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Abstract

Sequential sealed �rst-price and open descending-price procurement-auctions

are studied. We examine which procurement-auction rule achieves the low

procurement cost. We show that the answer to this policy question depends

on whether the items are complements or substitutes. With substitutes, the

�rst-price procurement-auction is preferred, while with complements, the open

descending-price procurement-auction is preferred. We also illustrate the pro-

curement cost minimizing auction and the auction rule preferred by the bid-

ders. With substitutes, bidders prefer the open descending-price procurement-

auction, while with complements bidders prefer the �rst-price procurement-

auction.
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An important result in the theoretical auction literature concerns the revenue

equivalence of �rst-price and open ascending bid auctions, see Vickrey (1961), My-

erson (1981) and Riley and Samuelson (1981). A number of papers have studied

the robustness of the equivalence result to departures from the basic assumptions

including risk-aversion, see Riley and Samuelson (1981), Matthews (1983), Maskin

and Riley (1984), budget constraints, see Che and Gale (1998), positively correlated

valuations, see Milgrom and Weber (1982), and bidder asymmetry, see Maskin and

Riley (2000a). We relax the assumption of a single period auction and study sequen-

tial auctions. We take into account that winning an item may a¤ect the winning

bidder�s values in the next auction.

A sequential auction game is a selling mechanism commonly used when a seller

has a number of related items for sale. Typically, an individual item is allocated

to a bidder at each round by means of either a sealed bid �rst-price or an open

English auction. Usually the same auction format is used for early and late items,

and there is no change in the auction format over time. As the auction proceeds

sequentially, a bidder�s valuation for an additional item may depend on the number

of items acquired so far. Substitutes arise if the value of an additional item falls in

the number of acquired items, while complements arise if the value increases in the

number of acquired items. This paper explores the relationship between substitutes

and complements, and the choice of auction format both from the bidders�and the

auctioneer�s point of view.

Substitutability is pervasive in a number of settings including sequential real-estate

auctions, sequential eBay auctions for used durables, and livestock auctions. What
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these auctions have in common is that the incremental value of owning a second unit

is lower than it was for the �rst. A private house buyer is interested in the purchase of

a single house only, an eBay bidder may wish to buy a single durable good. Similarly,

a farmer that wishes to purchase one bull for breeding will value a second one much

less than the �rst.1 Substitutes also arise in sequential procurement contracting when

the technology exhibits decreasing returns to scale: the cost of the marginal contract

is higher when the bidder is already committed to a previously won and uncompleted

contract than when the bidder is uncommitted.

Complements arise when the value of an additional item increases with the number

of items acquired so far: a complete cycle of paintings or a complete china placesetting

may have a higher value than the sum of the individual item values. Complements

may arise for procurement contracts when there are learning-by-doing e¤ects or ex-

perience e¤ects. Additionally, if an up-front investment is required to undertake a

project, then this may induce complementarities: the �rst period winner has already

sunk the investment so that she is more competitive in the second period auction.

Empirical studies documenting the importance of substitutes and complements in

sequential auctions are abound: substitutes are found in industries in which bidders�

capacity is limited, as shown in papers such as Jofre-Bonet and Pesendorfer (2003),

Balat (2012) for sequential highway-paving procurement-auctions; and List, Millimet

and Price (2007) for sequential timber auctions. Jofre-Bonet and Pesendorfer (2003)

devise an empirical technique to measure consistently the e¤ect of substitutes and

show that the bid mark-up increase due to the existence of the substitution e¤ect is

1Bidder behavior at sequential cattle auctions is nicely described in Zulehner [2009].
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substantial. Zulehner (2009) describes a negative correlation between the initial and

the subsequent bids by the same bidder in sequential cattle auctions.

Wolfram (1998) documents that bids at sequential electricity auctions include a

startup price and a no-load price, which enables bidders to indicate complementarities

in electricity generation between adjacent time periods. Anton and Yao (1987) show

that complementarities arise in sequential competition for defense contracts as the

incumbent �rm may achieve a higher experience level and thus a lower cost. Gandal

(1997) documents complementarities in sequential cable television license auctions.

Incumbency advantage in sequential procurement auctions for school milk contracts

may arise due to sunk investments by dairies, see Pesendorfer (2000). There are

also complementarities between adjacent school milk contracts, see Marshall, Rai¤,

Richard and Schulenberg (2006).

Motivated by some of these empirical studies, we consider a buyer�s procurement

auction model in which bidders (sellers) have private information about their costs.

We consider a two period procurement auction game in which every period a single

contract is o¤ered for sale. There are two bidders who become privately informed

about their contract costs at the beginning of each period. We assume that the

identity of the winner of the �rst auction is publicly observed before the second

auction starts, and we consider situations in which winning the �rst contract may

a¤ect the distribution of the winning bidder�s costs at the next auction. We shall say

that the items are substitutes if at the second auction the �rst period winning bidder

has on average a higher cost than a losing bidder, and the items are complements

if instead the �rst period winning bidder has on average a lower cost than a losing
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bidder. The asymmetry in the second period arises endogenously as it depends on the

�rst period�s auction outcome. We study the payo¤ and procurement cost ranking of

sealed �rst-price and open descending bid or second-price procurement-auctions.

As most of the empirical auction evidence on substitutes and complements arises

in procurement-auctions, in this paper we state our results in terms of a buyer�s

procurement auction. An alternative model formulation exists for a seller�s auction

in which bidders have private information about their willingness to pay and the seller

awards the item to the high bidder. This alternative model formulation has the same

mathematical structure than the one we have chosen, and therefore, our subsequent

results can be restated in terms of a seller�s auction with the appropriate changes in

place.

There is prior work on the relationship between sequential auctions and the sub-

stitutes or complements property of the items auctioned. Jeitschko and Wolfstetter

(2002) show that the English auction extracts more rent than the �rst-price auction

with complements and the rent being equal with substitutes. The �nding is based on

the restrictive assumption of binary valuations. It uses the argument that a single

shot English auction extracts more rent than �rst-price auctions with asymmetric

binary valuations. Yet, this binary valuations revenue ranking result is fragile and

does not hold in the general class of continuously distributed valuations as was shown

in Maskin and Riley (2000a). In the continuous case, the revenue ranking can go ei-

ther way. We follow Maskin and Riley and consider the general class of continuously

distributed valuations. Our revenue ranking results con�rm that the binary valuation

set-up leads to misleading revenue conclusions. The Jeitschko and Wolfstetter rev-
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enue equivalence results for substitute items holds only with the degenerate binary

valuations assumption. We show that in the general case of continuously distributed

valuations there is in fact a clear revenue ranking in which the �rst-price auction is

strictly preferred to the English auction for the case of substitutes. Our continuous

valuations setting is general and enables us to draw intuitive parallels with the mech-

anism design literature. We characterize the optimal sequential auction which to our

knowledge has not been studied before.

Most of the theoretical literature on sequential auctions has focused on the mar-

tingale property of sequential auction prices and deviations thereof, see Weber (1983).

Empirical evidence on declining prices is documented in Ashenfelter (1989) for wine

auctions. McAfee and Vincent (1993) explain declining prices with a model in which

items are perfect substitutes, each bidder acquires at most one item, and bidders are

risk averse. Pitchik and Schotter (1988) study the e¤ect of bidder budget-constraint

on the second period auction outcome. Benoit and Krishna (2001) study whether

it is better to sell the more valuable item �rst or second when bidders face budget

constraints and information is complete. Branco (1998) shows that with comple-

ments auction prices decline. Saini (2009) studies sequential �rst-price auctions with

substitutes and examines the optimal timing of auctions using numerical methods.

Simultaneous multi-unit auctions are studied recently by Milgrom (2000) and

Ausubel (2004). When goods are complements, then selling the items in a bundle

can increase sellers� revenues, as is already shown in Palfrey (1983), Levin (1997)

and Armstrong (2000). Grimm (2007) �nds that bundle auctions are preferred to

sequential auctions. These papers di¤er from our setting in that we do not consider
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simultaneous sales, but consider sequential auctions. In our setting, bidders can con-

dition their behavior on past auction outcomes which are publicly observed. Our

setting arises naturally in highway procurement as the need for repairs and main-

tenance arises periodically and needs to be ful�lled immediately. A simultaneous

auction is not feasible in such settings.

The paper is organized as follows: The next section illustrates the e¤ect of auc-

tioned items being complements or substitutes on procurement costs using an ex-

ample. Section II describes the two period model. We assume that the �rst period

winner draws the second period cost from a distinct cost distribution than a losing

bidder. Section III illustrates the bidding equilibrium in second-price and �rst-price

procurement-auctions. Section IV describes our main results. It compares the �rst-

price and second-price equilibrium in terms of procurement cost and bidders�rent.

Section V illustrates the procurement cost minimizing auction rule. Section VI con-

cludes.

I. An Example

We illustrate up-front the intuitive e¤ect of items being complements or substitutes

on procurement costs using a simple parametric example. Consider a buyer who

wishes to procure two items over two periods. In every period a single item is procured.

The buyer imposes no reserve price. Two risk-neutral bidders are willing to provide

the items. The game payo¤ for a bidder equals the sum of period payo¤s. The

bidders�costs for an item are privately known and independently drawn every period

anew from an exponential cost distribution function. Both bidders in the �rst period,

and the bidder in the second period that has not supplied an item yet, draw their
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costs independently from the exponential F (c) = 1� exp[�(c� 1)] with 1 < c <1.

The bidder w, who has supplied the item in the �rst period, draws the second period

cost from the distribution function Fw(c) = 1� exp[��(c� 1=�)], with 1=� < c <1

and 0 < � < 1. Here, the parameter � measures whether items are complements

or substitutes because it indicates the expected e¤ect of supplying the item in the

�rst period on the second period cost draw. Substitutes emerge for 0 < � < 1,

while complements emerge for 1 < � < 1. The items are neither substitutes nor

complements for � = 1. To see this, observe that the cost of the winner in the second

period is drawn from Fw with an expected cost equal to 2=�. The cost of the other

bidder is drawn from F with an expected cost equal to 2.

We next illustrate the bidding equilibrium and the procurement cost ranking of

the two standard auction formats: First-price procurement-auction and second-price

procurement-auction.

First-price procurement-auction: Suppose that in both periods the bidder sub-

mitting the low bid sells the item and receives his bid. We shall illustrate that the

Bayesian Nash equilibrium bidding strategies. In the second period, bidder i with

cost c chooses bid b to maximize the expected payo¤ (b � c) Pr(i wins). The solu-

tion to the optimization problem has the following features: The �rst-period winner

bids bFPw (c) = c + 1, while the �rst period loser bids bFPl (c) = c + 1=�. The ex-

pected second-period payo¤s equal �FPw = �=(�+ 1) and �FPl = 1=(�(�+ 1)) for the

�rst-period winner and loser, respectively.

The parameter � has the following e¤ect on second period pro�ts: With substi-

tutes, when � < 1, the winner�s cost disadvantage results in a payo¤ disadvantage,
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that is �FPw < �FPl . With complements, when � > 1, the winner�s cost advantage

translates into a payo¤ advantage, that is �FPw > �FPl . Additionally, observe that

bidders mark-ups over costs in their bidding functions di¤er. The loser charges a

mark-up over costs of 1=� while the winner charges 1. The di¤erential bid shading

implies that the �rst-price auction outcome is not e¢ cient.

In the �rst period bidders will anticipate the cost or bene�t conferred on the

winner in the second period. This results in an additional mark-up term added onto

the �rst period bid. To see this, observe that bidder i�s objective is to chose a bid

b to maximize expected payo¤s (b� c + �FPw ) Pr(i wins) + �FPl [1� Pr(i wins)]. The

optimization problem can be equivalently written as max(b � c � [�FPl � �FPw ]) Pr(i

wins) + �FPl . Thus, there is an additional mark-up equal to the payo¤ di¤erence

�FPl � �FPw re�ecting the opportunity cost of winning. In the �rst period there is

a unique Bayesian Nash equilibrium in which the �rst-period bidding strategies are

symmetric and given by bFP (c) = c+1+
�
�FPl � �FPw

�
. The outcome in the �rst period

is e¢ cient. The opportunity cost of winning is passed onto the auctioneer. The total

ex ante expected payo¤ to a bidder equals one half plus the expected second period

payo¤ of the losing bidder, 1=2 + 1=(�(�+ 1)).

Second-price procurement auction: Suppose that in both periods the bidder sub-

mitting the low bid wins the item and pays the bid of the other bidder. To illustrate

the equilibrium we start in the second period. The total second period game has a

dominant strategy equilibrium in which bidders bid their cost draw. The resulting

outcome is e¢ cient. The payo¤ of the �rst-period loser is given by the expression

�SPl = 1=(�(� + 1)) � exp[�(� + 1) + 2], which di¤ers from the above �rst-price
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procurement auction outcome by the factor exp[�(�+ 1) + 2].

In the �rst period bidders anticipate the additional bene�t from winning which

leads to the additional mark-up term, now consisting of the di¤erence �SPl � �SPw .

The �rst-period bidding strategy becomes bSP (c) = c+
�
�SPl � �SPw

�
where the term

in square brackets measures the opportunity cost of winning. The outcome in the

�rst period is e¢ cient. The opportunity cost of winning is passed onto the auctioneer.

The total ex ante expected payo¤ to a bidder equals one half plus the expected second

period payo¤ to a losing bidder, 1=2 + 1=(�(�+ 1)) � exp[�(�+ 1) + 2], which di¤ers

from the corresponding expression under the �rst-price procurement auction.

Having characterized the bidding equilibrium in the two standard auctions, we

next illustrate that there is an unambiguous payo¤ ranking between these auction

formats.

Payo¤ ranking. With complements, when � > 1, bidders prefer the �rst-price

procurement auction. With substitutes, when � < 1, bidders prefer the second-price

procurement auction. The payo¤ ranking arises due to the asymmetry in the second

period. Bidders in the �rst-price procurement-auction shade their bids strategically

resulting in a lower mark-up for the bidder with the higher expected cost. With

complements, when � > 1, the �rst period loser is disadvantaged in the second

period. The losing bidder shades the bid up by less than the winner, as 1=� <

1. The lower mark-up results in an increased winning probability relative to the

second-price auction where the strategic bid shading is absent as both bidders bid

their cost. In turn, the increased winning probability implies an increased expected

second period payo¤ in the �rst-price procurement auction relative to the second-
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price procurement auction. The total di¤erence in ex ante payo¤s between �rst and

second-price procurement auctions amounts to 1=(�(�+1)) � (1� exp[�(�+ 1) + 2]).

With complements, when � > 1, the di¤erence is positive. With substitutes, when

� < 1, the opposite e¤ects arise, and the di¤erence becomes negative.

The procurement cost ranking of these two standard auction rules is illustrated

in Figure 1. The �gure reports the procurement cost as a percentage of the �rst-

best outcome with publicly observed costs. The solid line measures the second-price

procurement auction. The dashed line measures the �rst-price procurement auction.

[ Figure 1 about here]

Figure 1 shows that the �rst-price procurement-auction achieves the low procure-

ment cost when the items are substitutes, � < 1, while the second-price procurement-

auction achieve the low procurement cost when the items are complements, � > 1.

When � is 0:5 the procurement cost di¤erence between the two auction formats

amounts to 40%. As � increases, the procurement costs under both auction formats

decrease.2 The di¤erence in procurement costs between the two auction format is

about 10% when � = 2.

The intuition for the procurement cost ranking is closely related to the payo¤

ranking. With complements, when � > 1, bidders�expected rents are higher in the

2The decrease is related to the functional form assumption. The winner�s expected cost equals

2
� , which decreases as � increase. In the limit, as � approaches 1, the winner has a cost of 0 with

probability one.
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�rst-price procurement-auction than the second-price procurement-auction. There-

fore, the procurement cost is lower under the e¢ cient second-price procurement auc-

tion.

With substitutes, when � < 1, the intuition is more involved. The payo¤ rank-

ing e¤ect suggests a lower procurement cost under the �rst-price auction. However,

there is now an additionally e¤ect that the �rst-price auction is ine¢ cient which

increases procurement costs. Overall, the �rst e¤ect dominates. The intuition for

this dominance is described later on, in section V, where we show that the �rst-price

procurement allocation rule is closer to the optimal auction rule derived from the

corresponding mechanism design problem.

Next we introduce our general set-up that does not rely on the functional form

assumptions. We shall demonstrate that the ideas illustrated in the example hold in

a general set-up.

II. Model

A two period game is considered.3 Every period a single item is procured. For

simplicity of exposition, we assume that there is no reserve price. There are two

bidders which are denoted by i = 1; 2.4 We sometimes refer to the bidder that won

(lost) the �rst period auction as the �winner�(�loser�). A bid in the procurement-

auction indicates a price at which the bidder is willing to provide the project. The

3The restriction to two periods simpli�es the exposition, but is not needed. The subsequent

analysis and results extend to a multi-period setting in which all pairs of adjacent periods exhibit

the substitutes property or all pairs exhibit complements property.
4The restriction to two bidders allows us to adopt equilibrium characterization and uniqueness

results for asymmetric auctions, see Maskin and Riley [1996, 2000a, 2000b].
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price may depend on the bidder�s cost for the project, the perception about the cost

of the other bidder, and on the rules of the auction game. We make the following

assumptions on the bidders�costs and the procurement-auction game:

Private cost : Each bidder observes privately his/her own cost draw at the begin-

ning of every period. The second period�s cost draw is not known in the �rst period.5

The assumption arises when time elapses between periods, or when the properties

of the second contract become known at the beginning of the second period only.6

The period cost draw is private information and not observed by other bidders or

the auctioneer. The �rst period cost is drawn from the distribution function F with

associated probability density function f . The second period cost draw depends on

the outcome of the �rst period procurement-auction game. The winner draws from

the distribution function Fw and the loser from Fl. The distributions are continuous,

di¤erentiable, and have common interval support S =
�
C;C

�
� <+. We denote with

fi(c) for i = l; w the associated probability density function.

We assume that the cost distributions satisfy the (strict) monotone likelihood ratio

property, see Milgrom (1981). Based on this property, we de�ne items as substitutes

or complements using the two conditions below.

Condition 1: We shall say the items are substitutes if in the second period the

�rst period winner is more likely to have a higher cost than a loser in the likelihood

5A model in which second period cost draws are known in period one would be qualitatively

similar, but would entail the additional feature that bidders update their beliefs about second period

costs based on the observed �rst period bid. See Budish and Zeithammer (2011).
6In highway paving contracts, the auctioneer reveals upcoming contracts a short period before

the letting date only.
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ratio sense,

(1)
fw(c)

fw(c0)
>
fl(c)

fl(c0)
for all c; c0 2 S with c > c0.

The substitutes property (1) has the following intuitive implications on the cost dis-

tribution functions: (i) Fl(c) > Fw(c) for all c 2 S; (ii) Fl(c)=fl(c) > Fw(c)=fw(c) for

all c 2 S; and (iii) [1� Fl(c)] =fl(c) < [1� Fw(c)] =fw(c) for all c 2 S. A proof of

these properties is given in the appendix.

Condition 2: We shall say the items are complements if the �rst period winner

is more likely to have a lower second period cost than a loser in the likelihood ratio

sense,

(2)
fw(c)

fw(c0)
<
fl(c)

fl(c0)
for all c; c0 2 S with c > c0.

Procurement-auction game: We shall consider two distinct procurement-auction

games in the period game: (i) a �rst-price sealed-bid procurement-auction in which

the low bidder wins and pays his bid; and (ii) a second-price sealed-bid procurement-

auction in which the low bidder wins and pays the bid of the other bidder, which under

our assumptions is strategically equivalent to an open descending-price procurement-

auction. We shall ignore ties, as the probability of a tie is zero with continuous

probability distributions.

Bidders are risk neutral. They discount future payo¤s with the common discount

factor � 2 (0; 1). Bidders� objective is to maximize the sum of �rst period and

discounted second period payo¤s.

A strategy in the �rst period speci�es a bid as a function of the cost, bf (c). A

strategy in the second period speci�es a bid in the second period for the winning and
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losing bidder as a function of the period cost, bw (c) ; bl (c). We omit the dependence

of the second period strategy on the �rst period privately observed cost draw and

publicly observed bids as these variables are not payo¤ relevant in the second period,

and will not a¤ect the outcome.

We are interested in symmetric Perfect Bayesian Nash Equilibria, PBNE.

De�nition: A PBNE is a tuple (bf ; bw; bl) such that (i) players play best-responses,

given their beliefs and their opponent�s strategy; and (ii) the beliefs are consistent

with Bayes�rule.

The next section examines bidding behavior in standard procurement-auctions.

We examine the second-price and �rst-price procurement-auction. Then, we compare

these two procurement-auctions�outcomes and identify the procurement-auction rule

that minimizes procurement costs in the presence of a complementarity and a substi-

tutability in the items sequentially auctioned.

III. Standard procurement-auctions

This section examines bidding behavior in standard procurement-auctions. We

start with the second-price procurement-auction, and establish that there exists an

equilibrium which is e¢ cient. Then, we examine the �rst-price procurement-auction.

III.A. Second-Price procurement-auction

In a second-price procurement-auction the low bidder wins. The price paid equals

the opponent�s bid and does not depend on the bidder�s own bid.

In a one period model, the second-price procurement-auction has a dominant

strategy equilibrium in which bidders submit a bid equal to their cost, b = c. In
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the dynamic two-period procurement-auction game, with positive discounting � > 0

and when the items are substitutes or complements, it is no longer an equilibrium to

bid the cost. The reason is that winning confers an opportunity cost (bene�t) at the

next procurement-auction, which will in�uence optimal bidding and render bidding

of the own cost unpro�table. An optimal bid choice will take into account both, the

cost of the project and the opportunity cost. We shall begin with a discussion of the

second period payo¤s, then quantify the opportunity cost, and �nally examine the

�rst period bid choice.

The second-price procurement-auction has a dominant strategy equilibrium in the

second period in which bidders submit a bid equal to their cost, b = c.7 The dominant

strategy equilibrium yields the e¢ cient outcome. Ignoring the zero probability event

of ties, the second-price allocation rule is given by:

qSPw (cw; cl) =

8><>: 1 if cw < cl;

0 otherwise.

and qSPl = 1�qSPw . LetQSPw ; Q
SP
l denote the interim winning probabilities, QSPw (cw) =R C

cw
qSPw (cw; cl) fl(cl)dcl andQSPl (cl) =

R C
cl
qSPl (cw; cl) fw(cw)dcw, and let �SPw , �

SP
l de-

note the ex ante expected period rent for the winner and loser associated with the

second-price allocation rule. Following Myerson (1981), the ex ante expected sec-

ond period pro�ts reduces to the expected virtual rent, �SPl =
R
S
Fl (c)Q

SP
l (c) dc

and �SPw =
R
S
Fw (c)Q

SP
w (c) dc. The expression is obtained by using the envelope

7When the cost support is bounded, C <1, then there exist also pooling equilibria, for example

bw = 0 and bl = C. The described pooling equilibrium involves weakly dominated strategies and

it is not e¢ cient. As customary, we shall ignore pooling equilibria and focus our analysis on the

unique equilibrium surviving the iterated elminination of weakly dominated strategies.
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theorem and integration by parts.

In the �rst period of the game, the period�s gain plus the discounted expected

second period payo¤ equals b(2) � c + ��SPw if the bidder wins at price b(2), and it

equals ��SPl if the bidder loses. As the bidder is risk neutral, the rent increment

between winning and losing,
�
b(2) � c+ �

�
�SPw � �SPl

��
, determines the �rst period

bid choice. The �rst term in the rent di¤erence equals the usual expression of the bid

minus the period cost. The second term, �
�
�SPw � �SPl

�
, denotes the opportunity

bene�t of winning, and enters as an additive constant when the bidder wins the item.

As illustrated in the following proposition, the symmetric �rst period equilibrium

bidding strategy will take the added constant into account.

Proposition 1 The symmetric �rst period equilibrium bid function in the second-

price procurement-auction equals:

(3) bSPf (c) = c+ �
�
�SPl � �SPw

�
:

The proof follows from standard arguments for second-price procurement-auctions

by which bidders bid their cost and therefore there is no static mark-up component.

The argument is based on the second-price procurement-auctions�property that the

bid does not a¤ect the price paid, and a¤ects the winning probability only.

The equilibrium bidding strategy in (3) has an intuitive explanation. With com-

plements, the opportunity bene�t of winning equals the discounted payo¤ di¤er-

ence between winning and losing in the second period procurement-auction game,

�
�
�SPw � �SPl

�
. It will be passed on to the auctioneer as an additive mark-down
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independent of the cost realization in the �rst period. The range of optimal bids in

the �rst period is thus not the cost range
�
C;C

�
. Indeed, bidders may be willing to

pay for the �rst contract when the degree of complementarity is su¢ ciently strong

(and C is close to zero).

The bidding strategy in (3) is the unique equilibrium surviving the iterated elim-

ination of weakly dominated strategies, see Fudenberg and Tirole (1991).

Observe also that the PBNE in the second-price procurement-auction retains the

e¢ ciency property of the static second-price procurement-auction.

Corollary 1 The PBNE in the second-price procurement-auction is e¢ cient.

Corollary 1 follows from two properties of the equilibrium bid functions. These

properties are: (i) that the mark-up is independent of the cost realization; and (ii)

that the mark-up is identical for both bidders. These two properties imply that the

low cost bidder will submit the low bid.

So far, we have characterized the bidding equilibrium in the second-price procurement-

auction. Next, we consider the bidding equilibrium in the �rst-price procurement-

auction.

III.B. First-Price procurement-auction

In a �rst-price procurement-auction, the low bidder wins and receives his bid. The

period payo¤ of the winner is given by the bid minus the cost, while the loser receives

zero.
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In period 2 under both cases, substitutes and complements, there will be one

strong and one weak bidder. With substitutes, the winner will be weak in the second

period in the sense of condition (1), while with complements, the loser will be weak

in the second period in the sense of condition (2). The existence and the uniqueness

of an equilibrium in �rst-price asymmetric auctions has been established by a number

of authors, including Maskin and Riley (1996, 2000b), Athey (2001), and Jackson,

Simon, Swinkels and Zame (2002). Based on these results we shall proceed with the

knowledge that a unique equilibrium exists with equilibrium bid functions (bw; bl).

The second period equilibrium allocation rule, ignoring the zero probability event

of ties, is given by,

qFPw (cw; cl) =

8><>: 1 if bw(cw) < bl(cl);

0 otherwise.

and qFPl = 1� qFPw . It says that the bidder i, with i = w; l, wins the second contract

when his bid is low. Let QFPw ; QFPl denote the interim expected winning probabil-

ities, QFPw (cw) =
R C
cw
qFPw (cw; cl) fl(cl)dcl and QFPl (cl) =

R C
cl
qFPl (cw; cl) fw(cw)dcw.

Let �FPl , �FPw denote the ex ante expected second period rent for the �rst period

losing and winning bidder associated with the �rst-price allocation rule, �FPl =R
S
Fl (c)Q

FP
l (c) dc and �FPw =

R
S
Fw (c)Q

FP
w (c) dc.

The following Lemma describes properties of the equilibrium bid strategies and

expected payo¤s that will be essential in the subsequent arguments (the appendix

contains formal proofs of lemmas, propositions and theorems).8

8These properties have also been employed in the context of mergers, Waehrer [1999], and bidder

collusion, Pesendorfer [2000].
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Lemma 1 For any c in S:

(i) Under condition (1) (when the contracts are substitutes), bw(c) < bl(c), and �SPw <

�FPw < �FPl < �SPl .

(ii) Under condition (2) (when the contracts are complements), bw(c) > bl(c), and

�SPw > �FPw > �FPl > �SPl .

The Lemma illustrates intuitive properties of asymmetric �rst-price procurement-

auctions. The weak bidder bids more aggressively than the strong bidder. The reason

is that the weak bidder expects tougher competition in the procurement-auction than

the strong bidder. The strategic e¤ect has the following implications: When contracts

are substitutes, the �rst period winning bidder knows she is weaker in the second

period, and charges a smaller mark-up over costs than a losing bidder. The reduction

in the mark-up implies that she wins more frequently in the second period than is

e¢ cient, i.e. winning despite of having a higher cost draw than the opponent. In

turn, this implies that she makes an expected pro�t larger than in the second-price

procurement-auction.9 When contracts are complements, the �rst period winning

bidder charges a higher mark-up over costs than a losing bidder, and thus she wins

less frequently and makes less rent than in the second-price procurement-auction.

Next, we consider the remaining element in the equilibrium construction: The

�rst period bid strategy. Winning the item results in the payo¤ of b� c+��FPw while

losing results in the payo¤ of ��FPl . The optimal bid b to maximizes the expected

payo¤ of (b � c + �FPw ) Pr(i wins) + �FPl [1 � Pr(i wins)]. As the opportunity cost
9This follows from the statement of pro�ts based on the envelope theorem: if QFPw (cw) > Pr(cl �

cw) = Q
SP
w (cw), then �FPw =

R
S
Fw(c)Q

FP
w (c)dc >

R
S
Fw(c)Q

SP
w (c)dc = �SPw .
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of winning does not depend on the period cost realization, it simply shifts the cost

by a constant term, �
�
�FPl � �FPw

�
, and the equilibrium bid function takes the well

known form.

Proposition 2 The �rst period equilibrium bid function in the �rst-price procurement-

auction equals:

(4) bFPf (c) = c+

R C
c
[1� F (x)] dx
1� F (c) + �

�
�FPl � �FPw

�
:

The proof follows from standard arguments for �rst-price auctions, see for example

Proposition 2 in Riley and Samuelson (1981). The equilibrium bid in equation (4)

has an intuitive explanation. It equals the cost plus a mark-up. The mark-up has two

components: (i) the static mark-up equal to the expected opponent�s cost conditional

on the opponent�s cost exceeding the own cost, and (ii) a dynamic mark-up equal to

the opportunity cost of winning.

There are two features of the equilibrium worth emphasizing: First, the sign of the

dynamic mark-up under the �rst-price procurement-auction coincides with the sign of

the dynamic mark-up under the second-price procurement-auction rule. It is positive

when the contracts are substitutes, and negative when the goods are complements.

Second, when contracts are substitutes, the dynamic mark-up is smaller under the

�rst-price procurement-auction rule than under the second-price procurement-auction

rule: �
�FPl � �FPw

�
<
�
�SPl � �SPw

�
.
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When contracts are complements, the dynamic mark-up is larger under the �rst-price

procurement-auction rule than under the second-price procurement-auction rule:

�
�FPl � �FPw

�
>
�
�SPl � �SPw

�
.

These features follow from the payo¤ inequalities in Lemma 1 and are explained by

the strategic bid shading in �rst-price procurement-auctions.

We shall see next that the �rst period mark-up ranking plays a central role in

determining the bidder�s rent and procurement cost ranking.

IV. Bidders�Rents and Procurement Cost in Sequential procurement-

auctions

This section describes our main results. We compare the outcome under the �rst-

price procurement-auction and the second-price procurement-auction. Subsection

IV.A considers this issue from the perspective of the bidders and compares the bidders�

rents. Subsection IV.B compares the total procurement cost associated to the �rst-

price and second-price procurement-auctions.

IV.A. Bidders�Rent

The equilibrium characterization in section III allows us to determine a bidder�s

rent under the �rst-price and second-price procurement-auction rule. By using the en-

velope theorem and integration by parts, the ex ante expected equilibrium game payo¤

in the �rst-price procurement-auction, �FP , and in the second-price procurement-

auction, �SP , equal:

(5) �j =

Z
S

F (c) [1� F (c)] dc+ ��jl for j = FP; SP .
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Equation (5) consists of the usual expression for the bidder�s information rent in the

�rst period, and a modi�ed expression in the second period that captures the expected

payo¤ of a losing bidder. The modi�cation arises as competition in the �rst period

diminishes any expected payo¤ advantages (or disadvantages) of the winning bidder.

This can be seen most clearly in the analysis in section III, where the �rst period bid

passes any subsequent payo¤ losses (gains) of the winner on to the seller by adding

the opportunity cost (bene�t) of winning to the bid. Thus both, the winning and the

losing bidder, expect to receive the losing bidder�s second period rent only.

The following Theorem compares bidders� rents between the two procurement-

auction formats.

Theorem 1 (Payo¤Ranking)

(i) Under condition (1) (when the contracts are substitutes), �FP < �SP .

(ii) Under condition (2) (when the contracts are complements), �FP > �SP .

This Theorem establishes that bidders prefer the second-price procurement-auction

when the contracts are substitutes, while they prefer the �rst-price procurement-

auction when contracts are complements. The result is already apparent in the dif-

ferential bid shading behavior illustrated at the end of section III, as with substitutes,

bidders��rst period dynamic mark-ups and thus �rst period payo¤s are lower with

the �rst-price procurement-auction than in the second-price procurement-auction.

Analogously, with complements, bidders� dynamic mark-ups and thus �rst period

payo¤s are higher with the �rst-price procurement-auction than in the second-price

procurement-auction.
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Equation (5) also shows that the payo¤ comparison across procurement-auction

formats reduces to a comparison of the second period expected rent to the losing

bidder. The result in Theorem 1 is then easily explained as with substitutes, the

second period losing bidder�s rent is lowest under the �rst-price procurement-auction

rule as is shown in Lemma 1 in section III. As described earlier, the intuition for this

result lies in the fact that with substitutes the losing bidder bids less aggressively

than the winning bidder in the �rst-price procurement-auction resulting in a lower

winning probability and thus a lower rent than that associated with the socially

e¢ cient outcome in the second-price procurement-auction. The opposite result holds

in the case of complements by an analogous argument.

Next, we consider the procurement cost.

IV.B. Procurement Cost

The total procurement cost of the �rst-price and the second-price procurement-

auction, PCFP and PCSP , equals the cost of the winning bidder plus the bidder�s

rent:

PCj = 2

Z
S

c [1� F (c)] f(c)dc+ �
Z
S

Z
S

�
clq

j
l (cw; cl) + cwq

j
w (cw; cl)

�
fl(cl)fw(cw)dcwdcl

+2

Z
S

F (c) [1� F (c)] dc+ 2�
Z
S

Fl(c)Q
j
l (c)dc for j = FP; SP

where the �rst period procurement cost can be attributed to the usual virtual cost of a

bidder, c+F=f . The second period procurement cost di¤ers from the usual virtual cost

expression. It equals the cost of the winning bidder, clq
j
l +cwq

j
w, plus twice the second

period rent of the losing bidder, 2 � Fl=fl, for j = FP; SP . The expression involving

twice the losing bidder�s rent arises as expected payo¤ advantages (disadvantages) of
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the winning bidder in the second period are passed on to the auctioneer with the �rst

period bid choice, and both, winning and losing, bidders expect to receive the losing

bidder�s rent in the second period.

The magnitude of the procurement cost di¤erence between the second-price and

the �rst-price procurement-auction amounts to:

PCSP � PCFP = �

Z
S

Z
S

[cl � cw]
�
qSPl (cw; cl)� qFPl (cw; cl)

�
fl(cl)fw(cw)dcwdcl

+2�

Z
S

Z
S

Fl (c)
�
QSPl (c)�QFPl (c)

�
dc.(6)

To explain the above equation, please observe that from Corollary 1 the second price

procurement-auction induces the e¢ cient allocation rule. Thus, the �rst term on the

right hand side measures the e¢ ciency loss of the �rst-price procurement-auction.

This term is always negative. The second term on the right hand side re�ects the

di¤erence in second period payo¤ of the losing bidder between the e¢ cient second-

price allocation rule and the allocation rule of the �rst-price procurement-auction.

Lemma 1 shows that with substitutes, the term is positive, while with complements

it is negative.

The following Theorem states our central result.

Theorem 2 (Procurement Cost Ranking)

(i) Under condition (1) (when the contracts are substitutes), PCSP > PCFP .

(ii) Under condition (2) (when the contracts are complements), PCSP < PCFP .

Theorem 2 gives a clear policy recommendation: The e¢ cient second-price procurement-

auction is optimal when contracts are complements, while the �rst-price procurement-

auction is optimal when contracts are substitutes. Observe also that the ranking in
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Theorem 2 is the reverse ranking of Theorem 1, which illustrated the bidders�rent

ranking. The intuition is again based on the feature that bidders bid more aggres-

sively in the �rst-price procurement-auction than in the e¢ cient procurement-auction

when contracts are substitutes. This implies that when the items are substitutes a

lower procurement cost under the �rst-price than under the e¢ cient second-price

procurement-auction rule. Analogously bidders bid less aggressively in the �rst-price

procurement-auction than in the e¢ cient procurement-auction when contracts are

complements resulting in a higher procurement cost under the �rst-price than under

the e¢ cient second-price procurement-auction rule.

Theorem 2 may seem surprising in light of a result in Maskin and Riley (2000a),

which establishes that the procurement cost (or revenue) ranking between �rst-price

and open procurement-auctions is ambiguous when bidders are asymmetric.10 The

ambiguity result in Maskin and Riley is obtained under the assumption of a single

period procurement-auction game in which the bidders�asymmetry is taken as ex-

ogenously given. In our model, this scenario is equivalent to considering the second

period procurement-auction game in isolation only. In contrast, Theorem 2 shows that

when bidders are ex ante symmetric and the asymmetries arise endogenously due to

the �rst period procurement-auction outcome, then the ambiguity disappears and the

total procurement cost, consisting of the �rst and the second periods�procurement

10Maskin and Riley [2000a] show that there is a class of distribution functions such that the �rst-

price auction is preferred. The class has the feature that asymmetries arise due to a shift (or stretch)

in the distribution. They also show that there is a second class of distribution functions such that

the open auction is preferred. The asymmetry in the second class is based on a shift of probability

mass to the upper end point in the support.
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cost, has a clear and unambiguous ranking across procurement-auction formats.

In order to illuminate the ranking result in more detail, we shall use the tech-

niques developed in Myerson (1981) to illustrate the procurement cost minimizing

allocation rule. Doing so, will allow us to interpret the procurement cost ranking

more intuitively. This is done in the next section.

V. Procurement Cost Minimization

We conclude the discussion with a brief illustration of the procurement-auction

rule that minimizes the procurement cost. The illustration will enable us to interpret

the procurement cost ranking of the �rst-price and e¢ cient second-price procurement-

auction intuitively. We explore the commitment solution in which the auctioneer �xes

the procurement-auction rule for periods one and two before the bidding starts, and

we do not permit the auctioneer to modify the procurement-auction rule after period

one.

The techniques developed in Myerson (1981) allow us to address this problem.

We consider the set of incentive compatible procurement-auction rules that satisfy

the voluntary participation constraints and incentive constraints in every period. Let

qti (ci; cj) denote the probability that bidder i receives the object in period t when

bidder i announces cost ci and bidder j announces cost cj. We shall assume that the

procurement agency needs to award the contract to one of the two bidders, qti (ci; cj)+

qtj (ci; cj) = 1, in every period. This requirement corresponds to our earlier assumption

of no reserve price. Let T ti denote the expected transfer payment of bidder i (to the

seller) when the bidder announces cost ci in period t and let Qti denote the expected

winning probability, Qti (ci) =
R
qti (ci; cj) fj(cj)dcj. The expected payo¤ of bidder i in
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period t, for t = 1; 2 and i = 1; 2, when the bidder with cost ci reports cost c0i equals:

�2i (ci; c
0
i) = T 2i (c

0
i)� ciQ2i (c0i) :

�1i (ci; c
0
i) = T 1i (c

0
i)� ciQ1i (c0i) + �Q1i (c0i)

Z
S

�2w(x; x)fw(x)dx

+�
�
1�Q1i (c0i)

� Z
S

�2l (x; x)fl(x)dx:

The incentive constraints take the form,

(IC) �ti(ci; ci) � �ti(ci; c0i) for all ci; c0i 2 S and for i = 1; 2, t = 1; 2.

and the voluntary participation constraint take the form,

(VP) �1i (ci; ci) �
Z
S

�2l (x; x)fl(x)dx for all ci 2 S and for i = 1; 2;

�2i (ci; ci) � 0 for all ci 2 S and for i = w; l;

where the participation payo¤ in the �rst period equals at least the expected payo¤

of a bidder that participates in the second period only,
R
S
�2l (x; x)fl(x)dx. The (VP)

constraint assumes that a bidder that refrains from bidding in the �rst period cannot

be prevented from participating in the second period procurement-auction. This

formulation of the (VP) constraint comes closest to the (implicit) assumption in the

sequential �rst-price and second-price procurement-auction, analyzed earlier, in which

a bidder cannot be prevented from participating in the second period procurement-

auction.

A weaker (VP) constraint arises if a non-participating bidder is banned from the

second procurement-auction. With the weaker constraint, the �rst period reservation

value becomes zero, �1i (c; c) � 0 for all c 2 S and for i = 1; 2, and the auctioneer

can extract all the rent in the second period by charging bidders a fee in period one
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equal to the expected second period�s rent and by using the e¢ cient second-price

procurement-auction in the second period. As the fee is collected in period one,

before the second period private information is observed, it will not a¤ect subsequent

behavior and enable the auctioneer to collect all the (expected) rent. We shall not

consider the weaker (VP) constraint further and instead consider the (VP) constraint

de�ned above.

The following Lemma states an expression for the procurement cost. We show

in the appendix, by using the techniques developed in Myerson (1981), that this

expression applies under (VP) and (IC).

Lemma 2 In any incentive compatible procurement-auction rule that satis�es (VP)

and (IC), the functions Qti (c) for i; t = 1; 2, are monotone decreasing and the pro-

curement cost equals:

PC =

Z
S

Z
S

"
2X
i=1

�
ci +

F (ci)

f (ci)

�
q1i (c1; c2)

#
f (c1) f (c2) dc1dc2

+
X
i=1;2

�
�1i (C;C)� �

Z
Fl(x)Q

2
l (x) dx

�
+�

Z
S

Z
S

�
cwqw (cw; cl) + clql (cw; cl) + 2

Fl (cl)

fl (cl)
ql (cw; cl)

�
fw (cw) fl (cl) dcwdcl;

where the constraints �1i (C;C) � �
R
Fl(x)Q

2
l (x) dx for i = 1; 2 must hold.

The �rst term in the procurement cost accounts for the virtual cost in the �rst

period; the second term re�ects the voluntary participation constraint; and, the third

term accounts for the second period virtual cost.

The optimal procurement-auction rule minimizes the above expression. Observe

that the �rst expression is the usual procurement cost expression, which is maximized
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with a �rst-price or second-price procurement-auction. The second term re�ects the

voluntary participation constraint. The third expression di¤ers as it takes the dy-

namic bidding e¤ect into account. Pointwise minimization of the third expression

yields the optimal rule (we ignore again the zero probability event of a tie).

Proposition 3 The procurement cost minimizing solution is a �rst-price (or second-

price) procurement-auction followed by an procurement-auction with the following al-

location rule:

qw (cw; cl) =

8><>: 1 if cw < cl + 2
Fl(cl)
fl(cl)

;

0 otherwise.

and ql (cw; cl) = 1� qw (cw; cl).

The optimal second period allocation rule assigns an increased winning probability

to the bidder who won the �rst period item under both, complements and substitutes.

The amount of the increase relative to the e¢ cient rule equals twice the virtual rent

of the losing bidder. The optimal choice balances two opposing e¤ects: On the one

hand, an increase in the second period winning probability leads to an increase in

second period rent di¤erential between the winning and the losing bidder. In turn,

the increased rent di¤erential implies more aggressive bidding and thus induces the

bene�t of lower procurement cost in the �rst period. On the other hand, the increase

in the second period winning probability comes at the cost of an increased ine¢ ciency

in the second period. At the optimum, the marginal bene�t of the reduced �rst period

procurement cost equals the marginal cost of the second period e¢ ciency loss, and

the usual marginal condition holds.
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The result in Proposition 3 allows us to illustrate the ranking obtained in Theorem

2 intuitively. A graphical illustration is given in Figures 2 and 3. The Figures assume

a uniform cost distribution for the losing bidder, Fl(c) = c, for 0 < c < 1, and plot

the losing bidder�s costs, cl, on the horizontal axis and the winning bidder�s cost,

cw, on the vertical axis. Figure 2 assumes that the winning bidders�cost are drawn

from the distribution function Fw(c) = c3=2, which implies substitutes, and Figure 3

assumes the distribution function Fw(c) = c1=4, which re�ects complements. Line I�

describes the optimal awarding rule characterized in Proposition 3 and given by the

line cw = cl + 2Fl (cl) =fl (cl). To the northwest of line I�, the second period contract

is awarded to the losing bidder, and to the southeast of line I�, the second period

contract is awarded to the winning bidder. Line Ie describes the awarding rule under

the e¢ cient second-price procurement-auction, which coincides with the 45 degree

line. To the northwest of line Ie, the second-price procurement-auction awards the

second period contract to the losing bidder, while to the southeast of line I�, it awards

the second period contract to the winning bidder.

(Figures 2 and 3 about here)

Figures 2 and 3 also illustrate the outcome under the �rst-price procurement-

auction. In both cases, the asymmetric �rst-price equilibrium can be calculated nu-

merically11 and the resulting optimal �rst-price allocation rule is described by line

IFP . To the northwest of line IFP the �rst-price procurement-auction awards the

11Marshall, Meurer, Richard and Stromquist [1994] describe numerical methods to calculate the

asymmetric �rst-price auction equillibrium bl; bw. The boundary is then the set of points, such that

bl(cl) = bw(cw).
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second period contract to the losing bidder, while to the southeast of line IFP the

�rst-price procurement-auction awards the second period contract to the winning bid-

der. We are now in a position to compare all three procurement-auction rules, and

highlight the key features of the comparison:

The e¢ cient line Ie is to the right of the procurement cost minimizing line I�. The

reason is that the winning bidder receives the item less frequently under the e¢ cient

second-price procurement-auction than under the procurement cost minimizing rule.

The �rst-price awarding rule IFP lies entirely either to the left or to the right of

the e¢ cient rule Ie. With substitutes, the �rst-price awarding rule IFP is to the left,

while with complements it is to the right of Ie.

Now, consider the case of substitutes, as illustrated in Figure 2. With substitutes,

the �rst-price awarding rule IFP is to the left of the e¢ cient rule Ie, as it assigns the

item to the winning bidder more frequent than is socially e¢ cient. As a result, the

�rst-price cut-o¤ rule is closer to the optimal rule I� than the e¢ cient rule. We can

conclude that the �rst-price procurement-auction dominates the e¢ cient second-price

procurement-auction.

Finally, consider the case of complements, as illustrated in Figure 3. With com-

plements, the �rst-price rule IFP lies to the right of the e¢ cient rule Ie, and is thus

further away from the procurement cost minimizing rule I� than the e¢ cient rule. So,

in this case, we can conclude that the �rst-price procurement-auction is dominated

by the second-price procurement-auction in terms of e¢ ciency and also in terms of

reduced procurement costs.

V. Conclusions
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In this paper, we have examined optimal sequential procurement-auctions when

items are complements or substitutes in the sense that an item�s value increases

or decreases with the number of items acquired already. We have found that the

existence of complementarity or substitutability between sequentially auctioned items

has consequences on the procurement costs associated with di¤erent procurement-

auction rules. Our analysis has de�nite policy recommendations for an auctioneer

that wants to minimize procurement costs:

(i) If the items are substitutes, then it is preferable to use a sealed-bid �rst-price

procurement-auction rather than an open descending-price procurement-auction (or

sealed-bid second-price auction).

(ii) If the items are complements, then it is preferable to use an open descending-

price procurement-auction (or sealed-bid second-price procurement-auction) rather

than a sealed-bid �rst-price procurement-auction.

The explanation is intuitive: Enhancing the winning probability of the �rst round

winner in the second period leads to increased competition in the �rst period, and thus

to lower procurement costs. With substitutes, the �rst-price procurement-auction cor-

rectly favors the �rst period winning bidder yielding lower procurement costs than

the socially e¢ cient second-price procurement-auction, which does not favor any bid-

der. In contrast, when items are complements, the �rst-price procurement-auction

incorrectly favors the �rst period losing bidder resulting in an increased procurement

cost vis-a-vis the e¢ cient second-price procurement-auction.

It is tempting to try to explain observed procurement-auction rules and relate

them to our results on the complementarity and the substitutability of the items for
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sale: Casual empiricism suggests that job contract bidding for governmental institu-

tions tends to be conducted in a sealed bid format, while �ne art, antiques, wine, and

livestock are mostly conducted openly.

The empirical evidence from procurement-auctions for highway paving jobs and

forest timber sales described earlier con�rms the existence of substitutability between

the items. To the extent that these procurement jobs do have a technology with

decreasing returns to scale (or the �rms supplying them have limited capacities), the

auctioneers�chosen �rst-price sealed procurement-auction format is adequate in order

to minimize procurement costs.

The empirical evidence on art auctions is largely anecdotal and there is no conclu-

sive evidence on complementarities.12 Yet, the purpose behind the purchase may be

indicative of complementarities or substitutabilities between the items from the bid-

der�s point of view. Thus, knowing the purpose motivating most of bidders�bids may

be important for the auctioneer in order minimize procurement costs: When facing a

bidders that are mostly trying to complete a collection, complementarities may exist

and an open descending procurement-auction should be preferred. When faced with

bidders that desire to acquire at most one item each, the auctioneer should anticipate

the existence of substitutes and a sealed �rst-price procurement-auction should be

chosen. For example, some of the empirical evidence on livestock auctions suggests

the existence of substitutes and, according to our �ndings, it may be bene�cial to the

auctioneer to switch to a sealed bid format in those instances.

Although there is some evidence that the cost minimizing auction format is chosen

12See Ashenfelter and Graddy (2006) for a survey on art auctions.
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in a number of settings, a more throughout empirical investigation of the auctioneer�s

choice of auction format is required to answer this question in more detail and to

understand its implications in each case.
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Appendix

Properties implied by condition (1):

(i) Fl(c) > Fw(c) for all c 2 S;

(ii) Fl(c)=fl(c) > Fw(c)=fw(c) for all c 2 S; and

(iii) [1� Fl(c)] =fl(c) < [1� Fw(c)] =fw(c) for all c 2 S:

Proof. Condition (1), the monotone likelihood ratio property, implies

(A1) fl(c
0)fw(c) > fl(c)fw(c

0) for all c; c0 2 S with c > c0.

Integrating both sides of the inequality over c0 from the lower endpoint of the support

S to c, yields

(A2)
fw(c)

fl(c)
>
Fw(c)

Fl(c)
for all c 2 S,

which implies property (ii).

Next, integrate both sides of (A1) over c from c0 to the upper endpoint of the

support S, yields

(A3)
1� Fw(c0)
1� Fl(c0)

>
fw(c

0)

fl(c0)
for all c0 2 S,

which implies property (iii).

Combining (A3) and (A2) gives

1� Fw(c)
1� Fl(c)

>
Fw(c)

Fl(c)
for all c 2 S,

which implies property (i).
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Proof of Lemma 1. We consider the case of substitutes (1). The case of

complements follows by mimicking the steps in the argument with permuted bidder

identity.

First, we prove that bl(c) > bw(c). Let �i (b) denote the inverse of the bid function

for i = w; l. Theorem 1 in Lebrun (1999) establishes that bid functions are strictly

increasing in costs and Theorem 2 in Lebrun (1999) establishes the existence of equi-

librium with common bid support. Thus, the inverse of the bid function exists and

is strictly increasing. We can write the payo¤ of bidder w as

max
b
[b� c] [1� Fl (�l (b))] ;

and it�s associated necessary �rst order condition implies

(A4)
1

b� �w (b)
=
fl (�l (b))�

0

l(b)

1� Fl (�l (b))

Similarly, bidder l�s payo¤ is given by

max
b
[b� c] [1� Fw (�w (b))] ;

and, the associated necessary �rst order condition implies

(A5)
1

b� �l (b)
=
fw (�w (b))�

0

w(b)

1� Fw (�w (b))
:

Consider a point c 2 S such that bw(c) = bl(c). The �rst order condition and

condition (1) imply that b
0
l(c) > b

0
w(c). As the support of bids is identical, this

implies bl(c) > bw(c).

Second, we show that QSPw (c) < QFPw (c) and QFPl (c) < QSPl (c): From the �rst

part above, we can deduce that the inverse bid functions satisfy, �l (b) < �w (b)
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for all b contained in the interior of the support of bids. The winning probability

QFPl (c) = 1�Fw (�w (bl (c))) is less than the e¢ cient probability QSPl (c) = 1�Fw (c)

as c < �w (bl (c)), and Q
FP
w (c) = 1 � Fl (�l (bw (c))) exceeds the e¢ cient probability

QSPw (c) = 1� Fl (c).

Third, we establish the payo¤ inequalities �SPw < �FPw < �FPl < �SPl . The

interim expected equilibrium payo¤ of a bidder of type i = l; w with cost c equals

�FPi (c) = (bi(c)� c)QFPi (bi(c)). Now, the envelope theorem implies that

d

dc
�FPi (c) = QFPi (bi(c)):

As�FPi
�
C
�
= 0, the interim expected payo¤can be written as�FPi (c) =

R C
c
QFPi (x)dx

and, by de�nition, �SPi (c) =
R C
c
QSPi (x)dx. Now, the payo¤ inequalities �

SP
w (c) <

�FPw (c) and �FPl (c) < �SPl (c) follow from the probability inequalities in the second

part, QSPw (c) < QFPw (c) and QFPl (c) < QSPl (c). As the payo¤ payo¤ inequalities

hold for all c 2 S, they hold also ex ante, before costs are observed, which establishes

the claim.

The �nal inequality that we need to establish is �FPw < �FPl : Let Gi (b) denote

the probability that a bid b wins the procurement-auction for bidder i = l; w. We

begin by showing that Gw (b) < Gl (b) and then establish the inequality on pro�ts.

Let b denote the lower endpoint of the support of bids. As �l (b) < �w (b) for all b

contained in the interior of the support of bids, conditions (A4) and (A5) imply that

fw (�w (b))�
0
w (b) = [1� Fw (�w (b))] < fl (�l (b))�0l (b) = [1� Fl (�l (b))] :

This can be written as� (d=db) ln [1� Fw (�w (b))] < � (d=db) ln [1� Fl (�l (b))]. Since

[1� Fw (�w (b))] = [1� Fl (�l (b))], this implies ln [1� Fw (�w (b))] > ln [1� Fl (�l (b))],
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or equivalently, Gl(b) = 1� Fw (�w (b)) > 1� Fl (�l (b)) = Gw(b). Now,

�FPw (c) = [bw(c)� c]Gw(bw(c))

< [bw(c)� c]Gl(bw(c))

� [bl(c)� c]Gl(bl(c))

= �FPl (c) ;

which establishes that �FPw (c) < �FPl (c) for all c 2 S.

Now, the ex ante payo¤ di¤erence can be written as:

�FPw � �FPl =

Z
S

�FPw (c) fw(c)dc�
Z
S

�FPl (c) fl(c)dc

<

Z
S

�FPl (c) [fw(c)� fl(c)] dc

=

Z
S

�
�@�

FP
l (x)

@c

�
[Fw(x)� Fl(x)] dx

� 0

The �rst inequality uses �FPw (c) < �FPl (c) for all c 2 S. The second equality follows

from integration by parts. The �nal inequality is based on two observations: First,

the term in square brackets is negative from property (i) of condition (1). Second,

the term in round brackets is positive as �@�FPl (c)

@c
= �QFPl (c) < 0. This completes

the proof.

Proof of Theorem 1. By using equation (5), the di¤erence between the second-

price game payo¤ and the �rst-price game payo¤, equals,

�SP � �FP = �
�
�SPl � �FPl

�
:

By Lemma 1, the right hand side is positive under condition (1), and negative under

condition (2).
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Proof of Theorem 2. The e¢ cient second-price winning probabilities are given

by QSPl (c) = 1 � Fw (c) and QSPw (c) = 1 � Fl (c). As in the proof of Lemma 1, we

denote the inverse bid functions in the �rst-price procurement-auction equilibrium

by �w and �l. The �rst-price winning probabilities are then given by Q
FP
l (c) =

1�Fw (�w (bl(c))) and QFPw (c) = 1�Fl (�l (bl(c))). The procurement cost di¤erence,

D =
�
PCSP � PCFP

�
=�, can be written as:

D =

Z
S

c [Fw (�w (bl(c)))� Fw (c)] fl (c) dc

+

Z
S

c [Fl (�l (bw(c)))� Fl (c)] fw (c) dc

+2

Z
S

Fl (c) [Fw (�w (bl(c)))� Fw (c)] dc

=

Z
S

c [Fw (�w (bl(c)))� Fw (c)] fl (c) dc

+

Z
S

c [Fl (�l (bw(c)))� Fl (c)] fw (c) dc

+

Z
S

Fl (c) [Fw (�w (bl(c)))� Fw (c)] dc

�
Z
S

c [Fw (�w (bl(c)))� Fw (c)] fl (c) dc

�
Z
S

cFl (c) [fw (�w (bl(c)))�
0
w (bl(c)) b

0
l(c)� fw (c)] dc

=

Z
S

Fl (c) [Fw (�w (bl(c)))� Fw (c)] dc

+

Z
S

[c� �l (bw(c))]Fl (�l (bw(c))) fw (c) dc.

The second equality follows from integration by parts of the expression,Z
S

Fl (c) [Fw (�w (bl(c)))� Fw (c)] dc = �
Z
S

c [Fw (�w (bl(c)))� Fw (c)] fl (c) dc

�
Z
S

cFl (c) [fw (�w (bl(c)))�
0
w (bl(c)) b

0
l(c)� fw (c)] dc.
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The third equality cancels terms and uses the substitution u = �w (bl(c)) which yields:Z
S

cFl (c) fw (�w (bl(c)))�
0
w (bl(c)) b

0
l(c)dc =

Z
S

�l (bw(c))Fl (�l (bw(c))) fw (c) dc

as the function �w (bl(c)) is from S onto S.

By Lemma 1, condition (1) implies that �w (bl(c)) > c and c > �l (bw(c)). Thus,

PCSP � PCFP > 0 which establishes part (i). By Lemma 1, condition (2) implies

that �w (bl(c)) < c and c < �l (bw(c)). Thus, PC
SP � PCFP < 0 which establishes

part (ii).

Proof of Lemma 2. It is well known - Mas-Colell, Whinston and Greene (1995),

Proposition 23.D.2 - that the allocation (Qti; T
t
i ) is Bayesian incentive compatible if

and only if, for all i; t = 1; 2,

(i) Qti is monotone decreasing, and

(ii) �ti(c; c) =
R C
c
Qti (x) dx+�

t
i(C;C) for all c 2 S.

Notice, that integration by parts yields:Z
S

�2i (x; x)fi(x)dx =

Z
S

Fi(c)Q
2
i (c) dc+�

2
i (C;C) for i = l; w:

In turn this implies that the expected transfer payment of a bidder with cost c equals:

T 2i (c) = cQ2i (c) +

Z C

c

Q2i (x) dx+�
2
i (C;C);

T 1i (c) = cQ1i (c) +

Z C

c

Q1i (x) dx� �
�Z

Fl(x)Q
2
l (x) dx+�

2
l (C;C)

�
+�Q1i (c)

�Z
Fl(x)Q

2
l (x) dx+�

2
l (C;C)�

Z
Fw(x)Q

2
w (x) dx� �2w(C;C)

�
+�1i (C;C);
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and then, as Q11 +Q
1
2 = 1, the expected sum of discounted transfer payments equals,

X
i=1;2

Z
S

��
c+

F (c)

f (c)

�
Q1i (c)

�
f (c) dc+

X
i=1;2

�1i (C;C)

+�

Z
S

cQ2l (c) fl (c) dc+ �

Z
S

cQ2w (c) fw (c) dc:

To obtain the �nal expression stated in the Lemma, we add and subtract the term

2�
R
Fl(x)Q

2
l (x) dx. Observe also, that the voluntary participation constraint in pe-

riod one requires that �1i (C;C) � �
R
Fl(x)Q

2
l (x) dx.

Proof of Proposition 3. Pointwise maximization of the procurement cost ex-

pression implies the stated allocation rule. The cost minimizing �rst period expected

continuation payo¤ equals �1i (C;C) = �
R
Fl(x)Q

2
l (x) dx.
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Figure 1: Substitutes
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Figure 2: Complements
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