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Nonparametric estimators for average and quantile treatment ef-
fects are constructed using Fractile Graphical Analysis, under the
identifying assumption that selection to treatment is based on ob-
servable characteristics. The proposed method has two-steps: first,
the propensity score is estimated, and second, a blocking estimation
procedure using this estimate is used to compute treatment effects. In
both cases, the estimators are proved to be consistent. Monte Carlo
results show a better performance than other procedures based on
the propensity score. Finally, these estimators are applied to a job
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1 Introduction

Econometric methods for estimating the effects of certain programs (such as
job search assistance or classroom teaching programs) has been widely de-
veloped since the pioneering work of Ashenfelter (1978), LaLonde (1986) and
others. In this case, a treatment refers to a certain program whose benefits
are potentially obtainable by those selected for participation (treated) and
it has no effect on a control group (non-treated).

Estimating average treatment effects (ATE), which refers to the mean
effect of the program on a given outcome variable in parametric and non-
parametric environments (see Angrist and Krueger, 1999, Imbens, 2004) has
been a central issue in the literature. Lehmann (1974) and Docksum (1974)
introduced the concept of quantile treatment effects (QTE) as the difference
of the quantiles of the treated and control outcome distributions. In this
case, it is implicitly assumed that individuals have an intrinsic heterogene-
ity which cannot be controlled for using observables. Bitler, Gelbach, and
Hoynes (2006) discuss the costs of focusing on average treatment estimation
instead of other statistics.

Provided that in nonexperimental settings selection into treatment is not
random, ordinary least squares (OLS) and quantile regression techniques are
inconsistent. As stated by Heckman and Navarro-Lozano (2004), three dif-
ferent approaches were used to overcome this problem. First, the control
function approach explicitly models the selection mechanism and its relation
to the outcome equation; second, instrumental variables; and third, local es-
timation and aggregation. In the latter, under the unconfoundness assump-

tion, which states that conditional on a given set of exogenous covariates



(observables) treatment occurrence is statistically independent of the poten-
tial outcomes, local unbiased estimates can be obtained by conditioning on
this set of covariates. The identification strategy we follow rely on this as-
sumption. Rosenbaum and Rubin (1983, 1984) show that adjusting solely
for differences between treated and control units in a scalar function of the
pre-treatment covariates, the propensity score, also removes the entire bias
associated with differences in pre-treatment variables.

Several estimation methods have been proposed for estimating ATE by
conditioning on the propensity score. Matching estimators are widely used in
empirical settings, and in particular propensity score matching. In this case,
each treated (non-treated) individual is matched to a non-treated (treated)
individual (or aggregate of individuals) by means of their proximity in terms
of the propensity score. Only in a few cases matching on more than one di-
mension has been used (see for instance Abadie and Imbens, 2002), because
of the computational burden that multivariate matching requires. Moreover,
Hirano, Imbens, and Ridder (2003) method uses a series estimator of the
propensity score to obtain efficient (in the sense of Hahn, 1998) ATE estima-
tors.

Estimation of QTE have been developed using the minimization of convex
check functions as in Koenker and Bassett (1978). Abadie, Angrist, and Im-
bens (2002) and Chernozhukov and Hansen (2004, 2005) develop this method-
ology using instrumental variables. On the other hand, Firpo (2007) does
not require instrumental variables, and his methodology follows a two-step
procedure: in the first stage, he estimates the propensity score using a series

estimator, while in the second, he uses a weighted quantile regression method.



Bitler, Gelbach, and Hoynes (2006) compute QTE using the empirical distri-
bution function and derives an equivalent estimator. Diamond (2005) uses
matching to construct comparable treated and non-treated groups, and then
computes the difference between the matched sample quantiles.

An alternative source of heterogeneity comes from the consideration of
observables only. Treatment effects may vary depending on the amount of
human capital or on the income and job status of their families. Differences
in terms of these covariates determines that one may be interested in the
conditional treatment effect, that is conditional on some value of the ob-
servables. For instance, in terms of the propensity score, individuals which
are more likely to receive a treatment may have a different effect than those
which are less likely to receive it. As we show in this paper, how observables
are treated determines differences in the parameter of interest for QTE but
not for ATE. We define as the average conditional quantile treatment effect
as our parameter of interest, which can be described as the average of local
QTEs. This parameter is equivalent to the standard unconditional QTE only
in the case that the quantile treatment effect is constant.

In many cases, one would be more interested in the dependence of the
outcome variable on the fractiles (i.e. quantiles) of the covariates rather
than the covariates themselves. Mahalanobis (1960) fractile graphical anal-
ysis (FGA) methodology was developed to account for this heterogeneity in
observables. This method has awaken recent interest in the literature as a
nonparametric regression technique (Bera and Gosh, 2006, Sen, 2005).

For our purposes, this methodology can be used as an alternative to

matching, and it allows not only for estimating average but quantile treat-



ment effects. The idea is simple: divide the covariates space into fractiles and
obtain the conditional regression (or quantile) by a step function. Provided
that the number of fractile groups increases with the number of observations,
we obtain consistent estimates of these functions, as the local estimators
would satisfy the unconfoundedness assumption?.

FGA can be viewed as a histogram-type smoother and it shares the con-
vergence rate of histograms as opposed to kernel based methods that have a
better performance. In the classification of Imbens (2004) it can be associ-
ated with the “blocking on the propensity score” methods. An advantage of
this procedure is that only the number of fractile groups needs to be chosen
as a smoothing parameter.

In spirit, this method is very similar to matching. The latter matches ev-
ery treated individual to a control (non-treated) individual whose character-
istics are similar. Then, using the unconfoundness assumption, it integrates
over the covariates as the matched sample is similar to the treated. FGA
decomposes the covariates distribution into fractiles. Then within each frac-
tile treated and non-treated individuals are compared. Finally, it integrates
over the covariates (in this case over the fractile groups) as matching does.
However, this nonparametric technique allows us to recover the complete

graph for the conditional expectation or quantiles. In the latter, we show

LQuoting Koenker and Hallock (2001, p.147): ”(...) segmenting the sample into subsets
defined according to the conditioning covariates is always a valid option. Indeed, such local
fitting underlies all nonparametric quantile regression approaches. In the most extreme
cases, we have p distinct cells corresponding to different settings of the covariate vector, x,
and quantile regression reduces simply to computing univariate quantiles for each of these

cells”.



that the graph contains more information than the comparison of treated
and non-treated separately.

The propensity score FGA estimators are compared to other estimators
based on the propensity score. In particular we compare it to propensity
score matching estimators and Hirano, Imbens, and Ridder (2003) estimator
for ATE, and to Firpo (2007) for QTE.

The paper is organized as follows. Section 2 describes the general frame-
work and defines the parameters of interest. Section 3 reviews the literature
on FGA. Section 4 derives ATE estimators and Section 5 does it for QTE.
Section 6 presents Monte Carlo evidence on the performance of these esti-
mators while Section 7 applies them to a well-known job training dataset.

Conclusions appear in Section 8.

2 A general set-up for non-random experi-

ments and main estimands

2.1 Unconditional treatment effects

To more formally characterize the model we follow the potential-outcome
notation used in Imbens (2004) , which dates back to Fisher (1935), Neyman
(1990) and Rubin (1974, 1977, 1978) and it is standard in the literature.
Consider N individuals indexed by 7 = 1,2,...,N who may receive a
certain “treatment” (e.g. receiving job training), indicated by the binary
variable W; = 0, 1. Each individual has a pair of potential outcomes (Y;;, Yo;)

that corresponds to the outcome with and without treatment respectively.



The fundamental problem, of course, is the inability to observe at the same
time the same individual both with and without the treatment effect. That is,
we only observe Y; = W, x Y};+ (1 —W;) x Yy, and a set of exogenous variables
X;. We are interested in measuring the “effect” of the W-treatment (e.g.
whether job training increase salaries, or the chances of being employed).

A parameter of interest is the average treatment effect, ATE,

5 = EY; - Y]] (2.1)

which tells us whether on average, the W-treatment has an effect on the
population.

The key identification assumption is the unconfoundedness assumption?
(Rubin, 1978, Rosenbaum and Rubin, 1983), which states that conditional
on the exogenous variables, the treatment indicator is independent of the

potential outcomes. More formally,
Assumption 1 (Unconfoundedness)
W (Y1, Y)|X

where denotes statistical independence. Under this assumption we can iden-
tify the ATE (see Imbens, 2004) if both treated and non-treated have a

common support, that is, comparable X-values:

2Rosenbaum and Rubin (1983) called this strongly ignorable treatment assignment
assumption, Heckman, Ichimura, and Todd (1997) and Lechner (1999, 2000) conditional

independence assumption.



5 = B[V, - Yy = Ex[E[Y; - Yo|X]]
— Ex[E[V|X, W = 1]] - Ex[E[YolX, W = 0]
= Ex[E[Y|X,W = 1]] - Ex[E[Y|X, WV = 0]

In some cases, we are interested not only on the average effect but on
the effect on a sub-group of the population. Average treatment effects do
not fully describe all the distributional features of the W-treatment. For
instance, high ability individuals may benefit differently from program par-
ticipation than low ability ones, even if they have the same value of covariates.
This determines that the effect of a certain treatment would vary according
to unobservable characteristics. A parameter of interest in the presence of
heterogeneous treatment effects is the quantile treatment effect (QTE). As
originally defined in Docksum (1974) and Lehmann (1974), the QTE cor-
responds, for any fixed percentile, to the horizontal distance between two
cumulative distribution functions. Let Fy and Fj be the control and treated
distribution of a certain outcome and let A(y) denote the horizontal distance
at y between Fy and F, i.e. Fy(y) = Fi(y+A(y)) or A(y) = FyH(Fo(y)) —.
We can express this effect not in terms of y, but on the quantiles of the same

variable, and the QTE is then

0r = A(FG (7)) = FTH(7) = 5 H(T) = @rj — Qry (2.2)

where ();;,7 = 0,1 are the quantiles of the treated and non-treated outcome
distributions.

The key identification assumption here is the rank invariance assumption



(which is implied by the unconfoundedness assumption): in both treatment
statuses, all individuals would mantain their rank in the distribution (see
Heckman, Smith, and Clemments, 1997, for a general discussion about this
assumption). Therefore, using a similar argument as in the ATE case, Firpo

(2007) shows that this assumption provides a way of identifying the QTE:

7= E[PY) <Qn|X]] = E[P[Yy < Qrl|X]|
= E[P]Y <Q|X,W =1]] = E[P[Y < Q0| X, W =0]]

where the last two expectations can be estimated from the observable data.

In both cases, Assumption 1 suggests that by constructing cells of ho-
mogenous values of X, we would be able to get an unbiased estimate of the
treatment effect. However this becomes increasingly difficult and computa-
tionally imposible as the dimension of X increases. Rosenbaum and Rubin
(1983) argue that the unconfoundedness assumption can be re-stated in terms
of the propensity score, p(X) = P[W = 1|X = z], under the following as-

sumption

Assumption 2 (Common support)

For all x € domain(X) we have that

In this case, we have:

Lemma 1 Assumptions 1 and 2 imply that

W (Y1, Yo)|p(X)



Proof: See Rosenbaum and Rubin (1983).
Therefore the problem can be reduced to the dimension of p(X'). Through

this paper we consider estimators based only on the propensity score.

2.2 Conditional treatment effects

Let Y;(X) = E[Y;|X] and F};(.|X),j = 0,1 be the outcome distribution func-
tions conditional on X, and let H(.) be the distribution function of X. Then
the ATE can be defined as:

/|:/Yl(X)dH(X):| dFl(Yl)—/ [/YO(X)dH(X)] dFy(Yy)
_/[/Yi(X)dFl(YﬂX)—/Y()(X)dFO(YO|X)} dH(X)

Therefore, ATE can be obtained by comparing the unconditional mean
outcome for the treated and non-treated, or by obtaining first the conditional
ATE and then integrating over the covariates space.

Now define

Qrj(x) = FJ-_1(7'|X =) =inf{Y;: F;(V;| X =2)>71},j=0,1 (2.3)

as the conditional 7-th quantile. In general

In other words, the above equivalence cannot be applied to QTE: compar-

ing the unconditional quantiles of the outcome distributions is not equivalent

10



to computing the conditional quantiles and then aggregating. Chernozhukov
and Hansen (2004, 2005) define the conditional quantile treatment effect
(CQTE) as

0r(7) = Qr1(2) — Qro(7) (2.5)

Define the average conditional quantile treatment effect (ACQTE) as

0y = Ex[Qri(X) — Qro(X)] (2.6)

Strictly speaking, differences in Q,1(X)—Q-o(X) can either be attributed
to differences in the treatment effect or differences in the effect of the X’s on
the treated and non-treated. For instance, in a linear regression set-up, we
may have Q,;(X) = a(r,X)j + B(7,j)X,j = 0,1. In the job training exam-
ple, we may have that training increases salaries and returns to schooling,
where years of schooling is X. However, in general, both parameters cannot
be identified separately, and the literature often attributes to the treatment
the whole conditional difference, that is 3(r,j) = B(7),5 =0, 1.

In order to see these differences consider the following simple example

with one outcome variable. Let X be a uniform random variable on (0, 1)

and let
(

0  with prob. 0.5
if X <0.5

0.5 with prob. 0.5

Y(X) =

0.5  with prob. 0.5
if X >0.5

\ 1 with prob. 0.5

Here note that E[Y] = E [Ex[Y]] by the Law of Iterated Expectations.

11



Let @ be the quantile of the Y distribution and let Q- (X) be the conditional

quantile of Y conditional on X. In this case,

0 if7<0.25
Q=< 05 if025<7<0.75
1 ifr>0.75
But,
0.251if 7 < 0.5
EX[QT(X)] =
0.75if 7 > 0.5

This determines that recovering the complete graph {X, Q,;(X)},7 =0,1
provides additional information that cannot be recovered by computing un-
conditional quantiles. Firpo (2007), Bitler, Gelbach, and Hoynes (2006) and
Diamond (2005) estimators obtain unconditional quantiles because their esti-
mators compute the difference between the treated and non-treated quantiles.

If we add X to the model and the treatment effect is constant across X,

we have the following expression:

Q. (X) =a(r)+ B(7)1[X > 0.5] = 0.5+ 0.5 x 1[X > 0.5], V7 (2.7)

However, in this case we would be attributing no difference across quantiles.

If we consider differences in the treatment effect across X:

0 ifr<05
if X <0.5
05 if7>05
Q. (X)=a(r,X) =
05 if7<0.5
if X >05
\ 1 if7>05

12



We assume that Y;(.),Q,;(.),7 = 0,1 can be expressed as a function
of p. In particular, for QTE we assume that the CQTE is of the form
Q-1(p) — Q-o(p) = a7, p), and therefore the ACQTE becomes

07 = E,[Qr1(p) — Qro(p)] = Ep[0-(p)] (2.8)

which is our parameter of interest.

3 Fractile graphical analysis

Fractile graphical analysis (FGA) is a nonparametric estimation method de-
veloped first by Mahalanobis (1960) based on conditioning on the fractiles of
the X’s. It was specifically designed to compare two populations where the
X variable was influenced by inflation and therefore not directly comparable.
It has the same properties as other histogram-type estimators (Bhattacharya
and Miiller, 1993). Moreover, Bhattacharya (1963) developed a conditional
quantile estimation method based on FGA. Our proposal is to use FGA to
develop estimators for both ATE and QTE. FGA produces a histogram-type
smoother by blocking on the fractiles (i.e. quantiles) of the propensity score.

FGA was originally developed for one covariate (i.e. dim(X) = 1), but
Bhattacharya (1963) and others showed that it can be extended to more
covariates. However, we will only consider FGA based on a single covariate,
the propensity score. One dimensional FGA allows us to recover the graphs
{p,~v(p)} where v is any function of the propensity score.

Assume first that the propensity score is known and it has a distribution

function H(p). Further, assume that H(.) is continuous and strictly increas-

13



ing, and p satisfies Assumption 2. Construct R fractile groups (indexed by

r) on the propensity score:

where H=!(7) = inf{p: H(p) > 7}.

Each fractile group contains a similar number of observations (i.e. about
N/R) and it has an associated interval on the domain of p defined by the
order statistics (&;Rl,ﬁ%], such that P |p € (5%1,5%] ~ 1/R. As the num-
ber of fractiles increases, the divergence in terms of p for all observations
within the same fractile group becomes smaller, and therefore we would be
gradually constructing groups with the same p-characteristics. In that case,
estimates within each fractile group asymptotically satisfy the unconfound-
edness assumption, provided that the conditioning set converges to a single
propensity score value.

The following lines provide a short review of the asymptotic properties of
FGA, which can be found in Bhattacharya and Miiller (1993) and Bera and
Gosh (2006). Let g(p) = E[Y|P = p|] and o*(p) = VAR[Y|P = p| be the
conditional expectation and variance in terms of the propensity score, and
consider the following notation: h(t) = go H™1(t) and k(t) = 0% o H (1)
for t = (r— 1+ «a)/R with 0 < a < 1. Suppose that h(.) has bounded
second derivative and k(.) has bounded first derivative. Then as N — oo

and R — oo so that R/N — 0 for fixed ¢, the bias and the variance of an

14



FGA estimator of h(t), h(t) become:
BIAS : E[h(t) — h(t)] = —(2R) 'R (t)[1 + o(1)] = O(1/R)

VARIANCE : VAR[A(t)] = (R/N) [(1 — a)? + o] k(t)[1+0(1)] = O(R/N)

so that the mean-squared error of h is
MSE: MSE[h(t)] = [(4R**('(t)) + (R/N){(1 — a)® + a®}k(t)] [1 + o(1)]

where 0 < a = Rt — [Rt] < 1. Therefore the best rate of convergence of
fractile graphs is obtained by letting R = O(N'/3), which yields a rate of
O(N~2%/3) for the Integrated MSE.

If p is not known it has to be estimated. In practice any estimate p =
p + 0,(1) remove the bias. However, they will differ in the variance of the
estimator, provided that the first stage (i.e. the estimation of the propensity
score) need to be taken into account. Hahn (1998) shows that by using the
estimated propensity score, instead of the true propensity score, efficiency
is achieved. Hirano, Imbens, and Ridder (2003) and Firpo (2007) use a
semiparametric series estimator of the propensity score which produces this
result.

We impose the following assumption regarding the use of the estimated

propensity score:

Assumption 3 (Convergence of propensity score fractile groups)
Let p be an estimator of the propensity score. Then for fired R and for

all r,



4 ATE estimators

FGA ATE estimators are based on imputing the unobserved outcome in each

fractile group. Let

. Vit W, =1
Yy, if W, =0

Sorey Wi Yil[preST]
Z]kvz1 Wkl[ kG\S Z]

where Y; =

and

. Y, it W; =0
Yo if Wi =1

Yney (1-Wi)Yi1[preS77]
Yrey (1-Wi)1[preS)]
Therefore the FGA ATE estimator is

where Yy, =

N oo
0= N; Yo, = NZYL YE)Z (41)

Similarly, it can be expressed as

1 &

(") (4.2)

Sy

where

s _ S WA €] N (1 - Wo)Yil[pi € ]

S WA eSSy YN (1 —Wi)l[p; € S

The logic of this estimator is based on that of Hahn (1998) "nonpara-

metric imputation”. In this case, witihin each fractile group, E [WY|%;],

16



E[(1 = W)Y|S;] and E[W|[S;]] are estimated nonparametrically using the
previously estimated propensity score (p).
Alternatively we construct a similar estimator using the weighting tech-

nique described in Hirano, Imbens, and Ridder (2003). Let

. Y it W, =1
=9 .
Yi; it W; =0

where Y;; = quv 1 W;’f:’“l[p € C““’]

and
N Y;if W, =0
0i = .
Yo, it W, =1
where Y5 = Yoo, S5, € S,
Then
.1 &L
- Ez(sm (4.3)
r=1
where
N N
~ R W R 1—-W;
(r — = MEAVETIF o~ QA
0= S il € ) NZ T, Ve (44

i=1 i=1

This estimator suffers from the same problems of Hirano, Imbens, and

Ridder (2003) estimator, that is, the presence of occassional high/low values
of the propensity score produce a very bad empirical performance.

The following theorem shows that the FGA ATE estimators are consis-

tent. The intuition behind the proof is that as N increases, and R does it

but at a smaller rate, each fractile group will have individuals with similar

17



propensity score values. In the limit, the differences among them is negligi-
ble, and therefore the unconfoundedness assumption can be applied. In this
case, the local (i.e. for a given propensity score value) ATE can be obtained
by constructing the difference of the average treated and control individuals

with that propensity score value.

Theorem 1 (Consistency of ATE estimator)

Consider Assumptions 1,2 and 3 and assume that

1. The distribution functions of p and (Y1, Yo)|p are continuous and strictly

INCTeasing.
2. E[Y?] < oo, E[YZ] < o0

Then, 6L and s 25 as N,R — oo,R/N — 0.

Proof: See Appendix.

5 QTE estimators

Define the within fractile conditional quantiles:

N N T
Q" = argmin 2 iz pi € SIWi(Yi — ¢) (7 — 1[Yi < ¢])
71 — ~
! fo\il 1[p; € %;]VV%

S 1 € (1= W) (Y — ) (7 — 1[Y; < q])
Sy b € (1 = Wh)
Therefore the QTE estimator is

Q%) = argming

18



R 1B A
D0 =5 QN - o (5.1)
Similarly we define
N

< (r . 1. .. ,
QY = argmingy ~1[p € WY — )(7 — 1Y < )

i=1 £

N

S(r . 1 N r

QL = argmin,y_ == € 5|1 = W)(¥i —a)(r ~1[¥i < )
i=1 t

and
S i 1 i
b= 0 =52 QN -0 (5.2)
r=1 r=1

The following theorem proves the consistency of both QTE estimators.

Theorem 2 (Consistency of QTE estimator)

Consider Assumptions 1,2 and 3 and assume that:

The distribution function of p is continuous and strictly increasing. The
distribution function of (Y1,Yy)|p is continuous, strictly increasing and con-

tinuously differentiable.

Then, for T € (0,1), 6. 56 and 5. 5 5. as N,R — oo,R/N — 0.

Proof: See Appendix.

19



6 Monte Carlo experiments

We evaluate the performance of the proposed estimators with respect to
other estimators based on the propensity score. We compute propensity
score matching estimators using nearest neighbor procedures (with 1, 2 and
4 matches per observation), kernel and spline estimates. These estimators
were designed by Barbara Sianesi for STATA 9.1 and they are available in
the psmatch2 package. Additionally we compute Hirano, Imbens, and Ridder
(2003) semiparametric efficient estimator. In the case of QTE we compute
Firpo (2007) and Bitler, Gelbach, and Hoynes (2006) estimators. We also
compute QTE matching estimators following Diamond (2005). In this case,
for each observation, the matching procedure constructs the corresponding
matched pair (i.e. imputes the “closest” observation with the opposite treat-
ment status). Then, we compute the unconditional quantiles of the imputed
treated and non-treated distributions. A succinct description of some esti-
mators appears in the Appendix.

Our baseline model is

Xy, Xo, X3,u,e ~ N(0,1)
W=1[X; —Xo+ X5+e>0
Yi=0+Xi+Xo+u
Yo=Xi+Xo+ X5+ u

In this simple model QTEs are equal to ATE for all quantiles. We set
0 = 2. We generate 1000 replications of the baseline models for sample sizes

in {100, 200, 500, 1000, 2000} , and we compute mean square error (MSE) and

20



mean absolute error (MAE). Table 1 reports ATE estimators while Table 2
shows QTE estimators for 7 in {.10,.25,.50,.75,.90}. For FGA the number
of fractile groups are R = [N'/3] which minimizes the Integrated MSE (see
Bhattacharya and Miiller, 1993), and we also consider doubling the number
of fractile groups (i.e. R x2). We consider the two FGA estimators discussed
above, that is, 5 and d.

The FGA ATE estimator has reasonable good performance in terms of
both MSE and MAE. In almost every case, doubling the number of frac-
tile groups results in a better performance of the § estimator. However, the
contrary occurs to the § estimator. FGA ATE 6 (R x 2) achieves the same
values of the best matching estimators (using 4 neighbors and splines). In-
creasing the sample size reduces both MSE and MAE at similar rates in all
estimators. Overall the Hirano, Imbens, and Ridder (2003) and FGA ATE 6
estimators show extremely high values, mainly because a random draw may
contain occasional values of the propensity score very close to the boundary
(i.e. O or 1).

FGA QTE § estimators outperform that of Firpo (2007) for all sample
sizes and quantiles. All the estimators show consistency, although FGA
QTE reduce both MSE and MAE at higher rates than the Firpo’s estimator.
As in the last paragraph, doubling the number of fractile groups improves
the estimator performance and FGA QTE b} outperform 4. As expected,
better estimates are found in the median case than in the extreme quantiles.
Matching estimators show a relatively good performance. However, only in a
few cases they outperform the FGA QTE estimator. In particular the spline

matching estimator shows an outstanding performance for 7 = 0.9.
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Overall nonparametric FGA estimators where the propensity score is re-

estimated nonparametrically (i.e. 3) show the best performance.

7 Empirical application

We apply the estimators proposed in the paper to a widely used job training
dataset first analyzed by LaLonde (1986), the “National Supported Work
Program” (NSW). The same database was used in other applications such
as Heckman and Hotz (1989), Dehejia and Wahba (1999, 2002), Abadie and
Imbens (2002) and Firpo (2007) among others.

The program was designated as a random experiment for applicants who
if selected would had received work experience (treatment) in a wide range
of possible activities, like learning to operate a restaurant, a child care or
a construction work, for a period not exceeding twelve months. Eligible
participants were targeted from recipients of AFDC, former addicts, former
offenders and young school dropouts. Candidates eligible for the NSW were
randomized into the program between March 1975 and July 1977. The NSW
data set consists of information on earnings and employment in 1978 (out-
come variables); whether treated or not; information on earnings and employ-
ment in 1974 and 1975; and background characteristics such as education,
ethnicity, marital status and age. We use the database provided by Guido
Imbens (http://emlab.berkley.edu/users/imbens), which consist on 455 in-
dividuals, 185 treated and 260 control observations. This particular subset
is the one constructed by Dehejia and Wahba (1999) and described there in

more detail.
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We will focus on the possible effect on participants’ earnings in 1978 (if
any), that is, we answer the question: what is the effect of this particular
training program on future earnings? Provided that earnings is a continuous
variable we would be able to apply quantile analysis. A main drawback of
this variable is that those unemployed in 1978 report earnings of zero. In
1978, 92 control and 45 treated individuals were unemployed. The average
(standard deviation) of earnings in 1978 is $5300 ($6631), which breaks into
$6349 ($578) for treated and $4554 ($340) for control individuals. With-
out considering covariates, the difference between treated and non-treated
is $1794 ($671), which in a two-sample ¢ test rejects the null hypothesis of
equal values (t-stat 2.67, p-value 0.0079). We also observe differences in
terms of the percentiles in the earnings distribution. The 10th percentile for
the treated (control) is $0 ($0); the 25th percentile $485 ($0); the median
is $4232 ($3139); the 75th percentile 9643(7292); and the 90th percentile is
$14582 ($11551). Therefore, assuming the rank invariance property discussed
above, higher quantiles of the earnings distribution seems to be associated
with larger treatment effects.

The propensity score is estimated by a probit model where the dependent
variable is participation and the covariates used are the individual character-
istics and employment and earnings in 1974 and 1975. Note that the propen-
sity score is of no particular interest by itself, provided that participants were
randomly selected in the experiment. In this case, no particular covariate is
individually significant and a likelihood ratio test of joint significance gets
chi-squared(8)=8.30, p-value=0.4050.

Figure 1 presents the kernel density estimate of the estimated propen-
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sity score together with a smoothed version of earnings in 1978, separately
for both treated and non-treated. It is clearly observed a dissimilar behav-
ior. As the propensity score increases, the earnings of the treated increases
as well, while those of non-treated show no clear pattern. In other words,
those individuals who were more likely to be selected benefit more from the
treatment.

As we mention above, a common support in the propensity score domain
is necessary to make meaningful comparisons among treated and non-treated
individuals. The empirical relevance of this assumption was pointed out
by Heckman, Ichimura, and Todd (1998) and it was identified as one of
the major sources of bias. In our case, this has special importance since
consistent estimates of treatment effect requires that both the number of
treated and control is eventually large enough to apply large sample theory.
Moreover, if there are no treated (controls) in a given fractile group, no within
fractile estimate can be obtained. We use two different trimming procedures.
First, provided that we may assume that Fj(p) < Fy(p), we only consider

propensity score values in the range:

By doing this we drop 8 observations, and we refer to this sample as Trim
1. We also trim 2.5% in each tail of the propensity score distribution (Trim
2) droppping 23 observations.

Table 3 reports the propensity score estimates used in the Monte Carlo
simulation, applied to the LaLonde’s data set. The first column contains the

ATE estimate, while the second and third contain the average and standard
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deviation of a bootstrapping experiment with 1000 random samples with
replacement of the original database. The last column calculates the ATE
estimator for the two different trimming procedures discussed above. Table
4 estimates the QTE for the same quantiles analyzed in Table 2. The re-
sults confirm a positive average impact of training on earnings. FGA ATE
estimators get $1572 and $1537, which are of the same magnitude as the
kernel and spline propensity score matching estimates and the Hirano, Im-
bens, and Ridder (2003) estimates. However, nearest neighbor estimates are
below these estimates by $100. Figure 2 plots the estimated local ATE in
terms of the propensity score the FGA ATE estimators. All estimators are
very responsive to the trimming procedure, which as in Dehejia and Wahba
(1999) article, casts doubts about their robustness.

QTE estimates show considerable variability across quantiles (see Table
4). For the 10th quantile estimates are not statistically different from zero.
The median quantile is almost two thirds of the ATE estimates, reflecting
the presence of outliers in the sample or different distributional properties.
Finally for the 90th quantile, the estimates produce up to a $3000 impact,
twice the ATE. In other words, those who benefit more are those with a high
level of unobservables. Unfortunately, all the estimators show high bootstrap

standard errors.
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8 Conclusions and suggestions for future re-
search

FGA provides a simple methodology for constructing nonparametric esti-
mators of average and quantile treatment effects, under the assumption of
selection on observables. In this paper we develop estimators using the esti-
mated propensity score and we prove its consistency. Moreover, FGA QTE
estimators show a better performance than that of Firpo (2007) QTE esti-
mator, which constitutes the most relevant estimator in the literature using
the propensity score.

Similar estimators can be derived for FGA in more than one dimension
(see for instance the discussion in Bhattacharya, 1963), although its com-
putational burden is unknown. Moreover, more efficient estimators may be
obtained by applying smoothing techniques within or between fractiles (Sen,

2005).
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Figure 1: Empirical density of propensity score and earnings
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Figure 2: Empirical density of propensity score and FGA ATE
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Appendix

Proofs of Theorems

Proof of Theorem 1
Proof: Let N — oo, R and r be fixed. Then,
YL WiYillpieSy] X, (1-Wi)Yil[p; €]

; 5 — pl; _
PHMN o000 N = R S Y R TAT TR

(by Law of Large Numbers and Assumptions 2 and 3)
_ E[wxY[S;]  B[1-W)xY|Sy]

Plw|Sy) Pl(1-w)[Sy]
_ E[E[W xY|p]|Sp)| B B[E[(1-W)xY|p]|S}]
Plw(Sy] Pl(1-w)|Sy)

(by Law of Iterated Expectations)
_ BEWIxEMIS;]  E[BI-W)p]xEolplISy]
Plw|Sy) Pl(1-w)[Sy]

(by Assumption 1)

Let E[W|p] = p, PIW|S7] = p), E[Y1]p] = g1(p), E[Yolp] = g0(p), 0" =
E[Y; — Y5|ST).
Then

_ | E[e-p")e1@)IS5] | E[0-p")g0()IS5]

plimNﬁoog(’“) — o)

p(r) 1—p()
| COVpar)IS}] | COV[pigo(p)|Sy]
- /() 1—p(m)

< \/VAR [p|Ss] x C)
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where

) = (\/VARIg:(n)IS)/5") + /V ARIgo(p) 37/ (1 = 7))

Now let R, N — oco,R/N — 0.

plimN_,oog — 5‘ ’pl@mN_}OO—N f (5(” - 5(’”)> ’
< limy oo (1 )ZRZ(QV VAR [p|S }C(T)

< limy_,oo max, / VAR [p\%ﬂC

By assumptions C") is bounded and /VAR [p|S7] < supp@; p) —
infpeqr(p) < 1/R,Vr. Then 6 — 6 = O,(1/R).
The consistency of & can be easily proved by noting that within each

fractile group, the estimator is equivalent to that of Hirano, Imbens, and

Ridder (2003). Q.E.D.

Proof of Theorem 2

Note that as N — oo, R and r fixed, by convergence of sample quantiles

where




and p") = P[W = 1/S;}] is defined in the proof of Theorem 1.

Therefore,

w A(r r p A(r r
r= B[Sy < QRIS = B | LB < Qi)

However, in general

r# B [BM < QIS - B 1 < Q7I1])

This divergence can be expressed as

A(r r ]_ A(r
- E[1[%; < QU)]37) - =5 oV [p, B < Q%)ls]

= |7 —Fa@)

A(r) Qr
where F.1(q) = P[Y1 < ¢|S}] and K" = \/VARM;%SQTI} i) is bounded by

assumptions (see Theorem 1).

How does this translate into the divergence of Q') and Q)? By Taylor’s

theorem,

A(r r Fr, (QA‘(;-T))_T ]- r
QY — Q) = W + OP(EKl( 'Y= 0,(1/R)

Consider now the case that N, R — oo, R/N — 0,
== O QN = ElQna ()] = 0,(1/R)

where E[1[Y1 < Q-1(p)]|p] = 7 for all p € [p,p]. The same argument can be
applied to show the consistency of QTO.

Therefore,
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R(N)

: 1 A AW
= — — = 1
57’ R(N) o (QTl QTO ) 57' + OP( )

The consistency of o, can be easily proved by noting that within each

fractile group, the estimator is equivalent to that of Firpo (2007). Q.E.D.

Other ATE and QTE estimators

Hirano, Imbens, and Ridder (2003) semi-parametric efficient ATE estimator

is

i(wm - <1—W»5@~)

—\ Di 1 —p;
where p is a semi-parametric series estimator of the propensity score.
Bitler, Gelbach, and Hoynes (2006) QTE estimator is obtained by finding
the empirical quantiles of the weighted empirical distributions:

ZN (1-W;)1[Y;<q]

2= 1—p,
Folq) = ZN (1-Ws)

=1 1-p;

and N WillY;<q]
Z 7 i>9q

Fi(q) = Z=1N—P
POARE =
that is, ;' (1) and F~1(7).
Firpo (2007) obtains the same results by minimizing weighted convex

check functions:

N
A 1-W;
FO_I(T) = argming Z —( - )

=1

(Yi —g)(7 = 1[Yi < q])
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F7A(r) = argming 3" S (Y; — q)(r — 1[¥; < q))

i=1 Lt
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