110 1.36363 48 125

90 11.93295 64 165
50 100 4.93688 53 137 19

110 1.40213 48 125

90 11.94073 63 163
250 100 4.95186 53 137 77

110 1.41365 47 122

Table 5. Results of control variate Monte Carlo method
with 100,000 simulations and lognormal returns. Parameters
T = 1; � = 0:17801; r = 0:0367; n = 50; S0 = 100. CI =
con�dence interval; std = standard deviation of the CVMC
estimator. CPU timings are for Matlab R15 on Dell Latitude
620 Intel Dual Core T7200, 2GHz, 2Gb RAM.

The convolution methods discussed above can handle arbitrary distribu-
tion of log returns. If we restrict our attention only to lognormal returns
there is another competing method: �nite di¤erence schemes5 (cf. Veµceµr
2002). The pricing error of the Crank-Nicolson scheme for 50 sampling
dates is shown in Table 6. Here our recursion wins easily since we can
achieve 5 decimal places of precision across strikes and volatilities in under
1 second (cf. timings in Table 7). Obviously the �nite di¤erence scheme
becomes more competitive as the number of sampling dates increases. We
�nd that the break-even point is at around 200 sampling dates for precision
10�5 and volatility of 30%. The �nite di¤erence scheme performs better for
low volatility and lower precision while our method has an extra edge for
high volatility and higher precision levels.

5We do not use Matlab�s built-in PDE solver but rather we design a customized para-
bolic PDE solver in which we implement an e¢ cient sparse LU decomposition to speed up
matrix inversion in the Crank-Nicolson scheme. Furthermore we extrapolate the result-
ing prices quadratically in time and space step to increase accuracy, which is particularly
important for high volatility levels.
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vol strike

80 90 100 110 120

0.1 -4.5E-8 8.0E-5 8.6E-4 4.0E-4 2.1E-5
0.3 9.1E-4 2.0E-3 2.7E-3 2.5E-3 1.8E-3
0.5 2.9E-3 4.0E-3 4.4E-3 4.3E-3 3.7E-3

Table 6. Precision of Crank-Nicolson �nite di¤erence
scheme (lognormal returns). For the construction of the pric-
ing PDE see Veµceµr (2002). Spatial step (0.01,0.005); time
step (1/500,1/1000). Execution time 1.1s per strike in Mat-
lab R15 on Dell Latitude 620 Intel Dual Core T7200, 2GHz,
2Gb RAM.

6.2. Lévy models. We will not detail numerical comparisons with existing
convolution methods for Lévy log returns. In short, the oscillatory conver-
gence of the forward density convolution is exacerbated further by leptokur-
tic returns and the advantage of our method is even more pronounced than
in the lognormal case.
The performance of control variate Monte Carlo strategies in the Lévy

case has been examined in detail by Fusai and Meucci (2008). The main
conclusion remains the same as in the lognormal model � while CVMC leads
to a substantial reduction in estimation error compared to the standard MC,
the scheme is nevertheless not competitive with convolution methods.
In Table 7 we report call option prices for weekly sampling, with risk-free

rate 4% p.a., zero dividend yield and a year to maturity (S0 = 100; T = 1;
n = 50; r = 0:04, �̂ = 0 and t = T=n in 5.1). Model parameters are
given in Table 2. The precision of the reported numbers is �10�5. We can
achieve higher precision (up to 10�8) by exploiting the regular quadratic
convergence of our scheme in the number of gridpoints. Beyond 10�8 smooth
convergence requires too many grid points to manage the computations in
reasonable time.
Two comments are in order. Comparing leptokurtic prices with lognormal

prices we �nd in-the-money options to be slightly more expensive while out-
of-the-money options are substantially cheaper. This pattern is consistent
with plain vanilla option prices (n = 1) and is caused by a combination of
excess kurtosis and negative skew in the risk-neutral distribution. The same
pattern is observed by Fusai and Meucci.
Secondly, the prices generated by the two Lévy models coincide to penny

accuracy. This suggests that the skewness and kurtosis of the risk-neutral
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model vol strike CPU

90 100 110 sec

0.1 11.58113 3.33861 0.27375 1.0
Gaussian 0.3 13.66981 7.69859 3.89639 0.3

0.5 17.19239 12.09153 8.31441 0.3

0.1 11.64024 3.32385 0.15835 3.7
NIG 0.3 13.70084 7.34265 3.27860 1.8

0.5 16.76306 11.23586 7.16836 1.8

0.1 11.63988 3.32458 0.15787 8.5
CGMY 0.3 13.70160 7.34742 3.28308 4.1

0.5 16.76835 11.24424 7.17624 2.1

Table 7. Asian call option prices for Lévy log returns. Pre-
cision �10�5. For detailed description of parameter values
see main text. CPU timings in Matlab R15 on Dell Latitude
620 Intel Dual Core T7200, 2GHz, 2Gb RAM.

distribution (cf. equations 5.2, 5.3) are the primary factors driving option
prices, while the choice of a speci�c parametric Lévy model plays a secondary
role.

Appendix A. Fourier transform

De�nition A.1. Let f : R ! R be an absolutely integrable function. The
Fourier transform F(f) : R! C is given by

F(f)(u) =
Z 1

�1
f(s)eiusds: (A.1)

By slight abuse of notation we write F(f(s)), even though the variable s is
immaterial. For example the Fourier transform of f(s) = g(s)e�s would be
denoted F(g(s)e�s).
The inverse Fourier transform of g : R! C is given by

F�1(g)(s) = lim
c!1

1

2�

Z c

�c
g(u)e�iusdu

whenever the limit on the right hand side exists for all s 2 R.

Theorem A.2. Suppose f is absolutely integrable. On any compact interval
where f is continuous and of �nite variation the inverse Fourier transform
of F(f) is well de�ned and
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f = F�1(F(f)):

Proof. See Goldberg (1961), Theorem 5C. �

Theorem A.3. If f1; f2 are absolutely integrable then

(f1 � f2)(s) :=
Z 1

�1
f1(s

0)f2(s� s0)ds0 =
Z 1

�1
f2(s

0)f1(s� s0)ds0

is absolutely integrable and

F(f1 � f2) = F(f1)F(f2):

Proof. See Goldberg (1961), Theorems 7D, 7E. �

Appendix B. Proofs

Proof of Theorem 3.1. 1) We will prove by induction on k that E(X+
n jGk) =

pk(ln(Xk � �n�k)) for k = 0; : : : ; n: The statement clearly holds for k = n:
Assume therefore that E(X+

n jGk+1) = pk+1(ln(Xk+1 � �n�k�1)) holds. By
the law of iterated expectations

E(X+
n jGk) = E(E(X+

n jGk+1)jGk) = E(pk+1(ln(Xk+1 � �n�k�1))jGk):

Now substitute Xk+1 � �n�k�1 = Xk exp(Zn�k) from (2.3) to obtain

E(X+
n jGk) = E(pk+1(lnXk + Zn�k)jGk) =

Z
R
pk+1(lnXk + z)fk+1(z)dz

= qk(lnXk) = pk(ln(Xk � �n�k));

where the last two equalities follow from (3.2, 3.3). By induction therefore

E(X+
n ) = E(X

+
n jG0) = q0(lnX0) = q0(ln�n);

which completes the proof of the �rst assertion.
2) Since pn � 0 and fk � 0 for all k, it is obvious that pk; qk � 0

for all k. We prove the upper bound by induction on k. The inequality
pk(y) � ake

y + bk holds for k = n with an = 1 and bn = �+0 : Assume
pk(y) � akey + bk holds for arbitrary k � 1: From (3.2)

qk�1(x) =

Z
R
pk(x+ z)fk(z)dz �

Z
R
(ake

x+z + bk)fk(z)dz

= ak�ke
x + bk = ak�1e

x + bk;

which means (3.5) holds. Now use (3.3) to obtain

pk�1(y) = qk�1(ln(e
y + �n�k+1)) � ak�1(ey + �n�k+1) + bk

= ak�1e
y + bk�1;

which completes the proof. �
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Proof of Theorem 3.2. 1) By induction on k we will prove

0 � pk(x)� ~pk(x) � ~akex +~bk for x 2 (Lk; Uk); 0 < k � n, (B.1)

0 � qk(x)� ~qk(x) � ~ak(ex � �n�k) + ~bk for x 2 (�Lk; �Uk); 0 � k < n:

Inequality (B.1) holds trivially for k = n: Suppose it holds for arbitrary
k < n, then

qk�1(x)� ~qk�1(x) =
Z
R
(pk(x+ z)� ~pk(x+ z))fk(z)dz � 0:

Since (�Lk�1; �Uk�1) + (lk; uk) � (Lk; Uk) we have

qk�1(x)� ~qk�1(x) =

Z
[lk;uk]

(pk(x+ z)� ~pk(x+ z))fk(z)dz

+

Z
Rn[lk;uk]

(pk(x+ z)� ~pk(x+ z))fk(z)dz

�
Z
[lk;uk]

(~ake
x+z +~bk)fk(z)dz +

Z
Rn[lk;uk]

pk(x+ z)fk(z)dz

�
Z
R
(~ake

x+z +~bk)fk(z)dz +

Z
Rn[lk;uk]

(ake
x+z + bk)fk(z)dz

= ~ak�ke
x +~bk + ake

x(Fk(lk; 1) +Gk(uk; 1))

+bk(Fk(lk; 0) +Gk(uk; 0))

= ~ak�1e
x +~bk�1 � ~ak�1�n�k+1

for x 2 (�Lk�1; �Uk�1): Now hk�1((Lk�1; Uk�1)) � (�Lk�1; �Uk�1) which yields

0 � pk�1(y)� ~pk�1(y) = qk�1(hk�1(y))� ~qk�1(hk�1(y))
� ~ak�1(e

hk�1(y) � �n�k+1) + ~bk�1 = ~ak�1ey +~bk�1:

2, 3) The proof again proceeds by induction on k. Function ~pn is piecewise
di¤erentiable and satis�es (3.13). Assume (3.13) holds for arbitrary k < n:
Function 0 � ~p0k(x+z)fk(z) is dominated by an integrable function for x in a
compact interval therefore by Talvila (2001), Corollary 8 we can interchange
integration and di¤erentiation to obtain

0 � ~q0k�1(x) =

Z
R
~p0k(x+ z)fk(z)dz � ak�1ex + ck for x 2 (�Lk�1; �Uk�1):

This in fact shows that ~q0k�1(x) is continuous in (�Lk�1; �Uk�1): Since h
0
k�1(y) 2

(0; 1) for all y we also obtain

0 � ~p0k�1(y) � ~q0k�1(hk�1(y)) � ak�1ehk�1(y) + ck = ak�1ey + ck�1;

which completes the proof.
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4) Fix k � n: We have fk; ~pk 2 L1(R) and let

g(x) =

Z
R
~pk(x+ z)fk(z)dz = ~pk � fk(�z);

which by Young�s inequality is also in L1(R). By the convolution theorem
A.3,

F(g) = F(~pk � fk(�z)) = F(~pk)F(fk(�z)) = F(~pk)��k:
By part 3) functions f~pkgn�1k=1 ; ~qk are continuously di¤erentiable and bounded
on the interior of their support therefore we conclude ~pk; ~qk are also of �nite
variation on every compact interval. Since g coincides with ~qk�1 on the
interior of its support by Fourier inversion theorem A.2 we obtain (3.2). �
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