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Abstract

Nonparametric estimators for average and quantile treatment ef-

fects are constructed using Fractile Graphical Analysis, under the

identifying assumption that selection to treatment is based on ob-

servable characteristics. The proposed method has two-steps: first,

the propensity score is estimated, and second, a blocking estimation

procedure using this estimate is used to compute treatment effects. In

both cases, the estimators are proved to be consistent. Monte Carlo

results show a better performance than other procedures based on

the propensity score. Finally, these estimators are applied to a job

training dataset.
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1 Introduction

Econometric methods for estimating the effects of certain programs (such as

job search assistance or classroom teaching programs) has been widely de-

veloped since the pioneering work of Ashenfelter (1978), LaLonde (1986) and

others. In this case, a treatment refers to a certain program whose benefits

are potentially obtainable by those selected for participation (treated) and

it has no effect on a control group (non-treated).

Estimating average treatment effects (ATE), which refers to the mean

effect of the program on a given outcome variable in parametric and non-

parametric environments (see Angrist and Krueger, 1999, Imbens, 2004) has

been a central issue in the literature. Lehmann (1974) and Docksum (1974)

introduced the concept of quantile treatment effects (QTE) as the difference

of the quantiles of the treated and control outcome distributions. In this

case, it is implicitly assumed that individuals have an intrinsic heterogene-

ity which cannot be controlled for using observables. Bitler, Gelbach, and

Hoynes (2006) discuss the costs of focusing on average treatment estimation

instead of other statistics.

Provided that in nonexperimental settings selection into treatment is not

random, ordinary least squares (OLS) and quantile regression techniques are

inconsistent. As stated by Heckman and Navarro-Lozano (2004), three dif-

ferent approaches were used to overcome this problem. First, the control

function approach explicitly models the selection mechanism and its relation

to the outcome equation; second, instrumental variables; and third, local es-

timation and aggregation. In the latter, under the unconfoundness assump-

tion, which states that conditional on a given set of exogenous covariates
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(observables) treatment occurrence is statistically independent of the poten-

tial outcomes, local unbiased estimates can be obtained by conditioning on

this set of covariates. The identification strategy we follow rely on this as-

sumption. Rosenbaum and Rubin (1983, 1984) show that adjusting solely

for differences between treated and control units in a scalar function of the

pre-treatment covariates, the propensity score, also removes the entire bias

associated with differences in pre-treatment variables.

Several estimation methods have been proposed for estimating ATE by

conditioning on the propensity score. Matching estimators are widely used in

empirical settings, and in particular propensity score matching. In this case,

each treated (non-treated) individual is matched to a non-treated (treated)

individual (or aggregate of individuals) by means of their proximity in terms

of the propensity score. Only in a few cases matching on more than one di-

mension has been used (see for instance Abadie and Imbens, 2002), because

of the computational burden that multivariate matching requires. Moreover,

Hirano, Imbens, and Ridder (2003) method uses a series estimator of the

propensity score to obtain efficient (in the sense of Hahn, 1998) ATE estima-

tors.

Estimation of QTE have been developed using the minimization of convex

check functions as in Koenker and Bassett (1978). Abadie, Angrist, and Im-

bens (2002) and Chernozhukov and Hansen (2004, 2005) develop this method-

ology using instrumental variables. On the other hand, Firpo (2007) does

not require instrumental variables, and his methodology follows a two-step

procedure: in the first stage, he estimates the propensity score using a series

estimator, while in the second, he uses a weighted quantile regression method.
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Bitler, Gelbach, and Hoynes (2006) compute QTE using the empirical distri-

bution function and derives an equivalent estimator. Diamond (2005) uses

matching to construct comparable treated and non-treated groups, and then

computes the difference between the matched sample quantiles.

An alternative source of heterogeneity comes from the consideration of

observables only. Treatment effects may vary depending on the amount of

human capital or on the income and job status of their families. Differences

in terms of these covariates determines that one may be interested in the

conditional treatment effect, that is conditional on some value of the ob-

servables. For instance, in terms of the propensity score, individuals which

are more likely to receive a treatment may have a different effect than those

which are less likely to receive it. As we show in this paper, how observables

are treated determines differences in the parameter of interest for QTE but

not for ATE. We define as the average conditional quantile treatment effect

as our parameter of interest, which can be described as the average of local

QTEs. This parameter is equivalent to the standard unconditional QTE only

in the case that the quantile treatment effect is constant.

In many cases, one would be more interested in the dependence of the

outcome variable on the fractiles (i.e. quantiles) of the covariates rather

than the covariates themselves. Mahalanobis (1960) fractile graphical anal-

ysis (FGA) methodology was developed to account for this heterogeneity in

observables. This method has awaken recent interest in the literature as a

nonparametric regression technique (Bera and Gosh, 2006, Sen, 2005).

For our purposes, this methodology can be used as an alternative to

matching, and it allows not only for estimating average but quantile treat-
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ment effects. The idea is simple: divide the covariates space into fractiles and

obtain the conditional regression (or quantile) by a step function. Provided

that the number of fractile groups increases with the number of observations,

we obtain consistent estimates of these functions, as the local estimators

would satisfy the unconfoundedness assumption1.

FGA can be viewed as a histogram-type smoother and it shares the con-

vergence rate of histograms as opposed to kernel based methods that have a

better performance. In the classification of Imbens (2004) it can be associ-

ated with the “blocking on the propensity score” methods. An advantage of

this procedure is that only the number of fractile groups needs to be chosen

as a smoothing parameter.

In spirit, this method is very similar to matching. The latter matches ev-

ery treated individual to a control (non-treated) individual whose character-

istics are similar. Then, using the unconfoundness assumption, it integrates

over the covariates as the matched sample is similar to the treated. FGA

decomposes the covariates distribution into fractiles. Then within each frac-

tile treated and non-treated individuals are compared. Finally, it integrates

over the covariates (in this case over the fractile groups) as matching does.

However, this nonparametric technique allows us to recover the complete

graph for the conditional expectation or quantiles. In the latter, we show

1Quoting Koenker and Hallock (2001, p.147): ”(...) segmenting the sample into subsets

defined according to the conditioning covariates is always a valid option. Indeed, such local

fitting underlies all nonparametric quantile regression approaches. In the most extreme

cases, we have p distinct cells corresponding to different settings of the covariate vector, x,

and quantile regression reduces simply to computing univariate quantiles for each of these

cells”.
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that the graph contains more information than the comparison of treated

and non-treated separately.

The propensity score FGA estimators are compared to other estimators

based on the propensity score. In particular we compare it to propensity

score matching estimators and Hirano, Imbens, and Ridder (2003) estimator

for ATE, and to Firpo (2007) for QTE.

The paper is organized as follows. Section 2 describes the general frame-

work and defines the parameters of interest. Section 3 reviews the literature

on FGA. Section 4 derives ATE estimators and Section 5 does it for QTE.

Section 6 presents Monte Carlo evidence on the performance of these esti-

mators while Section 7 applies them to a well-known job training dataset.

Conclusions appear in Section 8.

2 A general set-up for non-random experi-

ments and main estimands

2.1 Unconditional treatment effects

To more formally characterize the model we follow the potential-outcome

notation used in Imbens (2004) , which dates back to Fisher (1935), Neyman

(1990) and Rubin (1974, 1977, 1978) and it is standard in the literature.

Consider N individuals indexed by i = 1, 2, ..., N who may receive a

certain “treatment” (e.g. receiving job training), indicated by the binary

variable Wi = 0, 1. Each individual has a pair of potential outcomes (Y1i, Y0i)

that corresponds to the outcome with and without treatment respectively.
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The fundamental problem, of course, is the inability to observe at the same

time the same individual both with and without the treatment effect. That is,

we only observe Yi = Wi×Y1i+(1−Wi)×Y0i and a set of exogenous variables

Xi. We are interested in measuring the “effect” of the W-treatment (e.g.

whether job training increase salaries, or the chances of being employed).

A parameter of interest is the average treatment effect, ATE,

δ = E[Y1 − Y0] (2.1)

which tells us whether on average, the W-treatment has an effect on the

population.

The key identification assumption is the unconfoundedness assumption2

(Rubin, 1978, Rosenbaum and Rubin, 1983), which states that conditional

on the exogenous variables, the treatment indicator is independent of the

potential outcomes. More formally,

Assumption 1 (Unconfoundedness)

W (Y1, Y0)|X

where denotes statistical independence. Under this assumption we can iden-

tify the ATE (see Imbens, 2004) if both treated and non-treated have a

common support, that is, comparable X-values:

2Rosenbaum and Rubin (1983) called this strongly ignorable treatment assignment

assumption, Heckman, Ichimura, and Todd (1997) and Lechner (1999, 2000) conditional

independence assumption.
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δ = E[Y1 − Y0] = EX [E[Y1 − Y0|X]]

= EX [E[Y1|X,W = 1]]− EX [E[Y0|X,W = 0]]

= EX [E[Y |X,W = 1]]− EX [E[Y |X,W = 0]]

In some cases, we are interested not only on the average effect but on

the effect on a sub-group of the population. Average treatment effects do

not fully describe all the distributional features of the W-treatment. For

instance, high ability individuals may benefit differently from program par-

ticipation than low ability ones, even if they have the same value of covariates.

This determines that the effect of a certain treatment would vary according

to unobservable characteristics. A parameter of interest in the presence of

heterogeneous treatment effects is the quantile treatment effect (QTE). As

originally defined in Docksum (1974) and Lehmann (1974), the QTE cor-

responds, for any fixed percentile, to the horizontal distance between two

cumulative distribution functions. Let F0 and F1 be the control and treated

distribution of a certain outcome and let ∆(y) denote the horizontal distance

at y between F0 and F1, i.e. F0(y) = F1(y+∆(y)) or ∆(y) = F−1
1 (F0(y))−y.

We can express this effect not in terms of y, but on the quantiles of the same

variable, and the QTE is then

δτ = ∆(F−1
0 (τ)) = F−1

1 (τ)− F−1
0 (τ) ≡ Qτj −Qτj (2.2)

where Qτj, j = 0, 1 are the quantiles of the treated and non-treated outcome

distributions.

The key identification assumption here is the rank invariance assumption
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(which is implied by the unconfoundedness assumption): in both treatment

statuses, all individuals would mantain their rank in the distribution (see

Heckman, Smith, and Clemments, 1997, for a general discussion about this

assumption). Therefore, using a similar argument as in the ATE case, Firpo

(2007) shows that this assumption provides a way of identifying the QTE:

τ = E [P [Y1 ≤ Qτ1|X]] = E [P [Y0 ≤ Qτ0|X]]

= E [P [Y ≤ Qτ1|X,W = 1]] = E [P [Y ≤ Qτ0|X,W = 0]]

where the last two expectations can be estimated from the observable data.

In both cases, Assumption 1 suggests that by constructing cells of ho-

mogenous values of X, we would be able to get an unbiased estimate of the

treatment effect. However this becomes increasingly difficult and computa-

tionally imposible as the dimension of X increases. Rosenbaum and Rubin

(1983) argue that the unconfoundedness assumption can be re-stated in terms

of the propensity score, p(X) ≡ P [W = 1|X = x], under the following as-

sumption

Assumption 2 (Common support)

For all x ∈ domain(X) we have that

0 < p ≤ p(x) ≤ p̄ < 1

In this case, we have:

Lemma 1 Assumptions 1 and 2 imply that

W (Y1, Y0)|p(X)
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Proof: See Rosenbaum and Rubin (1983).

Therefore the problem can be reduced to the dimension of p(X). Through

this paper we consider estimators based only on the propensity score.

2.2 Conditional treatment effects

Let Yj(X) = E[Yi|X] and Fj(.|X),j = 0, 1 be the outcome distribution func-

tions conditional on X, and let H(.) be the distribution function of X. Then

the ATE can be defined as:

∫ [∫
Y1(X)dH(X)

]
dF1(Y1)−

∫ [∫
Y0(X)dH(X)

]
dF0(Y0)

=

∫ [∫
Y1(X)dF1(Y1|X)−

∫
Y0(X)dF0(Y0|X)

]
dH(X)

Therefore, ATE can be obtained by comparing the unconditional mean

outcome for the treated and non-treated, or by obtaining first the conditional

ATE and then integrating over the covariates space.

Now define

Qτj(x) = F−1
j (τ |X = x) ≡ inf{Yj : Fj(Yj|X = x) ≥ τ}, j = 0, 1 (2.3)

as the conditional τ -th quantile. In general

EX [Qτj(X)] 6= Qτj, j = 0, 1 (2.4)

In other words, the above equivalence cannot be applied to QTE: compar-

ing the unconditional quantiles of the outcome distributions is not equivalent
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to computing the conditional quantiles and then aggregating. Chernozhukov

and Hansen (2004, 2005) define the conditional quantile treatment effect

(CQTE) as

δτ (x) = Qτ1(x)−Qτ0(x) (2.5)

Define the average conditional quantile treatment effect (ACQTE) as

δ̄τ = EX [Qτ1(X)−Qτ0(X)] (2.6)

Strictly speaking, differences in Qτ1(X)−Qτ0(X) can either be attributed

to differences in the treatment effect or differences in the effect of the X’s on

the treated and non-treated. For instance, in a linear regression set-up, we

may have Qτj(X) = α(τ,X)j + β(τ, j)X, j = 0, 1. In the job training exam-

ple, we may have that training increases salaries and returns to schooling,

where years of schooling is X. However, in general, both parameters cannot

be identified separately, and the literature often attributes to the treatment

the whole conditional difference, that is β(τ, j) = β(τ), j = 0, 1.

In order to see these differences consider the following simple example

with one outcome variable. Let X be a uniform random variable on (0, 1)

and let

Y (X) =



0 with prob. 0.5

0.5 with prob. 0.5
if X ≤ 0.5

0.5 with prob. 0.5

1 with prob. 0.5
if X > 0.5

Here note that E[Y ] = E [EX [Y ]] by the Law of Iterated Expectations.
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Let Qτ be the quantile of the Y distribution and let Qτ (X) be the conditional

quantile of Y conditional on X. In this case,

Qτ =


0 if τ < 0.25

0.5 if 0.25 ≤ τ < 0.75

1 if τ ≥ 0.75

But,

EX [Qτ (X)] =

 0.25 if τ < 0.5

0.75 if τ ≥ 0.5

This determines that recovering the complete graph {X,Qτj(X)}, j = 0, 1

provides additional information that cannot be recovered by computing un-

conditional quantiles. Firpo (2007), Bitler, Gelbach, and Hoynes (2006) and

Diamond (2005) estimators obtain unconditional quantiles because their esti-

mators compute the difference between the treated and non-treated quantiles.

If we add X to the model and the treatment effect is constant across X,

we have the following expression:

Qτ (X) = α(τ) + β(τ)1[X > 0.5] = 0.5 + 0.5× 1[X > 0.5],∀τ (2.7)

However, in this case we would be attributing no difference across quantiles.

If we consider differences in the treatment effect across X:

Qτ (X) = α(τ,X) =



0 if τ < 0.5

0.5 if τ ≥ 0.5
if X ≤ 0.5

0.5 if τ < 0.5

1 if τ ≥ 0.5
if X > 0.5
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We assume that Yj(.), Qτj(.), j = 0, 1 can be expressed as a function

of p. In particular, for QTE we assume that the CQTE is of the form

Qτ1(p)−Qτ0(p) = α(τ, p), and therefore the ACQTE becomes

δ̄τ = Ep[Qτ1(p)−Qτ0(p)] = Ep[δτ (p)] (2.8)

which is our parameter of interest.

3 Fractile graphical analysis

Fractile graphical analysis (FGA) is a nonparametric estimation method de-

veloped first by Mahalanobis (1960) based on conditioning on the fractiles of

the X’s. It was specifically designed to compare two populations where the

X variable was influenced by inflation and therefore not directly comparable.

It has the same properties as other histogram-type estimators (Bhattacharya

and Müller, 1993). Moreover, Bhattacharya (1963) developed a conditional

quantile estimation method based on FGA. Our proposal is to use FGA to

develop estimators for both ATE and QTE. FGA produces a histogram-type

smoother by blocking on the fractiles (i.e. quantiles) of the propensity score.

FGA was originally developed for one covariate (i.e. dim(X) = 1), but

Bhattacharya (1963) and others showed that it can be extended to more

covariates. However, we will only consider FGA based on a single covariate,

the propensity score. One dimensional FGA allows us to recover the graphs

{p, γ(p)} where γ is any function of the propensity score.

Assume first that the propensity score is known and it has a distribution

function H(p). Further, assume that H(.) is continuous and strictly increas-

13



ing, and p satisfies Assumption 2. Construct R fractile groups (indexed by

r) on the propensity score:

=rp =

{
p ∈ [p, p̄] : ξ r−1

R
< p ≤ ξ r

R
, ξ r−1

R
= H−1

(
r − 1

R

)
, ξ r

R
= H−1

( r
R

)}
(3.1)

r = 1, 2, ...R

where H−1(τ) = inf{p : H(p) ≥ τ}.

Each fractile group contains a similar number of observations (i.e. about

N/R) and it has an associated interval on the domain of p defined by the

order statistics (ξ r−1
R
, ξ r

R
], such that P

[
p ∈ (ξ r−1

R
, ξ r

R
]
]
' 1/R. As the num-

ber of fractiles increases, the divergence in terms of p for all observations

within the same fractile group becomes smaller, and therefore we would be

gradually constructing groups with the same p-characteristics. In that case,

estimates within each fractile group asymptotically satisfy the unconfound-

edness assumption, provided that the conditioning set converges to a single

propensity score value.

The following lines provide a short review of the asymptotic properties of

FGA, which can be found in Bhattacharya and Müller (1993) and Bera and

Gosh (2006). Let g(p) = E[Y |P = p] and σ2(p) = V AR[Y |P = p] be the

conditional expectation and variance in terms of the propensity score, and

consider the following notation: h(t) = g ◦ H−1(t) and k(t) = σ2 ◦ H−1(t)

for t = (r − 1 + α)/R with 0 ≤ α ≤ 1. Suppose that h(.) has bounded

second derivative and k(.) has bounded first derivative. Then as N → ∞

and R → ∞ so that R/N → 0 for fixed t, the bias and the variance of an
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FGA estimator of h(t), ĥ(t) become:

BIAS : E[ĥ(t)− h(t)] = −(2R)−1h′(t)[1 + o(1)] = O(1/R)

V ARIANCE : V AR[ĥ(t)] = (R/N)
[
(1− α)2 + α2

]
k(t)[1+o(1)] = O(R/N)

so that the mean-squared error of ĥ is

MSE : MSE[ĥ(t)] =
[
(4R2)2(h′(t)) + (R/N){(1− α)2 + α2}k(t)

]
[1 + o(1)]

where 0 ≤ α = Rt − [Rt] < 1. Therefore the best rate of convergence of

fractile graphs is obtained by letting R = O(N1/3), which yields a rate of

O(N−2/3) for the Integrated MSE.

If p is not known it has to be estimated. In practice any estimate p̂ =

p + op(1) remove the bias. However, they will differ in the variance of the

estimator, provided that the first stage (i.e. the estimation of the propensity

score) need to be taken into account. Hahn (1998) shows that by using the

estimated propensity score, instead of the true propensity score, efficiency

is achieved. Hirano, Imbens, and Ridder (2003) and Firpo (2007) use a

semiparametric series estimator of the propensity score which produces this

result.

We impose the following assumption regarding the use of the estimated

propensity score:

Assumption 3 (Convergence of propensity score fractile groups)

Let p̂ be an estimator of the propensity score. Then for fixed R and for

all r,

lim
N→∞

P
[
=rp = =rp̂

]
= 1
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4 ATE estimators

FGA ATE estimators are based on imputing the unobserved outcome in each

fractile group. Let

Ŷ1i =

 Yi if Wi = 1

Y̌1i if Wi = 0


where Y̌1i =

∑N
k=1WkYk1[p̂k∈=

ri
p̂ ]∑N

k=1Wk1[p̂k∈=
ri
p̂ ]

and

Ŷ0i =

 Yi if Wi = 0

Y̌0i if Wi = 1


where Y̌0i =

∑N
k=1 (1−Wk)Yk1[p̂k∈=

ri
p̂ ]∑N

k=1 (1−Wk)1[p̂k∈=
ri
p̂ ]

Therefore the FGA ATE estimator is

δ̂ =
1

N

N∑
i=1

Ŷ1i − Ŷ0i =
1

N

N∑
i=1

Y̌1i − Y̌0i (4.1)

Similarly, it can be expressed as

δ̂ =
1

R

R∑
r=1

δ̂(r) (4.2)

where

δ̂(r) =

∑N
i=1 WiYi1[p̂i ∈ =rp̂]∑N
i=1Wi1[p̂i ∈ =rp̂]

−
∑N

i=1 (1−Wi)Yi1[p̂i ∈ =rp̂]∑N
i=1 (1−Wi)1[p̂i ∈ =rp̂]

The logic of this estimator is based on that of Hahn (1998) ”nonpara-

metric imputation”. In this case, witihin each fractile group, E[WY |=rp],
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E[(1 − W )Y |=rp] and E[W |=rp] are estimated nonparametrically using the

previously estimated propensity score (p̂).

Alternatively we construct a similar estimator using the weighting tech-

nique described in Hirano, Imbens, and Ridder (2003). Let

Ỹ1i =

 Yi if Wi = 1

Y̆1i if Wi = 0


where Y̆1i =

∑N
k=1

WkYk
p̂k

1[p̂k ∈ =rip̂ ]

and

Ỹ0i =

 Yi if Wi = 0

Y̆0i if Wi = 1


where Y̆0i =

∑N
k=1

(1−Wk)Yk
1−p̂k

1[p̂k ∈ =rip̂ ].

Then

δ̃ =
1

R

R∑
r=1

δ̃(r) (4.3)

where

δ̃(r) =
R

N

N∑
i=1

Wi

p̂i
Yi1[p̂i ∈ =rp̂]−

R

N

N∑
i=1

1−Wi

1− p̂i
Yi1[p̂i ∈ =rp̂] (4.4)

This estimator suffers from the same problems of Hirano, Imbens, and

Ridder (2003) estimator, that is, the presence of occassional high/low values

of the propensity score produce a very bad empirical performance.

The following theorem shows that the FGA ATE estimators are consis-

tent. The intuition behind the proof is that as N increases, and R does it

but at a smaller rate, each fractile group will have individuals with similar
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propensity score values. In the limit, the differences among them is negligi-

ble, and therefore the unconfoundedness assumption can be applied. In this

case, the local (i.e. for a given propensity score value) ATE can be obtained

by constructing the difference of the average treated and control individuals

with that propensity score value.

Theorem 1 (Consistency of ATE estimator)

Consider Assumptions 1,2 and 3 and assume that

1. The distribution functions of p and (Y1, Y0)|p are continuous and strictly

increasing.

2. E[Y 2
1 ] <∞, E[Y 2

0 ] <∞

Then, δ̂
P→ δ and δ̃

P→ δ as N,R→∞,R/N → 0.

Proof: See Appendix.

5 QTE estimators

Define the within fractile conditional quantiles:

Q̂
(r)
τ1 = argminq

∑N
i=1 1[p̂i ∈ =rp̂]Wi(Yi − q)(τ − 1[Yi ≤ q])∑N

i=1 1[p̂i ∈ =rp̂]Wi

Q̂
(r)
τ0 = argminq

∑N
i=1 1[p̂i ∈ =rp̂](1−Wi)(Yi − q)(τ − 1[Yi ≤ q])∑N

i=1 1[p̂i ∈ =rp̂](1−Wi)

Therefore the QTE estimator is
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δ̂τ =
1

R

R∑
r=1

δ̂(r)
τ =

1

R

R∑
r=1

Q̂
(r)
τ1 − Q̂

(r)
τ0 (5.1)

Similarly we define

Q̃
(r)
τ1 = argminq

N∑
i=1

1

p̂i
1[p̂i ∈ =rp̂]Wi(Yi − q)(τ − 1[Yi ≤ q])

Q̃
(r)
τ0 = argminq

N∑
i=1

1

1− p̂i
1[p̂i ∈ =rp̂](1−Wi)(Yi − q)(τ − 1[Yi ≤ q])

and

δ̃τ =
1

R

R∑
r=1

δ̃(r)
τ =

1

R

R∑
r=1

Q̃
(r)
τ1 − Q̃

(r)
τ0 (5.2)

The following theorem proves the consistency of both QTE estimators.

Theorem 2 (Consistency of QTE estimator)

Consider Assumptions 1,2 and 3 and assume that:

The distribution function of p is continuous and strictly increasing. The

distribution function of (Y1, Y0)|p is continuous, strictly increasing and con-

tinuously differentiable.

Then, for τ ∈ (0, 1), δ̂τ
P→ δτ and δ̃τ

P→ δτ as N,R→∞,R/N → 0.

Proof: See Appendix.
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6 Monte Carlo experiments

We evaluate the performance of the proposed estimators with respect to

other estimators based on the propensity score. We compute propensity

score matching estimators using nearest neighbor procedures (with 1, 2 and

4 matches per observation), kernel and spline estimates. These estimators

were designed by Barbara Sianesi for STATA 9.1 and they are available in

the psmatch2 package. Additionally we compute Hirano, Imbens, and Ridder

(2003) semiparametric efficient estimator. In the case of QTE we compute

Firpo (2007) and Bitler, Gelbach, and Hoynes (2006) estimators. We also

compute QTE matching estimators following Diamond (2005). In this case,

for each observation, the matching procedure constructs the corresponding

matched pair (i.e. imputes the “closest” observation with the opposite treat-

ment status). Then, we compute the unconditional quantiles of the imputed

treated and non-treated distributions. A succinct description of some esti-

mators appears in the Appendix.

Our baseline model is

X1, X2, X3, u, e ∼ N(0, 1)

W = 1[X1 −X2 +X3 + e > 0]

Y1 = δ +X1 +X2 + u

Y0 = X1 +X2 +X3 + u

In this simple model QTEs are equal to ATE for all quantiles. We set

δ = 2. We generate 1000 replications of the baseline models for sample sizes

in {100, 200, 500, 1000, 2000} , and we compute mean square error (MSE) and
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mean absolute error (MAE). Table 1 reports ATE estimators while Table 2

shows QTE estimators for τ in {.10, .25, .50, .75, .90}. For FGA the number

of fractile groups are R = [N1/3] which minimizes the Integrated MSE (see

Bhattacharya and Müller, 1993), and we also consider doubling the number

of fractile groups (i.e. R×2). We consider the two FGA estimators discussed

above, that is, δ̂ and δ̃.

The FGA ATE estimator has reasonable good performance in terms of

both MSE and MAE. In almost every case, doubling the number of frac-

tile groups results in a better performance of the δ̂ estimator. However, the

contrary occurs to the δ̃ estimator. FGA ATE δ̂ (R × 2) achieves the same

values of the best matching estimators (using 4 neighbors and splines). In-

creasing the sample size reduces both MSE and MAE at similar rates in all

estimators. Overall the Hirano, Imbens, and Ridder (2003) and FGA ATE δ̃

estimators show extremely high values, mainly because a random draw may

contain occasional values of the propensity score very close to the boundary

(i.e. 0 or 1).

FGA QTE δ̂ estimators outperform that of Firpo (2007) for all sample

sizes and quantiles. All the estimators show consistency, although FGA

QTE reduce both MSE and MAE at higher rates than the Firpo’s estimator.

As in the last paragraph, doubling the number of fractile groups improves

the estimator performance and FGA QTE δ̂ outperform δ̃. As expected,

better estimates are found in the median case than in the extreme quantiles.

Matching estimators show a relatively good performance. However, only in a

few cases they outperform the FGA QTE estimator. In particular the spline

matching estimator shows an outstanding performance for τ = 0.9.
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Overall nonparametric FGA estimators where the propensity score is re-

estimated nonparametrically (i.e. δ̂) show the best performance.

7 Empirical application

We apply the estimators proposed in the paper to a widely used job training

dataset first analyzed by LaLonde (1986), the “National Supported Work

Program” (NSW). The same database was used in other applications such

as Heckman and Hotz (1989), Dehejia and Wahba (1999, 2002), Abadie and

Imbens (2002) and Firpo (2007) among others.

The program was designated as a random experiment for applicants who

if selected would had received work experience (treatment) in a wide range

of possible activities, like learning to operate a restaurant, a child care or

a construction work, for a period not exceeding twelve months. Eligible

participants were targeted from recipients of AFDC, former addicts, former

offenders and young school dropouts. Candidates eligible for the NSW were

randomized into the program between March 1975 and July 1977. The NSW

data set consists of information on earnings and employment in 1978 (out-

come variables); whether treated or not; information on earnings and employ-

ment in 1974 and 1975; and background characteristics such as education,

ethnicity, marital status and age. We use the database provided by Guido

Imbens (http://emlab.berkley.edu/users/imbens), which consist on 455 in-

dividuals, 185 treated and 260 control observations. This particular subset

is the one constructed by Dehejia and Wahba (1999) and described there in

more detail.

22



We will focus on the possible effect on participants’ earnings in 1978 (if

any), that is, we answer the question: what is the effect of this particular

training program on future earnings? Provided that earnings is a continuous

variable we would be able to apply quantile analysis. A main drawback of

this variable is that those unemployed in 1978 report earnings of zero. In

1978, 92 control and 45 treated individuals were unemployed. The average

(standard deviation) of earnings in 1978 is $5300 ($6631), which breaks into

$6349 ($578) for treated and $4554 ($340) for control individuals. With-

out considering covariates, the difference between treated and non-treated

is $1794 ($671), which in a two-sample t test rejects the null hypothesis of

equal values (t-stat 2.67, p-value 0.0079). We also observe differences in

terms of the percentiles in the earnings distribution. The 10th percentile for

the treated (control) is $0 ($0); the 25th percentile $485 ($0); the median

is $4232 ($3139); the 75th percentile 9643(7292); and the 90th percentile is

$14582 ($11551). Therefore, assuming the rank invariance property discussed

above, higher quantiles of the earnings distribution seems to be associated

with larger treatment effects.

The propensity score is estimated by a probit model where the dependent

variable is participation and the covariates used are the individual character-

istics and employment and earnings in 1974 and 1975. Note that the propen-

sity score is of no particular interest by itself, provided that participants were

randomly selected in the experiment. In this case, no particular covariate is

individually significant and a likelihood ratio test of joint significance gets

chi-squared(8)=8.30, p-value=0.4050.

Figure 1 presents the kernel density estimate of the estimated propen-
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sity score together with a smoothed version of earnings in 1978, separately

for both treated and non-treated. It is clearly observed a dissimilar behav-

ior. As the propensity score increases, the earnings of the treated increases

as well, while those of non-treated show no clear pattern. In other words,

those individuals who were more likely to be selected benefit more from the

treatment.

As we mention above, a common support in the propensity score domain

is necessary to make meaningful comparisons among treated and non-treated

individuals. The empirical relevance of this assumption was pointed out

by Heckman, Ichimura, and Todd (1998) and it was identified as one of

the major sources of bias. In our case, this has special importance since

consistent estimates of treatment effect requires that both the number of

treated and control is eventually large enough to apply large sample theory.

Moreover, if there are no treated (controls) in a given fractile group, no within

fractile estimate can be obtained. We use two different trimming procedures.

First, provided that we may assume that F1(p) ≤ F0(p), we only consider

propensity score values in the range:

p∗ = min
p

(pi,Wi = 1) ≤ p ≤ max
p

(pi,Wi = 0) = p̄∗

By doing this we drop 8 observations, and we refer to this sample as Trim

1. We also trim 2.5% in each tail of the propensity score distribution (Trim

2) droppping 23 observations.

Table 3 reports the propensity score estimates used in the Monte Carlo

simulation, applied to the LaLonde’s data set. The first column contains the

ATE estimate, while the second and third contain the average and standard
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deviation of a bootstrapping experiment with 1000 random samples with

replacement of the original database. The last column calculates the ATE

estimator for the two different trimming procedures discussed above. Table

4 estimates the QTE for the same quantiles analyzed in Table 2. The re-

sults confirm a positive average impact of training on earnings. FGA ATE

estimators get $1572 and $1537, which are of the same magnitude as the

kernel and spline propensity score matching estimates and the Hirano, Im-

bens, and Ridder (2003) estimates. However, nearest neighbor estimates are

below these estimates by $100. Figure 2 plots the estimated local ATE in

terms of the propensity score the FGA ATE estimators. All estimators are

very responsive to the trimming procedure, which as in Dehejia and Wahba

(1999) article, casts doubts about their robustness.

QTE estimates show considerable variability across quantiles (see Table

4). For the 10th quantile estimates are not statistically different from zero.

The median quantile is almost two thirds of the ATE estimates, reflecting

the presence of outliers in the sample or different distributional properties.

Finally for the 90th quantile, the estimates produce up to a $3000 impact,

twice the ATE. In other words, those who benefit more are those with a high

level of unobservables. Unfortunately, all the estimators show high bootstrap

standard errors.
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8 Conclusions and suggestions for future re-

search

FGA provides a simple methodology for constructing nonparametric esti-

mators of average and quantile treatment effects, under the assumption of

selection on observables. In this paper we develop estimators using the esti-

mated propensity score and we prove its consistency. Moreover, FGA QTE

estimators show a better performance than that of Firpo (2007) QTE esti-

mator, which constitutes the most relevant estimator in the literature using

the propensity score.

Similar estimators can be derived for FGA in more than one dimension

(see for instance the discussion in Bhattacharya, 1963), although its com-

putational burden is unknown. Moreover, more efficient estimators may be

obtained by applying smoothing techniques within or between fractiles (Sen,

2005).
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Figure 1: Empirical density of propensity score and earnings
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Figure 2: Empirical density of propensity score and FGA ATE
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Appendix

Proofs of Theorems

Proof of Theorem 1

Proof: Let N →∞, R and r be fixed. Then,

plimN→∞δ̂
(r) = plimN→∞

∑N
i=1WiYi1[p̂i∈=rp̂]∑N
i=1Wi1[p̂i∈=rp̂]

−
∑N
i=1 (1−Wi)Yi1[p̂j∈=rp̂]∑N
i=1 (1−Wi)1[p̂i∈=rp̂]

(by Law of Large Numbers and Assumptions 2 and 3)

=
E[W×Y |=rp]
P [W |=rp]

− E[(1−W )×Y |=rp]
P [(1−W )|=rp]

=
E[E[W×Y |p]|=rp]

P [W |=rp]
− E[E[(1−W )×Y |p]|=rp]

P [(1−W )|=rp]

(by Law of Iterated Expectations)

=
E[E[W |p]×E[Y1|p]|=rp]

P [W |=rp]
− E[E[(1−W )|p]×E[Y0|p]|=rp]

P [(1−W )|=rp]

(by Assumption 1)

Let E[W |p] = p, P [W |=rp] ≡ p̄(r), E[Y1|p] = g1(p), E[Y0|p] = g0(p), δ(r) =

E[Y1 − Y0|=rp].

Then

∣∣∣plimN→∞δ̂
(r) − δ(r)

∣∣∣ =

∣∣∣∣E[(p−p̄(r))g1(p)|=rp]
p̄(r)

+
E[(p−p̄(r))g0(p)|=rp]

1−p̄(r)

∣∣∣∣
=

∣∣∣∣COV [p;g1(p)|=rp]
p̄(r)

+
COV [p;g0(p)|=rp]

1−p̄(r)

∣∣∣∣
≤
√
V AR

[
p|=rp

]
× C(r)
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where

C(r) =
(√

V AR[g1(p)|=rp]/p̄(r) +
√
V AR[g0(p)|=rp]/(1− p̄(r))

)
Now let R,N →∞,R/N → 0.

∣∣∣plimN→∞δ̂ − δ
∣∣∣ =

∣∣∣plimN→∞
1

R(N)

∑R(N)
r=1

(
δ̂(r) − δ(r)

)∣∣∣
≤ limN→∞

1
R(N)

∑R(N)
r=1

√
V AR

[
p|=rp

]
C(r)

≤ limN→∞maxr

√
V AR

[
p|=rp

]
C(r)

By assumptions C(r) is bounded and
√
V AR

[
p|=rp

]
≤ supp∈=rp(p) −

infp∈=rp(p) ≤ 1/R, ∀r. Then δ̂ − δ = Op(1/R).

The consistency of δ̃ can be easily proved by noting that within each

fractile group, the estimator is equivalent to that of Hirano, Imbens, and

Ridder (2003). Q.E.D.

Proof of Theorem 2

Note that as N →∞, R and r fixed, by convergence of sample quantiles

Q̂
(r)
τ1

p→ F−1
r,W=1(τ)

where

Fr,W=1(q) ≡ P [Y ≤ q|=rp,W = 1] = E[1[Y ≤ q]|=rp,W = 1] =
E
[
W1[Y ≤ q]|=rp

]
p̄(r)
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and p̄(r) = P [W = 1|=rp] is defined in the proof of Theorem 1.

Therefore,

τ = E

[
W

p̄(r)
1[Y ≤ Q̂

(r)
τ1 ]|=rp

]
= E

[
p

p̄(r)
E[1[Y1 ≤ Q̂

(r)
τ1 ]|p]|=rp

]
However, in general

τ 6= E
[
E[1[Y1 ≤ Q̂

(r)
τ1 ]|p]|=rp

]
= E

[
1[Y1 ≤ Q̂

(r)
τ1 ]|=rp

]
This divergence can be expressed as

∣∣∣τ − E[1[Y1 ≤ Q̂
(r)
τ1 ]|=rp]

∣∣∣ =
∣∣∣τ − Fr,1(Q̂

(r)
τ1 )
∣∣∣ =

1

p̄(r)

∣∣∣COV [p, E[1[Y1 ≤ Q̂
(r)
τ1 ]|p]|=rp

]∣∣∣ ≤ 1

R
×K(r)

1

where Fr,1(q) = P [Y1 ≤ q|=rp] and K
(r)
1 =

√
V AR[1[Y0≤Q̂(r)

τ1 ]|=rp]

p̄(r)
is bounded by

assumptions (see Theorem 1).

How does this translate into the divergence of Q̂
(r)
τ1 and Q

(r)
τ1 ? By Taylor’s

theorem,

Q̂
(r)
τ1 −Q

(r)
τ1 =

Fr,1(Q̂
(r)
τ1 )− τ

fr,1(Q
(r)
τ1 )

+ op(
1

R
K

(r)
1 ) = Op(1/R)

Consider now the case that N,R→∞, R/N → 0,

∣∣∣∣∣∣ 1

R(N)

R(N)∑
r=1

Q̂
(r)
τ1 − E[Qτ1(p)]

∣∣∣∣∣∣ = Op(1/R)

where E[1[Y1 ≤ Qτ1(p)]|p] = τ for all p ∈ [p, p̄]. The same argument can be

applied to show the consistency of Q̂τ0.

Therefore,
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δ̂τ =
1

R(N)

R(N)∑
r=1

(Q̂
(r)
τ1 − Q̂

(r)
τ0 ) = δτ + op(1)

The consistency of δ̃τ can be easily proved by noting that within each

fractile group, the estimator is equivalent to that of Firpo (2007). Q.E.D.

Other ATE and QTE estimators

Hirano, Imbens, and Ridder (2003) semi-parametric efficient ATE estimator

is

N∑
i=1

(
WiYi
p̂i
− (1−Wi)Yi

1− p̂i

)
where p̂ is a semi-parametric series estimator of the propensity score.

Bitler, Gelbach, and Hoynes (2006) QTE estimator is obtained by finding

the empirical quantiles of the weighted empirical distributions:

F̂0(q) =

∑N
i=1

(1−Wi)1[Yi≤q]
1−p̂i∑N

i=1
(1−Wi)

1−p̂i

and

F̂1(q) =

∑N
i=1

Wi1[Yi≤q]
p̂i∑N

i=1
Wi

p̂i

that is, F̂−1
0 (τ) and F̂−1(τ).

Firpo (2007) obtains the same results by minimizing weighted convex

check functions:

F̂−1
0 (τ) = argminq

N∑
i=1

(1−Wi)

1− p̂i
(Yi − q)(τ − 1[Yi ≤ q])
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F̂−1
1 (τ) = argminq

N∑
i=1

Wi

p̂i
(Yi − q)(τ − 1[Yi ≤ q])
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