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Abstract

The extremal index (θ) is the key parameter for extending extreme value theory results

from IID to stationary sequences. It determines the extent of clustering found in the largest

observations of a stationary sequence {Xi}. This paper introduces an alternative interpretation
of θ as a ratio of the limiting expected value of two random variables defined by extreme

levels un, vn and a partition of the stationary sequence into blocks. These random variables

consist on elements of the sequence of block maxima exceeding such levels. The estimator of θ

derived from this interpretation is simple and follows a binomial distribution. This estimator

is asymptotically unbiased in contrast to other estimators for θ (blocks method and runs

method). Under certain conditions this methodology can be extended to moderately high

levels ũn and ṽn. The estimator obtained in this context is consistent. Furthermore, it has

a binomial distribution that converges to a normal distribution with mean θ. This family of

estimators outperform the rest of candidates commonly used to estimate θ. Some simulation

experiments reinforce these findings. These experiments highlight the importance of block size

selection and provide some guidance to proceed in practice with the estimation of the extremal

index.
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1 Introduction

Consider an iid random sample, of size n, from an unknown distribution, F, and let G be the

limiting distribution of the sample maximum, M1,n. Under some regularity conditions on the

tail of F, and for some suitable constants an > 0, bn,

P{a−1
n (M1,n − bn) ≤ x} → G(x), (1)

where G must be one of the following types (see de Haan (1976)),

Type I: (Gumbel) G(x) = e−e−x

, −∞ < x < ∞.

Type II: (Fréchet) G(x) =

 0 x ≤ 0,
e−x

− 1
ξ

x > 0, ξ > 0.

Type III: (Weibull) G(x) =

 1 x ≥ 0,
e−(−x)

− 1
ξ

x < 0, ξ < 0.

This important result may be extended to study the maximum of a wide class of dependent

processes. We concentrate here on stationary sequences where the dependence is restricted

by different distributional mixing conditions. We distinguish two types of dependence: long

range and short range dependence. To limit the first type of dependence we assume the

distributional mixing condition D(un) of Leadbetter (1983). This mixing condition is said to

hold for a sequence {un} if for any integers 1 ≤ i1 < . . . < ip < j1 < . . . < jp′ ≤ n for which

j1 − ip ≥ l, we have

D(un) :
∣∣∣Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)

∣∣∣ ≤ αn,l, (2)

where αn,ln → 0 as n → ∞ for some ln = o(n), and Fi1,...,ip(un) denotes P{Xi1 ≤ un, . . . , Xip ≤
un}. This condition entails that

|P
{
(Xi1 > un or . . . or Xip > un )

⋂
(Xj1 > un or . . . or Xjp′ > un)

}
−

P
{
Xi1 > un or . . . or Xip > un

}
P

{
Xj1 > un or . . . or Xjp′ > un

}
| → 0 as n → ∞.

This condition only concerns events of the form {Xi > un} in contrast to more restrictive
mixing conditions, for example the strong mixing condition introduced in Rosenblatt (1956).

D(un) alone is sufficient to extend the central result given in (1) to stationary sequences. In

particular for weak short range dependence, an > 0 and bn are the same of the iid case. In

this case stationary sequences satisfy a more restrictive mixing condition, denoted D′(un) in

Leadbetter (1983). This condition precludes the presence of clustering in the extreme values.
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It is as follows,

D′(un) : limsup
n→∞

n

[n/kn]∑
j=2

P{X1 > un,Xj > un} → 0 as kn → ∞, (3)

with kn a sequence that defines a partition of the sample, and [·] denoting integer value. More
generally, for a stationary sequence {Xi} satisfying only D(un) with un = anx+ bn, we have

P{M1,n ≤ un} → Gθ(x), (4)

with 0 ≤ θ ≤ 1 the extremal index.
There are different interpretations of the extremal index. This concept, originated in papers

by Loynes (1965), O’Brien (1974) and developed in detail by Leadbetter (1983), reflects the

effect of clustering of extreme observations on the limiting distribution of the maximum.

Loynes (1965) under mixing conditions different from D(un) and D′(un) found that

P{M1,n ≤ un} = Fnθ(un). (5)

O’Brien (1987) showed that the presence of clustering affected the limiting distribution of

block maxima. He found that

P{M2,rn
≤ un|X1 > un} → θ, (6)

with M2,rn
= max{X2, . . . , Xrn

}, and rn such that rn → ∞ and rn = o(n).

Alternatively Leadbetter (1983) showed that for stationary sequences exhibiting short range

dependence the inverse of the extremal index is the limiting mean number of exceedances of

un in an interval of length rn. This mathematically reads as follows

E

 rn∑
j=1

I(Xj > un)|
rn∑
j=1

I(Xj > un) ≥ 1
 → θ−1, (7)

with I(X > un) the indicator function. By stationarity this property is satisfied for any block

of rn consecutive elements defined in the sequence.

Finally, Hsing (1993) and Ferro and Segers (2003) use a reinterpretation of (4),

P{M1,n ≤ un} → e−θτ(x), 0 < τ(x) < ∞, (8)

to provide two more characterizations of the extremal index. Hsing shows that the distribution

of n(1 − F (M1,n)) is well approximated by an exponential distribution with mean θ−1, and
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Ferro and Segers find that the process of interexceedance times determined by observations

exceeding un follows asymptotically the exponential distribution Exp(θ−1).

This paper presents an alternative characterization of the extremal index that permits to

present an intuitive estimation procedure. In contrast to other estimators for θ the family of

estimators introduced herein allow to derive statistical inference about the parameter. The

finite-sample and asymptotic distributions of these estimators are found under weak conditions.

A byproduct of these findings is that it is possible testing the presence of serial clustering of

extreme values in stationary sequences.

The paper is structured as follows. Section 2 introduces a characterization of the extremal

index as a ratio of the limiting expected value of two random variables defined by extreme

levels and derived from the asymptotic properties of the distribution of the maximum. This

characterization of θ is extended to cover the case of exceedances of lower levels denoted herein

moderately high levels. Section 3 introduces natural estimators for this parameter based on

these characterizations of θ. The finite-sample as well as the limiting distributions of these

estimators are derived. This section also reviews some statistical properties (bias and variance)

of other well known estimators of θ: logs, blocks and runs method. A simulation experiment

for time series exhibiting clustering of extreme values is conducted in Section 4. In particular

the analysis of coverage probabilities derived from gaussian confidence intervals for these new

estimators of θ. Finally some conclusions and guidelines for further research are found in

Section 5.

2 Characterization of the extremal index

Let {Xi, i ≥ 1} be an iid sequence of n observations with marginal distribution function F

and let M1,n = max{X1, . . . , Xn} be the sample maximum of the sequence. This sequence

satisfies condition (1) if and only if

lim
x↑xF

1− F (x)
1− F (x−)

= 1, (9)

with xF = sup{x|F (x) < 1} ≤ +∞ denoting the right end point of F, and F (x−
F ) = lim

x↑xF

F (x).

This condition precludes the existence of jumps in the right tail of the distribution.

If (9) holds condition (1) is equivalent to

n(1− F (un))→ τ(x) as n → ∞, (10)
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with un = anx+ bn sufficiently high. The proof of this result is immediately derived from

P{M1,n ≤ un} = Fn(un) =
(
1− n(1− F (un))

n

)n

.

If un is sufficiently high, 1 − F (un) → 0, conditions (9) and (10) are sufficient to define a

random variable Zun
=

n∑
j=1

I(Xj > un) that converges in distribution to a Poisson random

variable with mean τ(x), see Hodges and Le Cam (1960) or Lehman (1999, p. 105.)

Suppose now {Xi, i ≥ 1} is a stationary sequence. If D(un) and D′(un) hold the above

results for M1,n and Zun
still hold. However if condition D′(un) is relaxed the limiting distri-

bution of M1,n is

P{M1,n ≤ un} → e−θτ(x), 0 < τ(x) < ∞, (11)

and we can construct a partition of the sequence {Xi} of length n in kn blocks of size rn with

kn → ∞, kn = o(n), knln = o(n) with ln introduced in (2), and rn = [n/kn] such that

kn (1− F1,...,rn
(un))→ θτ(x). (12)

It can be seen that this condition is sufficient to show the existence of the extremal index, see

Leadbetter (1983). This author also shows the equivalence of (11) and (12) provided by the

approximation of P{M1,n ≤ un} by P kn{M1,rn
≤ un} under D(un).

We will suppose hereafter that D′(un) does not hold. In this context the random variable

Zun
does not consist on independent elements and in general no longer converges in distribution

to a Poisson law. Nonetheless this random variable can be thinned to eliminate the presence of

serial dependence in the extremes. The thinning process consists on dividing the sequence in kn

blocks of size rn and choosing the block maxima that exceed the level un. This method allows

to define a new random variable denoted Z∗
un
=

kn∑
j=1

I(M(j−1)rn+1,jrn
> un). This random

variable follows a binomial distribution for n sufficiently high. By (12) this distribution

converges to a Poisson distribution with parameter θτ(x). Note that un is really a family of

sequences un(x). If one considers certain sequence un x is fixed and τ(x) takes a constant

value τ .

Leadbetter (1983) uses this thinning to define a point process N
(un)
t on the interval (0, 1]

consisting on the elements of Z∗
un
indexed by t = j/kn, j = 1, . . . , kn. This point process

converges to a Poisson process N with mean θτ , see Leadbetter (1983) and Leadbetter et al

(1983). The core of this result is that

E

 rn∑
j=1

I(Xj > un) |
rn∑
j=1

I(Xj > un) ≥ 1
 → θ−1.
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Using similar arguments we can define an extreme level vn characterized by the following

condition,

E

 rn∑
j=1

I(Xj > vn) |
rn∑
j=1

I(Xj > un) ≥ 1
 → 1. (13)

It is immediate to see that vn ≥ un. Furthermore,

E

 rn∑
j=1

I(Xj > vn) |
rn∑
j=1

I(Xj > un) ≥ 1
 = rnP{Xj > vn}

P

{
rn⋃
j=1

(Xj > un)

} → 1.

It follows that

n (1− F (vn))→ θτ(x), with 0 < τ(x) < ∞ as n → ∞. (14)

D(vn) holds for vn ≥ un. Then (14) implies

P{M1,n ≤ vn} → e−θ2τ(x) as n → ∞, (15)

see (10) and (11). For appropriate sequences kn and rn this is equivalent to

kn (1− F1,...,rn
(vn))→ θ2τ(x) as n → ∞. (16)

This condition determines a second thinning of Zun
. This is determined by the extreme

level vn that defines a new random variable Z∗
vn
=

kn∑
j=1

I(M(j−1)rn+1,jrn
> vn) following a

binomial distribution. This random variable determines a point process N (vn)
t that converges

in distribution to a Poisson process with intensity θ2τ .

Definition 2.1. The extremal index is the ratio of the limiting expected value of the point

processes N
(vn)
t and N

(un)
t . The extremal index reads as

θ = lim
n→∞

E[N (vn)
t ]

E[N (un)
t ]

. (17)

In terms of random variables,

θ = lim
n→∞

E[Z∗
vn
]

E[Z∗
un
]
. (18)

This characterization of the extremal index can be extended to lower levels denoted here-

after moderately high levels. The counterpart of un is denoted ũn. The variable Z∗
ũn
is hence

defined as Z∗
ũn
=

kn∑
j=1

I(M(j−1)rn+1,jrn
> ũn).
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Assumptions.- We will assume throughout that ũn satisfies the following:

A.1. D(ũn).

A.2. kn(1− F1,...,rn
(ũn))→ ∞ as n → ∞.

A.3. 1− F1,...,rn
(ũn) = (1− F1,...,rn

(un))sn with sn = o
(

1
1−F1,...,rn (un)

)
.

A.4. 1− F (ũn) = (1− F (un))s′n with s′n = o
(

1
1−F (un)

)
.

A.5. s′n
sn

→ 1 as n → ∞.

A sequence ũn satisfying A.1.-A.5. is denominated moderately high level.

Result 2.1. Suppose ũn is a level satisfying A.1.-A.5. and let cn be a realization of Z∗
ũn
. If

cn satisfies
cn − θτsn

(θτsnF1,...,rn
(ũn))

1/2
→ λ, (19)

then

P
{
Zũ∗

n
≤ cn

} → Φ(λ) as n → ∞, (20)

with Φ(·) a standard normal distribution.

Proof.- If A.1. holds individual contributions to Z∗
ũn
are almost independent (converge

to an iid sequence as n increases). Each contribution is a bernoulli random variable with

probability of success 1 − F1,...,rn
(ũn). Hence the finite-sample distribution of the sum of

I(M(j−1)rn+1,jrn
> ũn) with j = 1, . . . , kn is well approximated by a binomial distribution of

kn observations and parameter 1 − F1,...,rn
(ũn) denoted hereafter Bin(1 − F1,...,rn

(ũn), kn).

Furthermore if A.2. and A.3. hold the Berry-Essen bound applies (see Feller (Vol 2) (1966)).

It follows that∣∣∣∣∣P {
Zũ∗

n
≤ cn

}− Φ
(

cn − θτsn

(θτsnF1,...,rn
(ũn))

1/2

)∣∣∣∣∣ ≤ C√
kn(1− F1,...,rn

(ũn))F1,...,rn
(ũn)

with C > 0. This converges to zero as n increases. �

The event {Zũ∗
n
≤ cn} is equivalent to {Mcn+1:kn

≤ ũn} with Mcn+1:kn
an element of the

sequence of order statistics M1:kn
≥ . . . ≥ Mkn:kn

. Hence its limiting distribution is

P{Mcn+1:kn
≤ ũn} → Φ(λ) as n → ∞. (21)

This limiting distribution characterizes an intermediate order statistic, see Leadbetter et al.

(1983, p. 44). Hence the name moderately high level for ũn.

Following the same notation the counterpart of the level vn is denoted ṽn. This sequence

is chosen to be a moderately high level. It is characterized by the following properties.
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Properties.-

B.1. kn(1− F1,...,rn
(ṽn))→ ∞ as n → ∞.

B.2. 1− F1,...,rn
(ṽn) = (1− F1,...,rn

(vn))tn with tn = o
(

1
1−F1,...,rn (vn)

)
.

B.3. 1− F (ṽn) = (1− F (vn))t′n with t′n = o
(

1
1−F (vn)

)
.

B.4. t′n
tn

→ 1 as n → ∞.
B.5.

E

 rn∑
j=1

I(Xj > ṽn) |
rn∑
j=1

I(Xj > ũn) ≥ 1
 → 1.

Property B.5. implies

n(1− F (ṽn))
kn(1− F1,...,rn

(ũn))
→ 1 as n → ∞.

This yields t′n
sn

→ 1 and in turn tn
sn

→ 1 as n → ∞. Therefore

kn(1− F1,...,rn
(ṽn))

kn(1− F1,...,rn
(ũn))

→ θ as n → ∞. (22)

From the previous properties it is clear that ṽn ≥ ũn and condition D(ṽn) holds. This level

determines Z∗
ṽn
=

kn∑
j=1

I(M(j−1)rn+1,jrn
> ṽn).

Result 2.2. Suppose ũn is a level satisfying assumptions A.1.-A.5. and for some cn condi-

tion (19) holds. If ṽn satisfies B.1.-B.5. then

P
{
Zṽ∗

n
≤ θcn

} → Φ(λ) as n → ∞, (23)

with Φ(·) a standard normal distribution.

Proof.- The methodology is identical to the proof in result (2.1).

∣∣∣∣∣P {
Zṽ∗

n
≤ θcn

}− Φ
(

θcn − θ2τtn

(θ2τtnF1,...,rn
(ṽn))

1/2

)∣∣∣∣∣ ≤ C√
kn(1− F1,...,rn

(ṽn))F1,...,rn
(ṽn)

with C > 0.

Operating in (22) we obtain F1,...,rn
(ṽn) − ((1− θ) + θF1,...,rn

(ũn)) → 0. Therefore the

limit of θcn−θ2τtn
(θ2τtnF1,...,rn (ṽn))1/2 can be written as

1
(θ2τtn(1−θ)+θ3τtnF1,...,rn (ũn))1/2

θcn−θ2τtn

.

This expression is of the same order than θ(cn−θτsn)

θ(θτsnF1,...,rn (ũn))1/2 that converges to λ if ũn satisfies
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(19). Then

P
{
Zṽ∗

n
≤ θcn

} → Φ(λ) as n → ∞. �

These results extend the characterization of the extremal index given in (18) to moderately

high levels. This is

θ = lim
n→∞

E[Z∗
ṽn
]

E[Z∗
ũn
]
. (24)

3 Estimation of the extremal index

The extremal index provides a measure of the clustering of the largest observations of a

stationary sequence. If there is clustering the distribution of M1,n is Fnθ(un) instead of

Fn(un). This result generates the first estimator of the extremal index. For appropriate

sequences kn, rn it holds that P kn{M1,rn
≤ un} approximates P{M1,n ≤ un}. Taking logs

in both expressions we have θ = logP{M1,rn≤un}
rnlogF (un) . Thus a natural estimator for the extremal

index is

θ̂(1)
n =

log(1− Z∗
un

/kn)
rnlog(1− Zun

/n)
. (25)

The empirical distribution Zun
/n is a simple estimator of 1 − F (un), and Z∗

un
/kn of 1 −

F1,...,rn
(un). This estimator of θ is denoted the logs method.

Alternatively, the concept of extremal index introduced by Leadbetter (1983), θ−1 the

limiting mean cluster size of the exceedances, yields the blocks method

θ̂(2)
n =

Z∗
un

Zun

. (26)

This estimator can be regarded as an approximation of θ̂(1)
n using the first order expansions of

the logarithm for numerator and denominator.

The characterization of θ in O’Brien (1987) and in Hsing (1993) motivate a different method

to estimate the parameter. It is as follows

θn =
Wun

Zun

(27)

where Wun
=

n−rn∑
i=1

I(Xi > un)(1 − I(Xi+1 > un)) · ·(1 − I(Xi+rn
> un)). This method gives

rise to the runs estimator.

The methodology introduced herein yields very straightforward estimators for θ. We will
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use θ̃n to denote the estimator of θ based on extreme levels. It takes this expression

θ̃n =
Z∗
vn

Z∗
un

. (28)

For the case of moderately high levels the estimator takes this form

˜̃
θn =

Z∗
ṽn

Z∗
ũn

. (29)

We will develop in detail the first estimator. The empirical counterpart of (13) takes this

form
1

Z∗
un

kn∑
j=1

jrn∑
i=(j−1)rn+1

I(Xi > vn)→ 1 as n → ∞. (30)

This can be written as
Zvn

Z∗
un

→ 1 as n → ∞. (31)

In practice this relationship is exactly satisfied for vn = XZ∗
un

+1:n, with XZ∗
un

+1:n an order

statistic of {Xi}. This statistic is an extreme order statistic by definition of un. An appropriate
candidate for this level if (12) exactly holds is un =Mc+1:kn

with c = θτ fixed.

The algorithm for θ̃n is sketched as follows.

Algorithm 3.1. .

1. Consider appropriate sequences kn and rn.

2. Construct M1,rn
,Mrn+1,2rn

, . . . ,M(kn−1)rn+1,n from {Xi} with i = 1, . . . , n.

3. un is an extreme level. Suppose un =Mc+1:kn
for some fixed c (c small).

4. Z∗
un
= c.

5. From (30), Zvn
= Z∗

un
with Zvn

=
n∑
i=1

I(Xi > vn).

6. Then vn = Xc+1:n.

7. Compute Z∗
vn
=

kn∑
j=1

I(M(j−1)rn+1,jrn
> vn).

8. θ̃n =
Z∗

vn

Z∗
un

.

This estimator may be interpreted as a refinement of the blocks method where the level

un in (26) is replaced by vn.

The procedure for ˜̃θn is similar. In this case Zṽn
= Z∗

ũn
and ṽn = XZ∗

ũn
+1:n with XZ∗

ũn
+1:n

an intermediate order statistic of {Xi}. The level ũn is determined by conditions A.1.-A.5.
An adequate choice of this level is Mcn+1:kn

with cn → ∞ and cn = o(kn).

In practice the exact choice of the base levels un and ũn is not important as long as

the levels vn and ṽn are chosen properly to satisfy (12) and (16). The difference between
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these estimators of θ lies on the limiting distribution of their components. In a nutshell, Zun

converges to a Poisson distribution while Zũn
satisfies the central limit theorem. This becomes

important for the inference about θ.

3.1 Statistical Inference

Standard methods for estimating the extremal index rely on the choice of an extreme level un.

For appropriate partitions of the stationary sequence this level determines the block cluster

size. By definition of extreme level the number of exceedances entering into a cluster is roughly

constant although n increases. Furthermore by the properties of the Poisson distribution the

variance of the cluster size converges to a constant different from zero. Therefore estimators

based on these levels are not successful at providing more accurate estimates of the extremal

index as n increases. This together with the presence of dependence in {Xi} make difficult to
find the distribution of the estimators commonly used for θ.

On the other hand the extension of these estimators to moderately high levels is not

straightforward. Hsing (1988) shows that the distribution of clusters of exceedances defined

by extreme levels converges to a geometric distribution. If the level is lowered to achieve

consistency the number of exceedances entering into the cluster increases with n and no longer

converges to a distribution function. In order to solve this problem Hsing (1991) introduces

a lower level defined by a sequence, say yn, that converges to infinity. Increasing cluster sizes

determined by the lower level are standardized by yn in order to obtain a random variable.

Hsing in that paper proposes a variant of the blocks method estimator for estimating θ that

is asymptotically normal.

The characterization of θ in this paper as a limiting ratio determined by two levels makes

possible statistical inference about the parameter. Under D(un) or alternatively D(ũn) and

for n sufficiently high, numerator and denominator of θ̃n and
˜̃
θn are well approximated by a

binomial distribution. These estimators only differ in their limiting behavior.

We will study first the distribution of θ̃n assuming un and vn are the levels of interest. In

order to do that we assume the conditional distribution of Z∗
vn
given Z∗

un
= z∗un

is binomial

with parameter pn =
1−F1,...,rn (vn)
1−F1,...,rn (un) . The probability of Z

∗
vn
can be expressed as

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

kn∑
z∗un

=k

P{Z∗
vn
= k | Z∗

un
= z∗un

} P{Z∗
un
= z∗un

}.

11



Then

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

kn∑
z∗un

=k

z∗un

k

 pkn(1− pn)z
∗
un

−k

 kn

z∗un

 (1− F1,...,rn
(un))

z∗un F
kn−z∗un
1,...,rn

(un).

(32)

This distribution can be written as

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

kn

k

 [pn(1− F1,...,rn
(un))]

k
kn∑

z∗un
=k

 kn − k

z∗un
− k

 [(1− pn)(1− F1,...,rn
(un))]

z∗un
−k

F
kn−z∗un
1,...,rn

(un).

By Newton’s formula, (x+ y)t =
t∑

k=0

t

k

xkyt−k,

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

kn

k

 [pn(1− F1,...,rn
(un))]

k [1− pn(1− F1,...,rn
(un))]

kn−k
.

Replacing pn by its value yields

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

kn

k

 [(1− F1,...,rn
(vn))]

k [F1,...,rn
(vn)]

kn−k
.

This result implies that Z∗
vn

| Z∗
un
= z∗un

is a binomial distribution of the form Bin(pn, z∗un
).

Using the same methodology for the asymptotic distributions of Z∗
un
and Z∗

vn
we obtain

the asymptotic distribution of the conditional distribution of Z∗
vn
. The procedure is as follows

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

∞∑
z∗un

=k

z∗un

k

 θk(1− θ)z
∗
un

−k exp−(θτ) (θτ)
z∗un

z∗un
!

.

Under some algebra this probability becomes

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

exp−(θτ) (θ
2τ)k

k!

∞∑
z∗un

=k

[θτ(1− θ)]z
∗
un

−k

(z∗un
− k)!

.

Therefore

P{Z∗
vn

≤ z∗vn
} =

z∗vn∑
k=0

exp−(θ2τ) (θ
2τ)k

k!
. (33)

Provided that Z∗
un
and Z∗

vn
follow a Poisson distribution asymptotically we find that Z∗

vn
| Z∗

un
=

z∗un
has a binomial limiting distribution of the form Bin(θ, z∗un

).

In order to derive the unconditional first moments of θ̃n we will calculate the conditional

expected value and variance. This is immediate from the conditional distribution of Z∗
vn
given

12



Z∗
un
. Then

E[θ̃n|Z∗
un
= z∗un

] = pn, (34)

and the conditional variance takes this form

V [θ̃n|Z∗
un
= z∗un

] =
(
1− F1,...,rn

(vn)
1− F1,...,rn

(un)

)(
1− 1− F1,...,rn

(vn)
1− F1,...,rn

(un)

)
1

z∗un

. (35)

By the law of iterated expectations,

E[θ̃n] = E
[
E[θ̃n|Z∗

un
= z∗un

]
]
= pn with pn → θ as n → ∞. (36)

The unconditional variance can be decomposed into two different terms,

V [θ̃n] = V
[
E[θ̃n|Z∗

un
= z∗un

]
]
+ E

[
V [θ̃n|Z∗

un
= z∗un

]
]
.

By the Taylor expansion of E[1/Z∗
un
] about E[Z∗

un
] we obtain that

E[V [θ̃n|Z∗
un
= z∗un

]] = pn(1− pn)
(

1
E[Z∗

un
]
+

V [Z∗
un
]

E3[Z∗
un
]

)
. (37)

The unconditional variance reads as

V [θ̃n] = pn(1− pn)
(
1
θτ
+O(1)

)
=
1− θ

τ
+O(1). (38)

The variance converges to a constant different from zero for τ constant. Although θ̃n is

asymptotically unbiased the estimator is not consistent for the uncertainty does not diminish

as the sample size increases.

The choice of ˜̃θn consisting on a ratio of exceedances of moderately high levels is motivated
by the lack of consistency of θ̃n. The factors defining this estimator are Z∗

ũn
and Z∗

ṽn
. The dis-

tribution of Z∗
ṽn

| Z∗
ũn
= z∗ũn

is binomial of parameters Bin(p̃n, z∗un
) with p̃n =

1−F1,...,rn (ṽn)
1−F1,...,rn (ũn) .

The proof is identical to the extreme levels case.

Proceeding as before we have

E[˜̃θn] = p̃n with p̃n → θ as n → ∞, (39)

see (22). Operating as in (37) the unconditional variance reads as

V [˜̃θn] = p̃n(1− p̃n)

(
1

E[Z∗
ũn
]
+

V [Z∗
ũn
]

E3[Z∗
ũn
]

)
.

13



By definition of the level ũn we have

V [˜̃θn]→ 0 as n → ∞. (40)

Conditions (39) and (40) are sufficient to assert the consistency of ˜̃θn. Mathematically,
˜̃
θn

p→ θ as n → ∞. (41)

The proof of this result is immediate by applying Chebyshev inequality.

In practice to avoid uncertainty in Z∗
ũn
the level ũn is assumed to be an intermediate

order statistic ũn = Mcn+1:kn
with cn → ∞ and cn = o(kn). The binomial distribution of

Z∗
ṽn

| Z∗
ũn
= cn is well approximated by a normal distribution N(p̃ncn, p̃n(1− p̃n)cn).

Hence for n sufficiently high

˜̃
θn

w∼ N

(
θ,

θ(1− θ)
cn

)
(42)

with (∼) denoting approximation. In this case standard inference is straightforward. The
asymptotic confidence intervals for θ are

θ ∈
˜̃θn ± z1−α/2

√˜̃
θn(1− ˜̃

θn)
cn

 (43)

with z1−α/2 the quantile of Φ(·).
Testing the existence of clustering in the largest observations becomes an attainable objec-

tive given that it is possible testing the true value of the extremal index. If D′(ũn) is violated

there exists clustering of observations in the tails; otherwise θ = 1. We can devise one-sided

confidence intervals to test the clustering of exceedances of ũn in stationary sequences satis-

fying D(ũn). The null hypothesis is θ0 = 1 against θ0 < 1. Testing this equals to check if the

value 1 is contained in the interval−∞,
˜̃
θn + z1−α

√˜̃
θn(1− ˜̃

θn)
cn

.
3.2 A comparison between different estimators

In this section we calculate the order of bias and variance for different estimators of the

extremal index. In particular for the logs method, blocks method and runs method. These

estimators are defined based on a single extreme level un. We use the results found in Smith

and Weissman (1994). These authors found that the logs method is asymptotically unbiased.

14



In particular

E[θ̂(1)
n ] = θ +O

(
τ

kn

)
.

They also show that the variance of this estimator is of order O( 1
τ ). For the blocks method

these authors reinforce the results derived in Hsing (1991). They find that

E[θ̂(2)
n ] = θ +O(

1
τ
),

and

V [θ̂(2)
n ] = O(

1
τ
).

For un an extreme level τ is constant and O( 1
τ ) amounts to O(1) (see (12)). Therefore in

terms of mean square error both estimators, θ̂(1)
n and θ̂

(2)
n , are identical. It is worth observing

however than the logs method is asymptotically unbiased provided that kn increases with n

in contrast to θ̂
(2)
n . This can be observed in the simulation experiments that are presented in

the next section.

Results for the runs method are similar. By the law of iterated expectations E[θn] =

E[E[Wun

Zun
| Zun

]]. The expected value of the numerator takes this expression

E[Wun
] = (n− rn)P{Xi+1 ≤ un, . . . , Xi+rn

≤ un | Xi > un}P{Xi > un}.

These authors define θ(rn + 1, un) = P{Xi+1 ≤ un, . . . , Xi+rn
≤ un | Xi > un}. Then

E[θn] = (n− rn)(1− F (un))θ(rn + 1, un)E
[
1

Zun

]
.

That is

E[θn] = θ(rn + 1, un)− θ(rn + 1, un)
kn

+O

(
1
τ

)
and the bias of the runs estimator is of order O (1) for θ(rn + 1, un)→ θ as n → ∞.

For the unconditional variance it is sufficient to analyze E
[
V [θn | Zun

]
]
. In order to that

we derive the conditional variance. This is

V [θn | Zun
] =

(n− rn)(1− F (un))θ(rn + 1, un) [1− θ(rn + 1, un)(1− F (un))]
Z2
un

.

Then

V [θn] =
(n− rn)(1− F (un))θ(rn + 1, un) [1− θ(rn + 1, un)(1− F (un))]

E[Zun
]2

+O (1) .
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To summarize this section we can say that in terms of mean square error any estimator of

the extremal index based on extreme levels provides the same kind of disappointing results.

Neither of them is consistent for the variance converges to a constant different from zero.

Nonetheless the estimator of this type introduced herein, θ̃n defined by two extreme levels,

outperforms the rest of estimators in the sense that it is possible to obtain its finite-sample

distribution as well as its limiting distribution. Hence statistical inference is plausible. The

extension of this estimator to moderately high levels is successful at overcoming both problems.˜̃
θn is consistent, bias and variance converge to zero, and statistical inference is straightforward.

4 Simulations: Some examples

This section studies some examples of stationary sequences exhibiting short range dependence

in the extremes. Consider the example due to Chernick (1981) for {Xi} a strictly stationary
first order autoregressive sequence driven by

Xi =
1
r
Xi−1 + εi, (44)

with r ≥ 2, an integer, εi discrete uniforms on {0, 1/r, . . . , (r − 1)/r}, and εi independent

of Xi−1. The random variable Xi has a uniform distribution on [0, 1]. In this example the

extremal index is θ = r−1
r .

Figure A.1 displays estimates of θ by different techniques for several extreme levels deter-

mined by un = xc+1:n with c = 5, 15, 25, 35 and for n = 200. By construction, the blocks and

the runs method provide underestimates of θ as rn increases for the number of elements in

the numerator of these estimators decreases as the block size increases. Estimates given by

the logs method are very accurate for extreme levels. For lower levels however, θ̂(1)
n exhibits

problems derived from the fact that every single block has an exceedance (Z∗
un
= kn). In

this case the estimator is not defined. In contrast θ̃n shows reliable estimates of θ across all

the levels. The same results are observed for moderately high levels defined by ũn = xcn+1:n

with cn = n2/3. In this case the logs method is as reliable as ˜̃θn. The plot of this case is not
presented but can be obtained from the author upon request.

Figure A.2 shows a sample of coverage probabilities corresponding to the asymptotic gaus-

sian distribution. The plot includes both types of levels. It is shown in the core of the paper

that ˜̃θn was devised to converge to a normal distribution with n → ∞. θ̃n however followed

a binomial distribution even for large sample sizes. Surprisingly, the left plot of the figure

shows that for a sample of n=1000 observations the gaussian approximation of the binomial

distribution works for un an extreme level. This result vanishes as n increases. For moderately
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high levels the right plot of figure A.2 describes a curious phenomenon. The asymptotic theory

developed only works for certain partitions of the sequence. For unnecessary large blocks the

asymptotic normal approximation does not work due to misleading estimates of the variance

of ˜̃θn. In a sense this method provides a technique to find out appropriate blocks sizes.
The failure of the coverage probability based on gaussian confidence intervals to approx-

imate the actual α = 0.05 for large block sizes is also analyzed in the following example

(Chernick model with r = 2). In this case the level of clustering is θ = 0.5. Figure A.3

shows similar results to figure A.1 about the estimates of θ. The empirical coverage prob-

ability however shows interesting results (figure A.4). The estimates of the actual coverage

1− α produced by extreme levels are far from the actual value (left plot of A.4). In contrast

coverage probabilities corresponding to ˜̃
θn yield very nice convergence results for both n and

rn increasing. This suggests that inference about θ for processes with high clustering in the

extremes requires larger blocks sizes to eliminate serial dependence. This phenomenon is also

studied in the following example.

This is the doubly stochastic model. Let {ξi, i ≥ 1} be iid with distribution function F,

and suppose that Y1 = ξ1, and for i > 1,

Yi =

 Yi−1 with probability ψ,

ξi with probability 1− ψ,

the choice being made independently for each i. The doubly stochastic sequence {Xi} is
defined by

Xi =

 Yi with probability η,

0 with probability 1− η,

independently of anything else. In this example the extremal index is θ = 1−ψ
1−ψ+ψη . Smith and

Weissman (1994) compare different estimators of θ for this example. For Ψ = 0.9 and η = 0.7

(θ = 0.137) these authors find the runs method superior to the rest of competing estimators.

Figure A.5 is consistent with their results. θ̃n seems to be however a very good competitor of

θn for every single level. This result is also observed for moderately high levels though is not

reported for sake of space. Furthermore θ̃n outperforms the logs and the blocks estimators

across all levels. The empirical coverage probability (figure A.6) exhibits a poor approximation

of the normal distribution for any sample size. On the other hand for moderately high levels

the empirical coverage seems to converge to the theoretical value 1 − α for large blocks sizes

(rn > 20). This may reflect the large amount of clustering in this doubly stochastic process.

Finally, to assess the performance of the runs method versus θ̃n and
˜̃
θn we also estimate

the extremal index of this process for Ψ = 0.5 and η = 0.5 (θ = 0.667.) The runs and

blocks method exhibit the same declining pattern observed before for increasing blocks sizes

17



(figure A.7). θ̃n and
˜̃
θn are superior to the rest of estimators. For moderately high levels the

results are alike. Within the competitors only the logs method exhibits a similar performance.

The empirical coverage probabilities for extreme levels and moderately high levels show the

same patterns than for the Chernick model with r = 5. Both processes exhibit little clustering

in the extremes. This entails choices of the block size commensurate with the extent of

dependence within the blocks. Large values of rn would imply spurious clustering of the

largest observations within the blocks.

5 Conclusion

Measuring serial dependence in the extremes of stationary sequences boils down to assess

the extent of clustering in these observations. This phenomenon is observed in a number of

fields studying time series and concerned about the occurrence of extreme events. Serve as

illustration fields as risk management, hydrology or climatology.

The extent of this extremal dependence is summarized in one single parameter, the extremal

index. Standard statistical techniques involving the estimation of θ present some serious

shortcomings derived from the lack of consistency and the use of a different type of technology

(statistics of extremes).

In fact, it is even difficult to disentangle the distribution function of most of these estimators

for θ. To overcome this, we have introduced a family of estimators of this parameter. The

first estimator, θ̃n is a ratio of two binomial random variables defined by extreme levels.

This estimator is asymptotically unbiased and follows a binomial distribution that converges

to a Poisson distribution. In turn it is not consistent by construction and shares the type of

problems of usual estimators as logs method, blocks method and the runs method. The natural

extension of θ̃n to lower levels (moderately high levels) yields a very appealing estimator
˜̃
θn.

This estimator is consistent and follows a binomial distribution. It differs from the other in

what its asymptotic distribution is normal and enables the use of standard statistical inference.

From the asymptotic theory and the simulation experiments we have developed we can

extract some interesting results about how to proceed to derive pointwise estimates and con-

fidence intervals for θ. For small sample sizes if a stationary sequence exhibits low clustering

in the extremes the distribution of both estimators can be well approximated by a normal

distribution. If the level of clustering is high we should explore alternative confidence intervals

derived from binomial distributions.

For large sample sizes ˜̃θn is a safer choice. For appropriate partitions of the sequence its
asymptotic distribution is normal. However for sequences with low clustering of extremes
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blocks sizes excessively large can yield misleading estimates of the variance and in turn wrong

confidence intervals. This is due to the occurrence of spurious clustering within the blocks.

On the other hand the presence of high clustering in the extremes requires the use of larger

blocks sizes to eliminate such dependence.

These results suggest two strategies when estimating the extremal index. We can proceed

with a preliminary inspection of the data to determine roughly the amount of clustering in the

extremes. For small sample sizes and little clustering use θ̃n and the normal approximation.

If the amount of clustering is high consider ˜̃θn estimated for large blocks. For large sample
sizes and low clustering use ˜̃θn determined by moderate partitions, and for high clustering use˜̃
θn determined by large blocks sizes.
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Appendix: List of figures
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Figure A.1. Sample mean for different estimators of θ (m = 100 Monte-Carlo simulations)

for different levels un defined by xc+1:n, c=5,15,25,35, and n=200. The process is the Chernick

model with r = 5 and θ = 0.8. rn moves along the interval [1, 20]. The extremal index is plotted

with �. θ̃n is represented by −o. θ̂
(1)
n by −
. θ̂

(2)
n by −+, and θn by −∗ line.
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Figure A.2. Coverage probabilities (c.p.) derived from θ̃n ∼ N(θ, (θ(1 − θ))/Z∗
un
) for the

Chernick model, r = 5. m = 1000 simulations. The left plot displays un = xc+1:n, c=10

(extreme levels). The right plot, ũn = xcn+1:n, cn = n2/3 (moderately high levels). n =

100, 200, 500, 1000, 2000, 5000. In both cases c.p. is decaying for higher n. For un, c.p. in-

creases in rn. For ũn, c.p. converges to its actual value 1− α = 0.95 for rn ∈ [3, 9].
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Figure A.3. Sample mean for different estimators of θ (m = 100 Monte-Carlo simulations)

for different levels un defined by xc+1:n, c=5,15,25,35, and n=200. The process is the Chernick

model with r = 2 and θ = 0.5. rn moves along the interval [1, 20]. The extremal index is plotted

with �. θ̃n is represented by (−o). θ̂
(1)
n by (−
). θ̂

(2)
n by (−+), and θn by (−∗) line.
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Figure A.4. Coverage probabilities (c.p.) derived from θ̃n ∼ N(θ, (θ(1 − θ))/Z∗
un
) for the

Chernick model, r = 2. m = 1000 simulations. The left plot displays the case un = xc+1:n,

c=10 (extreme levels). The right plot, ũn = xcn+1:n, cn = n2/3 (moderately high levels).

n = 100, 200, 500, 1000, 2000, 5000. In both cases c.p. is decaying for higher n. This however

increases with rn. For ũn c.p. converges to its actual value 1− α = 0.95.
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Figure A.5. Sample mean for different estimators of θ (m = 100 Monte-Carlo simulations)

for different levels un defined by xc+1:n, c=5,15,25,35, and n=200. The process is the doubly

stochastic model with Ψ = 0.9 and η = 0.7, and θ = 0.137. rn moves along the interval [1, 20].

The extremal index is plotted with �. θ̃n is represented by (−o). θ̂
(1)
n by (−
). θ̂

(2)
n by (−+),

and θn by (−∗) line.
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Figure A.6. Coverage probabilities (c.p.) derived from θ̃n ∼ N(θ, (θ(1 − θ))/Z∗
un
) for the

doubly stochastic model with Ψ = 0.9 and η = 0.7. m = 1000 simulations. The left plot

displays the case un = xc+1:n, c=10 (extreme levels). The right plot, ũn = xcn+1:n, cn = n2/3

(moderately high levels). n = 100, 200, 500, 1000, 2000, 5000. In both cases c.p. is decaying for

higher n. For un c.p. decreases with rn. For ũn c.p. converges very slowly to its actual value

1− α = 0.95 as rn increases.
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Figure A.7. Sample mean for different estimators of θ (m = 100 Monte-Carlo simulations)

for different levels un defined by xc+1:n, c=5,15,25,35, and n=200. The process is the doubly

stochastic model with Ψ = 0.5 and η = 0.5, and θ = 0.667. rn moves along the interval [1, 20].

The extremal index is plotted with �. θ̃n is represented by (−o). θ̂
(1)
n by (−
). θ̂

(2)
n by (−+),

and θn by (−∗) line.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
−

p

r
n

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
n

1
−

p

Figure A.8. Coverage probabilities (c.p.) derived from θ̃n ∼ N(θ, (θ(1 − θ))/Z∗
un
) for the

doubly stochastic model with Ψ = 0.5 and η = 0.5. m = 1000 simulations. The left plot

displays the case un = xc+1:n, c=10 (extreme levels). The right plot, ũn = xcn+1:n, cn = n2/3

(moderately high levels). n = 100, 200, 500, 1000, 2000, 5000. In both cases c.p. is decaying for

higher n. For un, c.p. increases in rn. For ũn, c.p. converges to its actual value 1−α = 0.95

for rn ∈ [6, 12]. For higher values 1− p decreases.
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