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Abstract

One of the main implications of the efficient market hypothesis (EMH) is that expected
future returns on financial assets are not predictable if investors are risk neutral. In this
paper we argue that financial time series offer more information than that this hypothesis
seems to supply. In particular we postulate that runs of very large returns can be predictable
for small time periods. In order to prove this we propose a TAR(3,1)-GARCH(1,1) model
that is able to describe two different types of extreme events: a first type generated by large
uncertainty regimes where runs of extremes are not predictable and a second type where
extremes come from isolated dread/joy events. This model is new in the literature in nonlinear
processes. Its novelty resides on two features of the model that make it different from previous
TAR methodologies. The regimes are motivated by the occurrence of extreme values and
the threshold variable is defined by the shock affecting the process in the preceding period.
In this way this model is able to uncover dependence and clustering of extremes in high
as well as in low volatility periods. This model is tested with data from General Motors
stock prices corresponding to two crises that had a substantial impact in financial markets
worldwide; the Black Monday of October 1987 and September 11th, 2001. By analyzing the
periods around these crises we find evidence of statistical significance of our model and thereby
of predictability of extremes for September 11th but not for Black Monday. These findings
support the hypotheses of a big negative event producing runs of negative returns in the first
case, and of the burst of a worldwide stock market bubble in the second example.
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1 Introduction

In stationary linear time series models the extreme values are generated by the distribution

function of the error term, thereby the importance of assuming distributions with higher

kurtosis than the Gaussian distribution to describe these events. On the other hand for

stationary nonlinear (multiplicative) models extreme observations can be generated either by

the volatility process or by the error distribution function. GARCH models are thought as

natural candidates for time series exhibiting clustering of extremes for they are able to generate

this feature by the structure of dependence in the conditional volatility together with the shape

of the error distribution. These processes modeling the conditional volatility, see Engle (1982)

or Bollerslev (1986), are not capable however of producing runs of extremes of positive or

negative sign. In particular if the error distribution is symmetric these processes satisfy that

P{yt ≤ −v|=t−1} = P{yt > v|=t−1}, (1)

with v some positive value and =t−1 denoting the filtration generated by the set of available

information up to time t-1. This property also holds for more convoluted GARCH type

processes as E-GARCH of Nelson (1991), T-GARCH of Glosten, Jagannathan and Runkle

(1993) and Zakoian (1994), or other related models as the stochastic volatility processes of

Taylor (1994) and Harvey, Ruiz and Shephard (1994).

A straightforward extension of these processes are ARMA-GARCH models. These pro-

cesses model the conditional mean and make allowance then for mean values different from

zero that tilt the conditional distribution of the time series yt in one or other direction making

more likely extreme values of the same sign of the conditional mean. A positive mean implies

a higher likelihood of extreme values in the positive tail for example. This property however

is challenging for example for describing periods where the sequence exhibits runs of extremes

of opposite sign than the mean. In this case these ARMA-GARCH processes should consider

distributions with heavier tails than the Gaussian. Despite of this allowance, these models are

not good candidates either to describe the data if there is no observed correlation in the mean

of the sequence under study. This is particularly relevant for financial data.

An alternative widely explored that extends the ARMA processes is the use of nonlinear

models for the mean. These models are founded on the assumption of different regimes or

states of the world and are used to capture different nonlinear phenomena exhibited by time

series without having to entertain distribution errors different from the Gaussian probability

law. Examples of these nonlinear phenomena are asymmetries, time-irreversibility, different

tail behavior of the distribution of the data, etc. These models have enjoyed a great popularity
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since the early work of Tong and Lim (1980), Tong (1983, 1990), Tsay (1989) or Granger and

Teräsvista (1993) that provide a general survey. For alternatives contemplating the presence of

unit roots for certain regimes see Gonzalez and Gonzalo (1998) and for methods for estimating

and testing for the presence of threshold effects see Chan (1990), Hansen (1996, 1999) or

Gonzalo and Pitarakis (2002). Other possibility is Smooth Transition Models (STAR) that

have an infinite number of regimes and the variable under study changes smoothly from one

state to the other, see Teräsvirta (1994) among others.

Regarding the way in which the regime evolves over time two classes of threshold models can

be distinguished. In the first class regimes are determined by an observable variable, examples

of this with a finite number of regimes are the initial Threshold AutoRegressive (TAR) model

of Tong (1978) or self-exciting processes (SETAR) where the threshold variable is a lagged

value of the time series itself. The models in the second class assume that the regime cannot

be observed and are determined by an unobservable stochastic process. In this class lies the

widely studied Markov Switching Models, see Hamilton (1989), the STOPBREAK model of

Engle and Smith (1999) or TIMA models of Gonzalo and Martinez (2006). In the last two

cases the threshold variable is the shock that is not observable although estimable.

In this paper we claim that runs of very large observations of stationary time series can be

under some conditions predictable for small time periods. In order to accommodate this pos-

tulate we propose a TAR model that has ingredients from both classes of nonlinear threshold

models. The threshold variable is given by the term representing upcoming information into

the model but lagged one period. This variable is not observable by its nature, but can be

estimated at time t. The possibility of conditional heteroscedasticity is also entertained, thus

the model we propose is a TAR(3,1)-GARCH(1,1) process defined as follows:

yt = α +





ρ1yt−1 + htεt, εt−1 < u1,

htεt, u1 ≤ εt−1 ≤ u2,

ρ3yt−1 + htεt, εt−1 > u2,

(2)

with εt denoting the shock term, u1 and u2 threshold values defining the TAR (3,1) model,

and ht describing a GARCH (1,1) process for the volatility dynamics in the error term.

If the thresholds u1 and u2 define the lower and upper bound respectively of the sequence

of extreme values of εt this model is able to distinguish two different types of extreme events

in yt. A first type generated by large uncertainty regimes where runs of extremes are not

predictable (middle regime) and a second type where extremes come from isolated dread/joy

events (extreme shocks). In this way the process makes allowance for dependence of extremes

not only produced by high volatility regimes but by mean dependence produced by the occur-

3



rence of extreme shocks. While for economic and financial time series the first class of extremes

is identified with periods of high uncertainty the second one could well describe for example

booms and bursts in financial markets, periods of peaks in energy prices due to sudden weather

variations as for example cold snaps, or periods of underpriced/overpriced currencies due to

large country-related shocks and reflected in extreme values of the sequence of exchange rates.

The paper is structured as follows. In Section 2 the model, statistical properties and condi-

tions to ensure stationarity and geometric ergodicity are introduced. Forecasting properties in

the short and long run are also studied. Section 3 discusses the estimation of the parameters of

the model and of the threshold variable, and hypothesis testing, this understood as statistical

significance of the threshold effect against pure GARCH(1,1) and AR(1)-GARCH(1,1) mod-

els. This section also presents a Monte-Carlo analysis of the performance of size and power

of the statistical test for finite samples. Section 4 discusses the suitability of these models to

describe the so-called stylized facts of financial returns. Section 5 introduces an application

of the methodology to measure the effect on General Motors (GM) stock prices of two crises

that had a substantial impact in financial markets worldwide; the Black Monday of October

1987 and September 11th, 2001. Finally, Section 6 concludes. All proofs are gathered into a

mathematical appendix.

2 A TAR(3,1)-GARCH(1,1) model

We consider the following threshold autoregressive model with three regimes where we make al-

lowance for conditional heteroscedasticity. The main feature of this model is that the threshold

variable is the term describing shocks but one period lagged. A general model can be described

as follows:

yt = α +





ρ1yt−1 + htεt, εt−1 < u1,

ρ2yt−1 + htεt, u1 ≤ εt−1 ≤ u2,

ρ3yt−1 + htεt, εt−1 > u2,

(3)

with u1 and u2 threshold values defining the TAR (3,1) model, and ht describing a GARCH

(1,1) process for the volatility dynamics in the error term. This is denoted by at and defined

as at = htεt with

h2
t = β0 + β1a

2
t−1 + β2h

2
t−1, (4)

and {εt} a sequence of random shocks following a distribution function (d.f.) Fε(·) with mean

zero and variance one. The corresponding density function will be denoted by fε(·).
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For the analysis of financial returns we focus on the following model:

yt = α + ρtyt−1 + at, (5)

with ρt = ρ1I(εt−1 < u1) + ρ3I(εt−1 > u2), where I(A) denotes the indicator function that

takes a value of 1 if A is true and zero otherwise. Another alternative is considering as threshold

variable the error term at. In this case the threshold values are time varying and depend on

the volatility regime. The model is as follows

yt = α +
[
ρ1I(at−1 < u∗1,t) + ρ3I(at−1 > u∗2,t)

]
yt−1 + at, (6)

with u∗j,t = ht−1uj , j = 1, 2, threshold values that depend on the conditional volatility process.

Note from this representation of the model that this process allows to identify extreme obser-

vations in low volatility regimes for the size of preceding shocks determine the occurrence of

extreme values and not previous observations of the sequence yt as in SETAR methodologies.

This process accommodates many different dependence structures. Some examples are

plotted below. Note that these processes could well describe time series of financial returns.
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Figure 2.1. Time series representing three different TAR(3,1)-GARCH(1,1) processes. The

left panel depicts a process with α = 0, (ρ1, ρ2, ρ3) = (−0.7, 0, 0.7) and (β0, β1, β2) = (1, 0, 0).

The parameters of the middle panel are α = 0, (ρ1, ρ2, ρ3) = (−0.7, 0, 0.7) and (β0, β1, β2) =

(0.05, 0.10, 0.85), and for the right panel α = 0, (ρ1, ρ2, ρ3) = (0.7, 0, 0.7) and (β0, β1, β2) =

(0.05, 0.10, 0.85). The error follows a standard Gaussian distribution. The threshold values

are u1 = −1.64 and u2 = 1.64 and the sample size is n = 1000.

Other assumptions on the model are

Assumptions.-

A.1 {εt} is an independent and identically distributed (iid) sequence.
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A.2 β0 > 0 and βi ≥ 0 for i = 1, 2.

A.3 E
[
max

(
0, log|β1ε

2
t + β2|

)]
< ∞.

A.4 E
[
log(β1ε

2
t + β2)

]
< 0.

A.5 β1 + β2 < 1.

A.6 −∞ < E [log(ρt)] < 0.

The assumptions A.1 to A.4 or A.1, A.2 and A.5 are conditions for the strict stationarity

and ergodicity of the GARCH process at. Assumption A.6 is a standard condition to show

the strict stationarity and ergodicity of threshold models. Then we are prepared to introduce

Theorem 1.

Theorem 1.- Assume that A.1 to A.4 and A.6 hold, then process (3) has a unique strictly

stationary and ergodic solution. Equally, substituting A.3 and A.4 by A.5, the same result

is obtained.

All proofs are gathered in the mathematical appendix. The following proposition sets

the conditions to ensure that the first k statistical moments of (3) are finite. First define

‖x‖k =
(
E

[
xk

])1/k.

Proposition 1.- Under the assumptions in Theorem 1 and the following conditions

A.7 E [‖ρt‖k] < 1,

A.8 ‖ε2
t‖k/2 < ∞ and E

[(
β1ε

2
t + β2

)k/2
]

< 1,

the first k statistical moments of {yt, at} defined on process (3) are finite.

Now we present the first two moments of model (3).

Proposition 2.- Under assumptions in Proposition 1 for k = 2, the first two statistical

moments of the process yt = α + ρtyt−1 + htεt are

E[yt] =
α

1− E[ρt]
+

E[ρtat−1]
1− E[ρt]

. (7)

If we further assume that the process has zero unconditional mean, the unconditional variance

is

V ar[yt] =
V ar[at]

1− E [ρ2
t ]

+
Cov

(
ρ2

t , y
2
t−1

)− E2 [ρtyt−1]
1− E [ρ2

t ]
. (8)

Note that the randomness of the autoregressive parameter adds one extra term E[ρtat−1]
1−E[ρt]

in the unconditional mean, and
Cov(ρ2

t ,y2
t−1)−E2[ρtyt−1]

1−E[ρ2
t ]

in the unconditional variance. Further,
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in contrast to standard AR, TAR processes a zero intercept does not necessarily imply a zero

unconditional mean.

The expression for the optimal forecast l -periods ahead for the TAR(3,1)-GARCH(1,1)

model is also an extension of the corresponding formulas for the AR-GARCH methodology.

Thus, the optimal forecasts one-period ahead of yt using the mean square prediction error

criterion are

E[yt+1|=t] = ρt+1yt, (9)

and

V [yt+1|=t] = h2
t+1. (10)

For longer forecast horizons these expressions take more involved forms.

Proposition 3.- Under assumptions in Proposition 2 the optimal forecast l-periods ahead,

with l > 1, of the process yt = α + ρtyt−1 + htεt are

E[yt+l|=t] = α
1− E[ρt+1]l−2

1− E[ρt+1]
+ E[ρt+1]l−1ρt+1yt +

l−1∑

i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1. (11)

Furthermore, as l →∞ the optimal conditional forecast converges to the unconditional mean,

E[yt+l|=t]
L2→ α

1− E[ρt+1]
+

E[ρt+1at]
1− E[ρt+1]

. (12)

These forecasts depend on the linear model parameters of both extreme regimes. Note that

in the case of both the distribution of the shock and the threshold values being symmetric the

long term forecast depends more on the contribution of the regime exhibiting higher extreme

dependence. Also, for short forecast horizons not only Fε(·) but also the value of the latest

recorded shock have an effect on the forecasted value.

The main advantage of this model is its flexibility to describe the dynamics in the mean

of the process. In contrast to standard TAR models the regimes depend on the lagged error

variable and hence the model can accommodate asymmetries in the likelihood of positive and

negative extremes and in the sequence of runs of extremes depending on the nature of the

preceding shock. The case of asymmetric tails already mentioned in (1) is illustrated as

follows:

Pt−1{yt ≤ −v} = Fε

(−v − (α + ρtyt−1)
ht

)
, (13)
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and

Pt−1{yt > v} = 1− Fε

(
v − (α + ρtyt−1)

ht

)
, (14)

with v > 0 a threshold value determining the tail regions, and Ps{At} = P{At|=s}. If Fε(·)
is symmetric about zero

Pt−1{yt > v} = Fε

(−v + (α + ρtyt−1)
ht

)
, (15)

that is different from (13) unless the conditional mean process is zero.

The possibility of runs of extremes is also entertained, the corresponding probabilities are

calculated in the following proposition.

Proposition 4.-

Pt−2 {yt ≤ −v, yt−1 ≤ −v} =
∫ x1t

−∞
Fε

(−v − (α + ρ1 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε

+
∫ x2t

x1t

Fε

(−v − (α + ρ2 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε

+
∫ x3t

u2

Fε

(−v − (α + ρ3 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε,

where zt−2 = E (yt−1| =t−2) = α+ρt−1yt−2, x1t = min
{

u1,
−v−zt−2

ht−1

}
, x2t = min

{
u2,

−v−zt−2
ht−1

}
, x3t =

max
{

u2,
−v−zt−2

ht−1

}
and v denotes a positive threshold. Equally,

Pt−2 {yt ≥ v, yt−1 ≥ v} = Fε

(
v − zt−2

ht−1

)

−
∫ u1

x′1t

Fε

(
v − (α + ρ1 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε

−
∫ x′2t

x′3t

Fε

(
v − (α + ρ2 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε

−
∫ ∞

x′2t

Fε

(
v − (α + ρ3 (zt−2 + εht−1))

ht (ε)

)
fε (ε) ∂ε,

where x′1t = min
{

u1,
v−zt−2

ht−1

}
, x′2t = min

{
u2,

v−zt−2
ht−1

}
, x′3t = max

{
u2,

v−zt−2
ht−1

}
.

In a pure GARCH(1,1) model where Fε(·) is symmetric about zero these two tail proba-

bilities are identical. In our TAR framework, on the other hand, this will depend on the value

of the autoregressive parameters in each regime. Thus, this property of these TAR models is

not without importance for time series of financial returns where the clustering of extremes

is usually attributed to large uncertainty regimes in financial markets and as such nothing is

said about the possibility of predicting runs of large observations. We devote a further section
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below to study in more detail the implications of the TAR-GARCH model for these series.

3 Estimation and Testing of a TAR(3,1)-GARCH(1,1)

This section describes the estimation and testing of a TAR(3,1)-GARCH(1,1) process. The

estimation is done by quasi-maximum likelihood (QML) where both mean and variance pa-

rameters are estimated jointly. Although the threshold variable is not observed it can be

estimated from the data given its lagged character.

The main hypothesis, the existence of different correlation regimes can be done by testing

the statistical significance of the threshold effect. This test involves nuisance parameters

which are not identified under the null hypothesis of no threshold effect. This is carried out

by following the methodology proposed in Hansen (1996), adapted in our example to the case

of an unobservable threshold variable. The following subsection describes the test.

3.1 Threshold Effect Test

The null hypothesis corresponds to the case ρ1 = ρ2 = ρ3 in model (3) which implies that

there is no different correlation regimes determined by the magnitude of the standardized

shocks. In this way, we entertain a process that under the null, H0 : ρ1 = ρ2 = ρ3 = ρ, is an

AR(1)-GARCH(1,1) model,

yt = α + ρyt−1 + htεt, (16)

with ht defined in (4). Under the alternative, yt follows process (3). Clearly, under the null,

u1 and u2 are not identified and thereby the testing problem involves nuisance parameters.

As in the related literature, Davies (1977, 1987), Andrews and Ploberger (1994) and Hansen

(1996), we propose a supremum and an average type test. Given that the threshold variable

is not observable, the testing strategy proposed is a two-step procedure. In the first step

we estimate the model under the null hypothesis. Following Ling and McAleer (2003), let

λ̂ =
(
α̂, ρ̂, β̂0, β̂1, β̂2,

)
, the QML estimator of λ0 =

(
α0, ρ0, β0

0 , β0
1 , β0

2 ,
)
, defined as:

arg max
λ

Ln(λ) = arg max
λ

n∑
t=1

lt(λ) with lt(λ) = log

(
1

ht(λ)
√

2π
e

�
− ε2

t (λ)

2h2
t (λ)

�)

with ε2
t (λ) and h2

t (λ) the error term and conditional variance process from an AR(1)-GARCH(1,1)

model respectively. Theorem 5.1 of Ling and McAleer (2003) shows that

n1/2(λ̂i − λ0
i ) = Op(1), (17)
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with n denoting the sample size. From this estimation procedure we obtain

ε̂t(λ̂) =
ât(λ̂)

ĥt(λ̂)
,

with ât(λ̂) = yt− α̂− ρ̂yt−1, and ĥ2
t (λ̂) = β̂0 + β̂1â

2
t−1(λ̂) + β̂2ĥ

2
t−1(λ̂). For ease of notation we

will use throughout ε̂t ≡ ε̂t(λ̂), ât ≡ ât(λ̂) and ĥ2
t ≡ ĥ2

t (λ̂).

In the second step, the model to be estimated is an alternative of (3) where the error term

is replaced by the residual derived from step 1,

yt = γ0 + γ1yt−1 + γ2yt−1I(ε̂t−1 < u1) + γ3yt−1I(ε̂t−1 > u2) + at.

The model can be expressed in a more compact way as,

yt = γyt−1(u) + at,

with u = (u1, u2), yt−1(u) = (1, yt−1, yt−1I(ε̂t−1 < u1), yt−1I(ε̂t−1 > u2)) and γ = (γ0, γ1, γ2, γ3).

Thus, under the null hypothesis of no threshold effect, γ2 = γ3 = 0 for all possible values of the

threshold vector u ∈ U =
{
(u1, u2) ∈ R2 s.t. Fε(u1) ∈ (a1, b1) ∧ Fε(u2) ∈ (a2, b2) with

0 < a1 < b1 < a2 < b2 < 1}.
In order to test H0 : γ2 = γ3 = 0 in the preceding model we propose to estimate γ̂(u) by

ordinary least squares and subsequently to use a conventional Wald type test. This is

Tn(u) = nγ̂(u)′R(R′V̂ ∗
n (u)R)−1R′γ̂(u), (18)

where R = (0, I2)′, V̂ ∗
n (u) = Mn(u, u)−1V̂n(u)Mn(u, u)−1, V̂n(u) = 1

n

∑n
t=1 ŝt(u)ŝt(u)′, ŝt(u) =

yt−1(u)v̂t, Mn(u, u∗) = 1
n

∑n
t=1 yt−1(u)yt−1(u∗)′. Obviously, Tn(u) depends on the value of

the vector u, which is unknown. As it was mentioned above, following the related literature,

two are the proposed statistics, the first one defined by the supremum on u of the set of Wald

statistics, namely supu∈UTn(u); and the second test given by the average of the different test

statistics on u, namely Aveu∈UTn(u). The asymptotic distribution is provided in the next

result, where ⇒ denotes weak convergence with respect to the Skorohod metric.

To find the asymptotic distribution of (18) we need some additional notation. Let S(u)

be a mean zero Gaussian process with covariance kernel K(u, u∗) = E (S(u)S(u∗)′), and

let S(u) = R′M(u, u)−1S(u) be another Gaussian process of zero mean where M(u, u∗) =

E (yt−1(u)yt−1(u∗)′), and covariance matrix K(u, u∗) = R′M(u, u∗)−1K(u, u∗)M(u, u∗)−1R.

10



Theorem 2.- Let Tn(u) be the Wald test for the null H0 : γ2 = γ3 = 0 for a given u.

Consider that the following conditions hold:

B.1 εt are iid with zero mean and d.f. F, which admits a uniformly continuous density

function f, f > 0.

B.2 Assumptions of Proposition 1 for k = 6.

B.3 Identifiability conditions in Ling and McAleer (2003).

Then under the null,

Tn(u) ⇒ T 0(u) = S(u)′K(u, u)−1S(u).

T 0(u) is the chi− square process obtained by Hansen (1996). Also, the null distribution

of g0 = g(T 0(u)), with g the supremum and/or average functions, depends, in general, on the

covariance function K; hence its critical values cannot be tabulated except in special cases. To

obtain the p − values of this asymptotic test we propose two possible approximations to the

asymptotic distribution: the first one is the p−value approximation of Hansen (1996), and the

second one the Wild bootstrap approximation. The validity of these p−value approximations

is shown from Theorem 2 and the Monte-Carlo simulation experiment in the next section.

A different alternative to test the correlation in the mean produced by the dependence in

the extremes is to test the null hypothesis of martingale difference sequence for the residuals

obtained from the model under the null. In particular, after the first step, where we obtain

ε̂tĥt = yt − α̂− ρ̂yt−1

ĥ2
t = β̂0 + β̂1ε̂

2
t−1ĥ

2
t−1 + β̂2ĥ

2
t−1,

we can regress

ε̂t = θ0 + θ1yt−1I(ε̂t−1 < u1) + θ2yt−1I(u1 ≤ ε̂t−1 ≤ u2) + θ3yt−1I(ε̂t−1 > u2) + at.

In this case, under the null, H0 : θi = 0 for i = 1, 2, 3 and for all (u1, u2) ∈ U . To test this

hypothesis we can use a Wald or F-type test which both will depend on u = (u1, u2) as in the

previous method. Thereby we will need to use a supremum and/or an average type test as in

the test discussed above.

Once the hypothesis of linearity of the data can be rejected we proceed to estimate jointly

the parameters of the whole model by QML. In more detail, define u = (u1, u2), φ = (α, ρ, β),
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ρ = (ρ1, ρ2, ρ3) and β = (β0, β1, β2) and maximize the following function,

L(φ, u) =
T∑

t=1

lt(φ, u),

with

lt(φ, u) = −1
2

ln ht(φ, u)− ε2
t (φ, u)

2h2
t (φ, u)

,

at(φ, u) = εt(φ, u)ht(φ, u) = yt − α− ρt(φ, u)y−1,

h2
t (φ, u) = β0 + β1a

2
t−1(φ, u) + β2h

2
t−1(φ, u).

For a given u = (u1, u2) ∈ U , the solution is φ̂(u), then in order to find the optimal

threshold vector û we maximize L(φ̂(u), u) with respect to u. Thus, the QML estimator of

(φ, u) is (φ̂(û), û).

The study of statistical consistency and asymptotic distribution for the parameter esti-

mators in this case is cumbersome for the asymptotic properties of the standard TAR and

GARCH models do not generalize to this case that need of more convoluted techniques, see

for example Gonzalo and Martinez (2007). Hence we leave these features of the model for

future research.

3.2 Simulation Experiment

This subsection examines the performance of the preceding test for threshold effects through

some Monte Carlo experiments for finite samples. In order to do this we will study the

empirical size of the test for three linear processes in the mean. These are an iid process, a

pure GARCH(1,1) process and an AR(1)-GARCH(1,1) process:

1. yt = εt with εt iid(0,1),

2. yt = at = εtht, and h2
t = β0 + β1a

2
t−1 + β2h

2
t−1 with parameters β0 = 0.05, β2 = 0.1 and

β2 = 0.85 and εt defined as in the previous case.

3. yt = ρyt−1 + at with ρ = 0.2 and at defined as in the previous case.

The error term is assumed standard Gaussian although other simulation experiments could

be developed to see the robustness of the test to departures from Gaussianity. In all the

experiments the threshold regime is defined by the following space:

U =
{
(u1, u2) ∈ R2 s.t. Fε(u1) ∈ (0.1, 0.3) ∧ Fε(u2) ∈ (0.6, 0.9)

}
.

In practice Fε is unknown and must be estimated by ε̂t from the model under the null. For

the Hansen p− value approximation we consider n=250, 500, 1000 and M=1000 Monte Carlo

12



simulations, to show the validity of the asymptotic result for moderate sample sizes given the

poor results obtained for smaller data sets. The following table 3.1 reports empirical estimates

of the size at 5% and 10% significance level for the statistic defined by the supremum of Tn(u)

over the set of possible threshold values.

supu∈UTn(u) n=250 n=500 n=1000

size 0.05 0.1 0.05 0.1 0.05 0.1

IID 0.084 0.155 0.076 0.141 0.053 0.110

GARCH(1, 1) 0.091 0.169 0.085 0.139 0.066 0.123

AR(1)−GARCH(1, 1) 0.102 0.167 0.080 0.153 0.067 0.129

Table 3.1. Empirical size at 5% and 10% of the supu∈UTn(u) test for n = 250, n = 500

and n = 1000 for different data generating processes derived from the Hansen p-value ap-

proximation. M = 1000 Monte-Carlo simulations and 300 internal simulation replications.

For the statistic defined by the average of Tn(u) the results of the simulated size are

reported in table 3.2:

Aveu∈UTn(u) n=250 n=500 n=1000

size 0.05 0.1 0.05 0.1 0.05 0.1

IID 0.062 0.124 0.066 0.127 0.060 0.122

GARCH(1, 1) 0.070 0.132 0.071 0.117 0.065 0.115

AR(1)−GARCH(1, 1) 0.073 0.12 0.066 0.119 0.057 0.120

Table 3.2. Empirical size at 5% and 10% of the Aveu∈UTn(u) test for n = 250, n = 500

and n = 1000 for different data generating processes derived from the Hansen p-value ap-

proximation. M = 1000 Monte-Carlo simulations and 300 internal simulation replications.

The Hansen p − value approximation is too “liberal” for the supremum case. This can

be produced by the definition of the U space. Hansen (1996) observes that the pointwise

test statistics are ill-behaved for extreme values of u, that is, with Fε(u) close to 0 or 1, and

proposes a [0.2, 0.8] region for searching potential thresholds. Our model however focuses on

threshold effects on the extremes of the time series, thereby our interest in giving more freedom

to the threshold region in order to capture this effect. Nevertheless the empirical size seems

to converge to the nominal size for the three processes and two test statistics.

On the other hand this phenomenon is less important for the Wild Bootstrap approximation

for which we report simulations for n = 250, 500 and M=500 in tables 3.3 and 3.4.
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supu∈UTn(u) n=250 n=500

size 0.05 0.1 0.05 0.1

IID 0.062 0.108 0.056 0.086

GARCH(1, 1) 0.052 0.118 0.054 0.112

AR(1)−GARCH(1, 1) 0.046 0.090 0.058 0.114

Table 3.3. Empirical size at 5% and 10% of the supu∈UTn(u) test for n = 250, n = 500

for different data generating processes derived from the Wild bootstrap p-value approximation.

M = 500 Monte-Carlo simulations and 300 internal simulation replications.

Aveu∈UTn(u) n=250 n=500

size 0.05 0.1 0.05 0.1

IID 0.050 0.110 0.042 0.086

GARCH(1, 1) 0.052 0.100 0.040 0.096

AR(1)−GARCH(1, 1) 0.032 0.074 0.050 0.088

Table 3.4. Empirical size at 5% and 10% of the Aveu∈UTn(u) test for n = 250, n = 500

for different data generating processes derived from the Wild bootstrap p-value approximation.

M = 500 Monte-Carlo simulations and 300 internal simulation replications.

Finally we present the power results for the test when we use the Wild bootstrap approx-

imation. For that, we consider two different models. In both cases, the conditional mean is

given by:

yt = 0.2yt−1I(εt−1 < −1.7)− 0.2yt−1I(εt−1 > 1.7) + at.

In the first case, at = εt, in the second one at = εtht with h2
t = 0.05 + 0.1a2

t−1 + 0.85h2
t−1.

In both cases, εt is iid N(0, 1). The results are in tables 3.5 and 3.6.

supu∈UTn(u) n=250 n=500

size 0.05 0.1 0.05 0.1

TAR− IID 0.336 0.476 0.662 0.758

TAR−GARCH(1, 1) 0.276 0.404 0.540 0.664

Table 3.5. Empirical power at 5% and 10% of the supu∈UTn(u) test for n = 250, n = 500

for different data generating processes derived from the Wild bootstrap p-value approximation.

M = 500 Monte-Carlo simulations.

Aveu∈UTn(u) n=250 n=500

size 0.05 0.1 0.05 0.1

TAR− IID 0.456 0.584 0.768 0.858

TAR−GARCH(1, 1) 0.350 0.464 0.638 0.750
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Table 3.6. Empirical power at 5% and 10% of the Aveu∈UTn(u) test for n = 250, n = 500

for different data generating processes derived from the Wild bootstrap p-value approximation.

M = 500 Monte-Carlo simulations.

Note that in both examples and for both test statistics the power grows with the sample size.

Also, the nonlinearity test is more powerful against homoscedastic alternative hypotheses. It is

important to notice that the presence of conditional heteroscedasticity can lurk the existence

of nonlinearity in the mean process. This is also studied in the next subsection.

3.3 The effect of misspecifying a TAR(3,1)-GARCH(1,1) model

This section studies the effects of misspecifying a TAR(3,1)-GARCH(1,1) model, that is, esti-

mating a pure GARCH(1,1) or an AR(1)-GARCH(1,1) model when the true data generating

process (DGP) is nonlinear. In order to measure the impact of this misspecification we carry

out a Monte-Carlo simulation analysis in the following way. We generate M = 500 sequences

of n = 1000 observations of a homoscedastic TAR and of two TAR-GARCH processes with

threshold values given by u1 = −1.64 and u2 = 1.64. Also, in order to show the consistency of

the estimators when the true DGP is estimated and to assess the accuracy of these estimates

for n = 1000 we generate a linear AR-GARCH process. The error term for this battery of

processes is standard Gaussian.

The following table (3.7) reports the sample mean and standard deviation of the estimates

for the four models.

Estimated Model

GARCH AR−GARCH

DGP β0 β1 β2 ρ β0 β1 β2

AR-GARCH
0.609

(0.183)

0.331

(0.055)

0.305

(0.142)

0.498

(0.032)

0.274

(0.112)

0.148

(0.037)

0.630

(0.112)

TAR
0.876

(0.115)

0.246

(0.042)

0.027

(0.104)

0.264

(0.032)

0.578

(0.375)

0.113

(0.065)

0.380

(0.384)

TAR−GARCH1

0.645

(0.164)

0.314

(0.045)

0.152

(0.145)

0.264

(0.036)

0.491

(0.191)

0.208

(0.047)

0.358

(0.195)

TAR−GARCH2

0.642

(0.149)

0.314

(0.046)

0.154

(0.134)

0.024

(0.045)

0.622

(0.176)

0.272

(0.043)

0.209

(0.161)

Table 3.7. Estimates of: 1) an AR(1)-GARCH(1,1) process with parameters α = 0, (ρ1, ρ2, ρ3) =

(0.50, 0.50, 0.50) and (β0, β1, β2) = (0.25, 0.10, 0.65); 2) a TAR process with parameters α = 0,

(ρ1, ρ2, ρ3) = (0.70, 0.00, 0.70) and (β0, β1, β2) = (1, 0, 0); 3) a TAR process with parameters

α = 0, (ρ1, ρ2, ρ3) = (0.70, 0.00, 0.70) and (β0, β1, β2) = (0.25, 0.10, 0.65); 4) a TAR process
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with parameters α = 0, (ρ1, ρ2, ρ3) = (0.70, 0.00,−0.70) and (β0, β1, β2) = (0.25, 0.10, 0.65).

The error term is standard Gaussian. The number of Monte-Carlo simulations is M = 500

and the sample size is n = 1000. The standard errors of the different estimates are in brackets.

The right section of the first row of the table shows the consistency of the estimators

under correct specification of the model, and the left panel the known effect of misspecifying

the mean when estimating a GARCH model. The other three rows are more interesting for

our analysis. In all of the cases the estimates of the volatility parameters are very misleading.

Note that for the estimate of the autoregressive parameter in the mean the AR-GARCH model

provides very similar values for the TAR as well as for the TAR−GARCH1 process and that

this value is neither zero or the expected value of the random autoregressive coefficient of the

true model. This process depicts spurious serial correlation in the mean process. This is not

the case for the TAR−GARCH2 process. The misspecification in the case of the conditional

variance is similar to the first row, that is, to the GARCH and AR-GARCH case, an increase

in β1 and a decrease in β2.

4 The TAR(3,1)-GARCH(1,1) for financial returns

Under risk neutrality the efficiency market hypothesis (EMH ) guarantees that the autocor-

relation function of the sequence of returns is not significant for any lag, otherwise markets

would be predictable, or is so small that makes investment opportunities derived from exploit-

ing that dependence worthless. This is the rationale for using pure GARCH(1,1) processes or

AR(1)-GARCH(1,1) with a very small although statistically significant autoregressive param-

eter for modeling the sequence of returns. By the same token SETAR models are not suitable

to describe asset prices in an efficient market. Model (5) however can be devised to satisfy

some forms of the market efficiency hypothesis but making allowance at the same time for

describing periods of autocorrelation in the outer regimes. Suppose a process like (5) with

unconditional zero mean and with error term following a symmetric distribution.

The first order autocovariance is

Cov(yt, yt−1) = E [ρt] V ar[yt] + Cov(ρt, y
2
t−1),

given that E[ρty
2
t−1] = Cov(ρt, y

2
t−1) + E[ρt]E[y2

t−1]. Hence the first order autocorrelation is

Corr(yt, yt−1) = E [ρt] +
Cov(ρt, y

2
t−1)

V ar[yt]
.
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Note again that there is an extra term Cov(ρt,y
2
t−1)

V ar[yt]
in the latter expression compared to the

case of a linear AR(1) process. If E [yt] 6= 0 the extra term must be completed with functions

of E [yt]. Also, the TAR(3,1)-GARCH(1,1) model that we propose can reflect under some

restrictions on the parameters a weak form of market efficiency (described by a zero correlation

in the mean process) and also, in contrast to AR-GARCH processes, a strong linear dependence

in the extremes if ρ1 and ρ3 take high values.

A vast majority of time series describing financial returns share some empirical features such

as leptokurtic tails, volatility clustering, negative skewness and the leverage effect. This latter

stylized fact given by the presence of more volatility after a large price fall than after a price rise

of the same magnitude, is in particular, not well described in the standard GARCH framework.

Nelson (1991) proposed the E-GARCH model to allow for asymmetric effects of previous

positive and negative observations in the volatility process. In this line Glosten, Jagannathan

and Runkle (1993) and Zakoian (1994) introduced the T-GARCH model, a variation of a

GARCH(1,1) model where the sign of the previous observation produces an asymmetric effect

in the volatility process.

The TAR(3,1)-GARCH(1,1) albeit different in spirit shares characteristics of these models.

It is able to reflect the increase in the likelihood of extreme observations for the sequence yt if

the previous observation is negative as the E-GARCH and T-GARCH do. In contrast to these

models however, for the TAR-GARCH this probability does not increase only because of a shift

in the conditional volatility process but because of a nonlinear change in the conditional mean

produced by the magnitude of the previous observation and shock. In this way this model is

able to refine the insights of the leverage effect phenomenon by permitting to test whether

negative returns are followed by an increase in the probability of future negative returns or

simply by an increase in future volatility. Proposition 4 for model (5) with v = 0 yields the

following probability conditional on information up to time t− 2.

Pt−2 (yt ≤ 0, yt−1 ≤ 0) =
∫ x1t

−∞
Fε

(− (α + ρ1 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε

+
∫ x2t

x1t

Fε

( −α

ht (ε)

)
fε (ε) ∂ε

+
∫ x3t

u2

Fε

(− (α + ρ3 (zt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε,

where x1t = min
{

u1,
−zt−2
ht−1

}
, x2t = min

{
u2,

−zt−2
ht−1

}
, x3t = max

{
u2,

−zt−2
ht−1

}
.

For values of the parameters resulting in a probability different from 0.5 our TAR process

describes asymmetry in the effect of previous losses and gains, or in other words, Pt−2{yt ≤
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0|yt−1 ≤ 0} 6= Pt−2{yt > 0|yt−1 ≤ 0}. This is in clear contrast to pure GARCH(1,1), E-

GARCH(1,1) and T-GARCH processes.

5 Empirical application: Predicting in crises episodes

After the bombing attacks that shook the US in September 11th, 2001 the stock exchanges

all around the world fell dramatically not only that day but during a short period of time

after the attack. It is striking however to observe that this drop in asset prices worldwide

elapsed only a short period of time, five to ten days and then markets went back to normal.

Another example of crisis in financial markets was the black Monday in October 1987, that

day prices dropped by an average of 20% in US and UK stock markets and even more in other

economies worldwide, and triggered a period of widespread decline in financial markets. While

the first example is clearly attributed to a very negative and unexpected sequence of extreme

events during that week of September of 2001 that had such disastrous effects, the nature of

the second event cannot be clearly attributed to a certain cause. In the latter case markets

started to respond to drops in prices with a cascade of sale orders and a subsequent lack of

liquidity that produced high uncertainty and volatility in financial markets during long after

that Monday of October 1987.

The following plots represent the sequences of prices and log-returns rt = 100 (lnPt −
lnPt−1) of General Motors (GM ) stocks for each crisis episode. The data are collected from

Yahoo-Finance.
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Figure 5.1. The upper-left panel depicts the prices of GM for the period 01/01/1986 −
31/12/1989, and the upper-right panel those for the period 03/01/2000 − 31/12/2003. The

lower panels plot the corresponding sequences of log-returns. The arrows point to Black Mon-

day of October 1987 and September 11th, 2001 respectively.

It is interesting to observe the very different patterns in prices and returns described around

each crisis. The volatilities also seem to differ very much across plots.

In this section the TAR-GARCH methodology is applied to determine statistically if the

returns on the days following these events were predictable or not. If the events simply sparked

an increase in volatility as stated by the leverage effect investors were better off by conserving

their assets than to exposing to adverse movements of prices before the realization of the

buy/sale order. In contrast, if these events were sparked by an extreme shock investors could

have predicted future returns just after the shocks.

Table 5.1 reports the estimates of a GARCH(1,1), an AR(1)-GARCH(1,1), and a TAR(3,1)-

GARCH(1,1) model for daily log-returns from GM stock covering the period January 1986-

December 1989. The analysis comprises 1011 observations.

Model GARCH(1, 1) AR(1)−GARCH(1, 1) TAR(3, 1)−GARCH(1, 1)

α 0.052
(0.046)

0.052
(0.047)

0.027

ρ1 - −0.017
(0.041)

-0.087

ρ2 - −0.017
(0.041)

0.164

ρ3 - −0.017
(0.041)

1.225

β0 0.867
(0.171)

0.874
(0.173)

0.813

β1 0.231
(0.016)

0.232
(0.016)

0.289

β2 0.438
(0.081)

0.435
(0.082)

0.431

Log lkl -1867.6 -1868.1 -1874.9
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Table 5.1. u1 = −0.578, u2 = 1.218. Estimates for October 1987 subsample (01/01/1986-

31/12/1989), n=1011. p-value of Hansen test (supu∈UTn(u)=0.979, p-value of Aveu∈UTn(u)=0.987).

The standard errors of the different estimates are in brackets.

The results from this table are somehow expected. The dependence in the extremes is

found not to be statistically significant. Although the parameter for the upper regime in

the TAR(3,1)-GARCH(1,1) is high the two versions of the Hansen test do not reject the null

hypothesis. In line with this the likelihood functions yield very similar results indicating scarce

significance also of the conditional mean parameter in the AR(1) component. These results

can be interpreted as those expected in an efficient stock market. By doing so, we accept that

the crisis of October 1987 was sparked by an increase in volatility and that posterior strong

fluctuations in GM stock price were produced by the volatility process and not by dependence

in the extremes.

The analysis of the GM stock prices corresponding to the period January 2000-December

2003 is diametrically different. The following table reports the estimates of the different

models. The analysis comprises 1004 observations.

Model GARCH(1, 1) AR(1)−GARCH(1, 1) TAR(3, 1)−GARCH(1, 1)

α 0.104
(0.069)

0.108
(0.070)

0.183

ρ1 - −0.052
(0.031)

0.072

ρ2 - −0.052
(0.031)

-0.031

ρ3 - −0.052
(0.031)

1.225

β0 0.117
(0.033)

0.117
(0.033)

0.087

β1 0.079
(0.012)

0.076
(0.012)

0.080

β2 0.902
(0.014)

0.904
(0.014)

0.908

Log lkl -2252.3 -2251.1 -2659.8

Table 5.2. u1 = −0.919, u2 = 0.785. Estimates for September 2001 subsample (01/01/2000-

31/12/2003), n=1004. p-value of Hansen test (supu∈UTn(u)=0.046, p-value of Aveu∈UTn(u)=0.064).

The standard errors of the different estimates are in brackets.

Stock returns on GM for this period exhibit very different characteristics from the previous

period studied. While the linear AR(1)-GARCH(1,1) model points towards a negative condi-

tional mean process the nonlinear TAR-GARCH model also reflects this effect for the middle

regime but describes as well two outer regimes where observations have a different and stronger

dependence structure. The number of extremes in the sequence of shocks is 200 for the lower
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threshold and 128 for u2. Hence, there is sufficient information in the samples to believe that

there is positive dependence between series of positive extremes and between runs of negative

extremes. The case of positive extremes is more significant. There is statistical evidence of

nonlinearity and thereby of the presence of different regimes for the conditional mean pro-

cess. Both supremum and average Hansen tests and the corresponding bootstrap counterpart

tests (supu∈UTn(u)=0.024, and Aveu∈UTn(u)=0.048) are found significant at 10%, and the

likelihood function of the TAR model is substantially larger than that of the GARCH and

AR-GARCH models. A simple visual inspection of the histogram of the residuals, figure 5.2,

also supports the statistical significance of the TAR(3, 1)−GARCH(1, 1) model.

Although the magnitude of the lower regime autoregressive parameter is small we believe

that the nonlinearity of this model supports the presence of dependence in both extreme

regimes, and therefore provides evidence to claim that the sequence of extreme observations

after the bombing attacks of September 11th were positively correlated. It is also worth men-

tioning that these effects could have been more significant if NYSE would have not interrupted

trading in the floor for one week after the attack.
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Figure 5.2. Histograms for the residuals sequence from AR(1)-GARCH(1,1) (left panel) and

from TAR(3,1)-GARCH(1,1) (right panel) for the period 03/01/2000− 31/12/2003.

6 Conclusions

This paper introduces a new class of nonlinear threshold models. Its novelty resides on two

features of the model that make it different from previous TAR methodologies. First, the

regimes are motivated by the occurrence of extreme values, and second, the threshold variable

determining the regime is defined by the shock affecting the process in the preceding period.
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In this way this process is able to describe two types of dependence, linear dependence derived

from the occurrence of extreme shocks and clustering of large observations derived from the

occurrence of high volatility periods.

The model is flexible in what is able to describe a variety of structures of dependence;

asymmetries in the probabilities in the tails, in the sequences of runs of extremes, etc. This

is particularly interesting for modelling financial time series for this model is able to replicate

in a parsimonious way the stylized facts commonly encountered in these series, including the

absence of linear correlation, but offering at the same time the possibility of describing linear

dependence in the extremes. This fact led us in the empirical application to study the conse-

quences of sound worldwide financial crises: Black Monday of October 1987 and September

11th terrorist attacks. Using our TAR-GARCH method we find evidence of predictability of

extremes after September 11th but not after the Black Monday event of October 1987. This in-

dicates that while the former event produced a sequence of predictable large negative returns,

the latter event only produced a shift in the volatility process and no evidence of dependence

between extremes. This is in line with literature in the topic attributing the worldwide plum-

meting of stocks in October 1987 to a market correction and the burst of a global stock market

bubble.

Extensions of this methodology to describe the conditional volatility process are ongoing

research. Other extensions include empirical applications to data in international finance and

energy.
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MATHEMATICAL APPENDIX:

Proof of Theorem 1: The strict stationarity and ergodicity of at and ρt together with

assumption A.6 are sufficient conditions for the unique strictly stationary and ergodic solution

of (5). This is shown in Brandt (1986). In order to prove the strict stationarity and ergodicity

of at, Kristensen (2006) use assumptions A.1 to A.4 and Ling and McAleer (2003) A.1, A.2

and A.5.

Proof of Proposition 1: From equation (3) and Theorem 1,

yt = ρtyt−1 + at =
∞∑

j=0

j−1∏

i=0

ρt−iat−j .

Denote ‖ρt‖k = λ1. Then, from the Minkowsky inequality, independence of εt and strict

stationarity of at:

‖yt‖k ≤
∞∑

j=0

‖
j−1∏

i=0

ρt−iat−j‖k =
∞∑

j=0

‖
j−2∏

i=0

ρt−i‖k‖ρt−j+1at−j‖k

≤
∞∑

j=0

λj−1
1 ‖ρt−j+1at−j‖k ≤ maxi ρi‖at‖k

λ2
1(1− λ1)

with λ1 < 1 by assumption A.7. Then, it is sufficient to show that ‖at‖k < ∞, to prove

Proposition 1. For that,

‖at‖k = ‖a2
t‖2k/2

‖a2
t‖k/2 = ‖ε2

t h
2
t‖k/2 = ‖ε2

t‖k/2‖h2
t‖k/2

‖h2
t‖k/2 ≤ β0 + ‖β1ε

2
t + β2‖k/2‖h2

t−1‖k/2 ≤
β0

(1− λ2)

with λ2 < 1 and ‖ε2
t‖k/2 < ∞ by assumption A.8, which proves that ‖at‖k < ∞.

Proof of Proposition 2: Now we present the first two moments of the process yt =

α + ρtyt−1 + at, with at = htεt when the assumptions in Proposition 1 hold for k = 2.

E[yt] = α + E[ρtyt−1]. (19)

Replacing yt−1 by the above expression we obtain

E [yt] = α + E [ρtyt−1] = α + E [ρt (α + ρt−1yt−2 + at−1)] .

Now, using the stationarity of the process ρtyt−1 and the independence of ρt from ρt−1yt−2 it
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is simple to see that

E [yt] =
α

1− E [ρt]
+

E[ρtat−1]
1− E [ρt]

.

Now in order to obtain E[yt] = 0 the intercept must be α = −E[ρtat−1]. For that case, the

unconditional variance is

V [yt] = E
[
y2

t

]
.

Also,

V [yt] = V [ρtyt−1] + V [at] .

Note that

V [ρtyt−1] = E
[
ρ2

t y
2
t−1

]− E2 [ρtyt−1] ,

and

E
[
ρ2

t y
2
t−1

]
= Cov(ρ2

t , y
2
t−1) + E

[
ρ2

t

]
E

[
y2

t−1

]
.

Then

E
[
y2

t

]
= Cov(ρ2

t , y
2
t−1) + E

[
ρ2

t

]
E

[
y2

t−1

]− E2 [ρtyt−1] + V [at],

and by stationarity (V ar[yt] = E
[
y2

t

]
= E

[
y2

t−1

]
) we obtain

V ar[yt] =
V ar[at]

1− E [ρ2
t ]

+
Cov

(
ρ2

t , y
2
t−1

)− E2 [ρtyt−1]
1− E [ρ2

t ]
.

Proof of Proposition 3: Under assumptions in Proposition 1 the optimal forecast l -

periods ahead, with l > 1, of the process yt = α + ρtyt−1 + htεt are

E[yt+l|=t] = α (1 + E[ρt+l|=t] + E[ρt+lρt+l−1|=t] + . . . + E[ρt+l · · · ρt+2|=t]) +

E[ρt+lρt+l−1 · · · ρt+2|=t]ρt+1yt + E[ρt+lat+l−1|=t]+

E[ρt+lρt+l−1at+l−2|=t] + . . . + E[ρt+lρt+l−1 · · · ρt+2at+1|=t].

This expression can be simplified given that the shock sequence εt and in turn ρt are iid.

Also, using that ρt+1 and ρt+2at+1 are stationary sequences and at+1 a martingale difference

sequence the preceding expression reads as

E[yt+l|=t] = α
l−1∑
i=1

E[ρt+1]i + E[ρt+1]l−1ρt+1yt +
l−1∑
i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1.

Thus,

E[yt+l|=t] = α 1−E[ρt+1]
l−2

1−E[ρt+1]
+ E[ρt+1]l−1ρt+1yt +

l−1∑
i=1

E[ρt+i+1at+i|=t]E[ρt+1]l−i−1.
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As l →∞ the optimal conditional forecast converges to the unconditional mean in L2.

E[yt+l|=t]
L2−→ α

1− E[ρt+1]
+

E[ρt+1at]
1− E[ρt+1]

. (20)

This is equivalent to show that
∥∥∥E[yt+l|=t]− α+E[ρt+1at]

1−E[ρt+1]

∥∥∥
2
→ 0. Note that it is sufficient to

prove that
l−1∑

i=1

‖E[ht+i|=t]− E [ht+i]‖2
∣∣E[ρt+1]l−i−1

∣∣ → 0, (21)

when l →∞, given that E[ρt+1at] = E[ρt+1εt]E [ht].

Let xt be a L2 − mixingale, that is, ‖E (xt|=t−m)‖2 ≤ ‖ct‖2 γ (m) , with γ (m) → 0, see

Davidson (1994) or McLeish (1975). Using A.8 for k = 2 it can be proved that xt = ht−E(ht)

is a L2-Near Epoch Dependence (L2-NED, see Davidson (1994) or McLeish (1975)) on εt of

size −∞. From Theorem 17.5 of Davidson (1994), we prove that xt = ht − E(ht) is a L2-

mixingale with ‖ct‖2 < ∞ and γ (m) = λm
1 with λ1 = (β1 + β2) < 1 by A.8. Then, (21) has

the following upper bound that satisfies

l−1∑

i=1

γ (i) ‖ct‖2
∣∣E[ρt+1]l−i−1

∣∣ ≤ ‖ct‖2 λ2,

with λ2 = max {λ1, E(ρt)}. By A.8, 0 ≤ λ2 < 1 and ‖ct‖2 < ∞. Then, the upper bound goes

to 0 and (20) immediately follows.

Proof of Proposition 4: By Bayes’ theorem

P{yt ≤ −v, yt−1 ≤ −v} =P{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 < u1}

+ P{yt ≤ −v ∩ yt−1 ≤ −v ∩ u1 ≤ εt−1 ≤ u2}

+ P{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 > u2},

where v denotes a positive threshold. By operating on the first expression on the right term

we obtain the following result:

Pt−2{yt ≤ −v ∩ yt−1 ≤ −v ∩ εt−1 < u1} =
∫ x1t

−∞
Fε

(−v − (α + ρ1 (α + ρt−1yt−2 + εht−1))
ht (ε)

)
fε (ε) ∂ε.

Operating in the same way with the other summands we obtain the first part of Proposition
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4. The second part of the proposition is obtained in the same way, taking into account that

Pt−2{yt ≥ v, yt−1 ≥ v} =Pt−2{yt−1 ≥ v}

− Pt−2{yt ≤ −v|yt−1 ≥ v, εt−1 < u1}Pt−2{εt−1 < u1, yt−1 ≥ v}

− Pt−2{yt ≤ −v|yt−1 ≥ v, u1 ≤ εt−1 ≤ u2}Pt−2{u1 ≤ εt−1 ≤ u2, yt−1 ≥ v}

− Pt−2{yt ≥ −v|yt−1 ≥ v, εt−1 > u2}Pt−2{εt−1 > u2, yt−1 ≥ v},

given that Pt−2{εt−1 < u1, yt−1 ≥ v} + Pt−2{u1 ≤ εt−1 ≤ u2, yt−1 ≥ v} + Pt−2{εt−1 >

u2, yt−1 ≥ v} = Pt−2{yt−1 ≥ v}.

Proof of Theorem 2: Before proceeding with the proof of Theorem 2 we need the

following definition:

Υn(u, λ) = nγ̂(u, λ)′R
(
R′V̂ ∗

n (u, λ)R
)−1

R′γ̂(u, λ),

with λ = (α, ρ, β0, β1, β2), γ̂(u, λ) and V̂ ∗
n (u, λ) the same variables as defined in Section 3 but

using εt(λ) instead of ε̂t.

It is easy to prove for the statistic Υn(u, λ0) obtained from replacing the residual variable

ε̂t by the error term εt in Tn(u) that the assumptions 1 to 3 in Hansen (1996) hold. Thus,

Υn(u, λ0) ⇒ T 0(u) = S(u)′K(u, u)−1S(u). Then, the proof of Theorem 2 follows from this

result:

sup
u∈U

Λn(u, λ̂) = sup
u∈U

∣∣∣Υn(u, λ0)−Υn(u, λ̂)
∣∣∣ = sup

u∈U

∣∣Υn(u, λ0)− Tn(u)
∣∣ = op(1), (22)

If this condition holds the process Tn(u) and Υn(u, λ0) have the same asymptotic distri-

bution, provided that Υn(u, λ0) converges to T 0(u) as shown before.

To prove (22) we use the result of Lemma 1. To state this result, let m ≥ 1 be a fixed integer,

τnt, ξnt be measurable functions from <m to <, such that (ηnt, γnt, τnt (λ) , ξnt (λ)) , 1 ≤ t ≤ n,

are an array of 4-tuple random variables defined on a probability space where {ηnt, 1 ≤ t ≤ n}
are i.i.d. according to a d.f. F , and for every λ ∈ <m, ηnt is independent of (γnt, τnt (λ) , ξnt (λ)),

1 ≤ t ≤ n. Furthermore, let {Ant} be and array of sub σ-fields such that Ant ⊂ Ant+1, 1 ≤ t ≤
n, n ≥ 1; (γn1, τn1 (λ) , ξn1 (λ)) is An1 measurable, the r.v.’s {ηn1, . . . , ηnj−1; (γnt, τnt (λ) , ξnt (λ)) , 1 ≤ t ≤ j}
are Anj measurable, 2 ≤ j ≤ n; and ηnj is independent of Anj , 1 ≤ j ≤ n. Finally, γnt ≥ 0

and g() any measurable and increasing function from < to [0,∞). Define for u ∈ < = [0, u],

with u < ∞,
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Vn (u, λ) = n−1/2
n−1∑
t=1

η+
nt+1g (ηnt) γntI (ηnt ≤ u + uτnt (λ) + ξnt (λ)) ,

J (u, λ) = n−1/2
n−1∑
t=1

η+
nt+1γntH (u + uτnt (λ) + ξnt (λ)) ,

Un (u, λ) = Vn (u, λ)− J (u, λ) ,

U∗n (u, λ) = n−1/2
n−1∑
t=1

η+
nt+1γnt [g (ηnt) I (ηnt ≤ u)−H (u)] ,

with H(x) = E[g(ηnt)I (ηnt ≤ x)]. We also need the following assumptions:

(C.0) F has a.e. positive density f with ‖f‖∞ = sup
u∈<

f (u) < ∞.

(C.1) ‖g(e)f (e)‖∞ = sup
e∈<

g(e)f (e) < ∞.

(C.2) n−1
n−1∑
t=1

γ2
nt = Op (1) , max

1≤t≤n
n−1/2 |ηnt+1γnt| = op (1) .

For each λ ∈ <m,

(C.3) max
1≤t≤n

{|τnt (λ)|+ |ξnt (λ)|} = op (1) ,

(C.4) n−1
n−1∑
t=1

|ηnt+1γnt| [|τnt (λ)|+ |ξnt (λ)|] = Op (1) .

∀ε > 0, ∃δ > 0, and an n1 < ∞,∀0 < b < ∞, ∀ ‖s‖ ≤ b,∀n > n1

(C.5) P

(
n−1/2

n−1∑
t=1

|ηnt+1γnt|
{

sup
‖λ−s‖<δ

|τnt (λ)− τnt (s)|+ sup
‖λ−s‖<δ

|ξnt (λ)− ξnt (s)|
}
≤ ε

)
> 1−ε.

The following lemma gives the needed results.

Lemma 1 Under the above setup and under the assumptions C.1-C.5, for every 0 < b < ∞,

sup
u∈<,‖λ‖≤b

|Un (u, λ)− U∗n (u, λ)| = op (1) ,

sup
u∈<,‖λ‖≤b

∣∣∣∣∣n
−1/2

n−1∑
t=1

ηnt+1γnt [H (u + uτnt (λ) + ξnt (λ))−H (u)]

∣∣∣∣∣ = op (1) .

The proof of this lemma is similar to that of Lemma 4.1 in Koul and Ling (2006), but

using now h(x) = g (ηnt) I(ηnt ≤ x) instead of h(x) = I(ηnt ≤ x). Hence the proof is omitted

although a complete version is found in the working paper version of this article.
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To see the importance of this lemma in the proof of Theorem 2 note that

sup
u∈U

∣∣∣Υn(u, λ0)−Υn(u, λ̂)
∣∣∣ ≤ sup

u∈U,|λ0−λ|=Op(n−1/2)

∣∣Υn(u, λ0)−Υn(u, λ)
∣∣ .

The right hand side of the preceding equation can be expressed as the following type of

processes,

sup
u∈U

1
n1/2

n∑
t=2

εtεt−1htγt−2 [I (at−1(λ) ≤ uht−1(λ))− I (at−1 ≤ uht−1)] .

For our case, AR(1)-GARCH(1,1) processes, Koul and Ling (2006) prove that the preceding

process can be written as

sup
u∈U

1
n1/2

n∑
t=2

εtεt−1htγt−2 [I (εt ≤ u + uτnt (λ) + ξnt (λ))− I (εt−1 ≤ u)] ,

where conditions (C.2)-(C.5) are satisfied in our case by assumptions B.1-B.3, and conditions

(C.0) and (C.1) are assumed on B.1. Therefore this process is oP (1) and Lemma 1 is proved.

Hence the proof of Theorem 2 also follows.
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[26] Teräsvirta, T., (1994). Specification, Estimation, and Evaluation of Smooth Transition

Autoregressive Models. Journal of the American Statistical Association 89, 208-218.

[27] Tong, H., (1978). On a threshold model. In C.H. Chen (ed.), Pattern Recognition and

Signal Processing. Sijhoff & Noordhoff, Amsterdam.

[28] Tong, H., (1983). Threshold Models in Non-Linear Time Series Analysis. Lecture Notes

in Statistics, 21. Springer, Berlin.

[29] Tong, H., (1990). Non-Linear Time Series: A Dynamical System Approach. Oxford Uni-

versity Press, Oxford.

30



[30] Tong, H., Lim, K.S., (1980). Threshold autoregression, limit cycles and cyclical data.

Journal of the Royal Statistical Society Series B, 4, 245-292.

[31] Tsay, R.S., (1989). Testing and modeling threshold autoregressive processes. Journal of

the American Statistical Association 84, 231-240.

[32] Zakoian, J.M., (1994). Threshold heteroscedastic models. Journal of Economic Dynamics

and Control 18, 931-955.

31


