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Abstract

This article introduces a U -statistic type process that is based on a kernel function
which can depend on nuisance parameters. It is shown here that this process can
accommodate very easily anti-symmetric kernels very useful for detecting changing
patterns in the dynamics of time series. This theory is applied to structural break
hypothesis tests in linear regression models. In particular, the flexibility of these
processes will be exploited to introduce a simultaneous and joint test that exhibit
statistical power against changes in either intercept or slope. In contrast to the
literature, these tests are able to distinguish between rejections due to changes in
intercept from rejections due to changes in slope; allow control of global errors
rate; and are explicitly designed to have power when the distribution error is
asymmetric. These tests can also incorporate different weight functions devised
to detect changes early as well as later on in the sample, and show very good
performance in small samples. These tests, therefore, outperform CUSUM type
tests widely employed in this literature.
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1 Introduction

Economics and finance frequently consider linear regression models (hereafter LRMs)

with coefficients that are constant for all time periods. It is well-known that these

parameters can, and do, change over time due, for example, to abrupt policy changes,

to wars, to oil price or to technology shocks. This has led to considerable econometric

research into methods that can detect if such exogenous events have caused parameters

of linear regression models to change. One of the first papers published on this matter

was by Chow (1960). He constructed two test statistics capable of detecting a one-

time change in regression parameters at a known time. Work by Brown, Durbin and

Evans (1975) (hereafter BDE) and Dufour (1988) extended Chow’s test to accommodate

multiple changes in regression parameters that may occur at unknown times. Other tests,

called fluctuation tests, such as that of Ploberger, Kramer and Kontrus (1989) (hereafter

PKK) have also been developed. An interesting contribution to this literature is that

of Altissimo and Corradi (2003) who develop a statistic that tests for any number of

break-points. This test as well as the other three, however, when applied to regression

models are not devised to distinguish between changes in intercept or slope and, in turn,

although informative about the number of break points are not very informative about

the statistical cause of rejection.

A more recent contribution to this literature is Olmo and Pouliot (2008); they use

U -statistic type processes to fashion a statistic that is capable of detecting a one-time

change in parameters of a linear regression model that occurs early and later on in the
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sample. Their process, however, depends on a kernel defined by a function of a vector

of nuisance parameters, that in most practical situations must be estimated. They show

that although said substitution does not introduce estimation effects into the asymptotic

distribution their kernel lacks desirable properties such as continuity. The research of

Olmo and Pouliot (2008) does, nevertheless, confirm the importance of U -statistic based

processes in detecting a one-time change in parameters of regression models.

This article extends this work in different directions. First, we introduce a U -statistic

type process that is based on a general kernel that can depend on nuisance parameters

and can accommodate multivariate random sampling. One of the main features of

this process is that it can entertain anti-symmetric kernels which are very useful for

detecting changing patterns in the dynamics of time series. The asymptotic theory of

this process is derived, under the assumptions of known nuisance parameters and also

when these parameters are estimated. The second contribution is to propose this family

of processes for detecting structural breaks in linear regression models. In particular,

we exploit the flexibility of these processes to introduce simultaneous and joint tests

that exhibit statistical power to detect changes in either intercept or slope of linear

regression models. This is in contrast with existing literature on the topic, see CUSUM

type tests as introduced by BDE and fluctuation tests of PKK. More importantly, in

contrast to these influential papers, our tests are able to distinguish between rejections

due to changes in intercept from rejections due to changes in the slope parameter. These

tests have the additional attraction of enabling control of global error rates in a similar
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fashion to ANOVA tests in the setting of testing for equality of k, (k > 2) population

means.

Another interesting feature of these tests is their explicit dependence on the third

moment of the residuals of linear regression models. This characteristic idiosyncratic to

our test implies significant improvements in terms of power when the distribution of the

residuals shows some asymmetries about zero. The last contribution to the literature on

change point detection and structural break tests is to show that simple modifications of

the family of U -statistic type processes introduced in this paper given by suitable weight

functions have more power against changes in the parameters in the linear regression

model that occur early as well as later on in the sample. This is an important feature of

this class of statistics not satisfied by CUSUM type tests which are unable to detect a

change in parameters produced early/later on in the sample. It is also worth highlighting

the good performance of both simultaneous and joint tests in small samples.

The paper is structured as follows. Section 2 introduces a family of processes based

on U -statistics, and derives the corresponding asymptotic theory. Section 3 applies the

findings of the previous section to derive a simultaneous and joint tests with power

against deviations in either intercept or slope of linear regression models. The section

also discusses suitable choices of weights in the test statistic that enhance the power

against deviations of the process early or later on in the sample. Section 4 details the

results from an extensive Monte Carlo exercise, studying nominal size and power of the

test against alternatives that include a one-time change in intercept and slope. Section
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5 concludes. Lastly, the limiting distribution of the weighted processes entertained here

is tabulated and collected in the Appendix - the method used to simulate it follows that

of Orasch and Pouliot (2004).

2 A New General Kernel function for U-statistic

type processes

There are situations where the kernel upon which the U -statistic type process is fash-

ioned from is differentiable with respect to nuisance parameters. One situation is that

considered by Gombay, Horváth and Hušková, (hereafter GHH) (1996). They develop

a statistic that can be used to test a sequence of i.i.d. random variables for constant

variance. They consider the following setting; given a set of observations {X1, . . . , XT}

for T ≥ 2, 3, . . ., one might be interested in testing for the presence of at most one change

in variance at a distinct, yet unknown time. With positive constants σ and σ?, let

Xt =


µ + σεt, 1 ≤ t ≤ t∗,

µ + σ?εt, t∗ < t ≤ T.

(1)

where

εt are independent and identically distributed with IIEε1 = 0, IIEε2
t = 1 and IIE|εt|4 < ∞, t = 1, . . . , T.

(2)

The values of the parameters µ, σ, σ? and t? are unknown. Assuming that σ 6= σ?,

the no change in variance null hypothesis can be formulated as

5



HO : t∗ ≥ T

versus the at-most-one change (AMOC) in variance alternative

HA : 1 ≤ t∗ < T.

To test the null hypothesis GHH use the change in mean framework to develop a statistic

suited to testing for AMOC in the variance. Their statistic is reproduced below;

M
(1)
T (τ) := T 1/2τ(1 − τ)

 1
Tτ

[(T+1)τ ]∑
t=1

(Xt − µ)2 − 1
T − Tτ

T∑
t=[Tτ ]+1

(Xt − µ)2

 , 0 ≤ τ < 1,(3)

which compares two estimators of the variance. One estimator is fashioned from the

first [(T + 1)τ ] observations and then compared to the estimator constructed from the

last T − [(T + 1)τ ] observations. After some simple algebra, the above process can be

re-expressed as,

M
(1)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Xt − µ)2 − τ
T∑

t=1

(Xt − µ)2

 , 0 ≤ τ < 1. (4)

This representation of M
(1)
T (τ) will be used in what follows as it is simpler to manipulate.

The kernel, h(x, y), used to construct their process set h(x, y) = (x−µ)2− (y−µ)2,

which depends on the unknown parameter µ. GHH substitute X̄T =
PT

t=1 Xt

T
for µ and

arrive at,

M̃
(1)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Xt − X̄T )2 − τ

T∑
t=1

(Xt − X̄T )2

 , 0 ≤ τ < 1. (5)
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They are able to derive the corresponding asymptotic distribution of (5) but their

results apply only to the above process. It would seem natural, then, to see whether it

is possible to make a more general statement that would hold in situations where the

kernel, h(·, ·) is a more general function of nuisance parameters than the one used in

their process.

Here, the partial sum process developed in (3) is extended to accommodate a kernel

that is now a differentiable function of the nuisance parameters and can accommodate

multivariate random samples.

Definition 2.1. Let {Xt}T
t=1 be a sequence of multivariate random variables (hereafter

rvs); let the kernel have the following representation h(x,y; θ) = f(x; θ) − f(y; θ),

where θ ∈ Rp, x,y ε Rn, f(·; ·) is a continuous function of θ that is at least

once differentiable - the derivative need not be continuous. This leads to the following

modification of GHH’s process,

M
(2)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

f(Xt; θ)− τ

T∑
t=1

f(Xt; θ)

 , 0 ≤ τ < 1. (6)

Some additional definitions and notation are required before any statement can be made

regarding this sequence of partial sum processes. First, we introduce a class of functions

Q.

Definition 2.2. Let Q be the class of positive functions on (0, 1) which are non-decreasing

in a neighborhood of zero and non-increasing in a neighbourhood of one, where a function
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q(·) defined on (0,1) is called positive if

inf
δ≤τ≤1−δ

q(τ) > 0 for all δ ∈ (0, 1/2).

Definition 2.3. Let q(·) ε Q. Then I(q, c) =
∫ 1

0
1

τ(1−τ)
exp

− c
(τ(1−τ))q2(τ) dτ for some

constant c > 0.

As advertised in Section 1, the weight functions q(·) that are members of the set Q

will play an important role in this and following sections. It is useful then to discuss

the purpose that these functions serve. Weight functions are of interest here because

they add some flexibility in the search for tests that are able to detect at most one-

change in intercept or slope. To justify this statement one important source in the

statistical literature, Mason and Scheunemeyer (1983) (hereafter MS), can be cited.

MS study finite and large sample properties of the power of the Kolmogorov-Smirnov

(hereafter KS) statistic. They conclude that KS statistic displays poor sensitivity to

detect deviations from the hypothesized distribution that may occur on the tails: MS

show the KS statistic is inconsistent for such deviations. A similar fate holds true

for the statistics to be fashioned from the process dealt with here; they also display low

power to detect such deviations. Including weight functions early on in this development

offers returns in terms of higher power of our statistics fashioned from the weighted

process. Section 3 will offer more details on the nature of these weight functions. More

information regarding these weight functions and associated theory can be found in

Csörgő and Horváth (1997) and relevant chapters therein.
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In order to establish the asymptotic behaviour of the process detailed in (6), it will be

necessary to extend a result of Szyszkowicz (Thereom 2.1, (1991)), to the multivariate

setting. To do so, some additional notation and definitions must now be introduced.

To begin, let {Xt}T
t=1 be a sequence of independent and identically distributed random

vectors with

IIEXt = µ and IIE[(X1 − µ)(X1 − µ)
′
] = Σ, (7)

where Σ is nonsingular and all diagonal terms nonzero and less than infinity. Fur-

thermore, let the function h(·, ·) be anti-symmetric: h(x,y; θ) = −h(y,x; θ), where

x,y ε Rn, h̃(u, θ) = IIEh(X1, u; θ) and such that

IIEh2(X1,X2; θ) < ∞ and 0 < σ2 = IIEh̃2(X2; θ) < ∞. (8)

Define the stochastic process Z[(T+1)τ ], given below, as

Z[(T+1)τ ] =

[(T+1)τ ]∑
i=1

T∑
j=[(T+1)τ ]+1

h(Xi,Xj; θ). (9)

The next proposition details the statements which can be made regarding the stochas-

tic process given in (9).

Proposition 2.1. Let the function h(X1,X2; θ) satisfy (8); and let q ∈ Q. Then we

can define a sequence of Brownian bridges {BT (τ); 0 ≤ τ ≤ 1} such that, as T →∞,
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(i) sup
0<τ<1

| 1σ T−3/2Z[(T+1)τ ]−BT (τ)|
q(τ)

=


oP (1), if and only if I(q, c) < ∞ for all c > 0

OP (1), if and only if I(q, c) < ∞ for some c > 0,

(ii) sup
0<τ<1

| 1
σ

T−3/2Z[(T+1)τ ]|
q(τ)

D−→ sup
0<τ<1

|B(τ)|
q(τ)

,

if and only if I(q, c) < ∞ for some c. B(τ) is a Brownian bridge.

Proof. The results follow from the fact that

T−3/2Z[(T+1)τ ] = U1,T − U1,[(T+1)τ ] − U[(T+1)τ ],T (10)

where

U1,T =

∑T−1
i=1

∑T
j=i+1 h(Xi,Xj; θ) T

2


,

U1,[(T+1)τ ] =

∑[(T+1)τ ]−1
i=1

∑T
j=i+1 h(Xi,Xj; θ) [(T + 1)τ ]

2


,

U[(T+1)τ ],T =

∑T−1
i=[(T+1)τ ]+1

∑T
j=i+1 h(Xi,Xj; θ) T − [(T + 1)τ ]

2


(11)
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are U -statistics. From Theorem 5.4.1 of Koroljuk and Borovshich (1994), the following

holds:

max
1<k≤T

k2|U1,T −
2

k

T∑
i=1

h̃(Xi; θ)| = OP (T )

max
1<k≤T

k2|U1,k −
2

k

k∑
i=1

h̃(Xi; θ)| = OP (T ),

max
1<k≤T

(T − k)2|Uk,T −
2

T − k

T∑
i=k+1

h̃(Xi; θ)| = OP (T ).

(12)

From this, it can be concluded that

sup
0<τ<1

|Z[(T+1)τ ] −
2

[(T + 1)τ ]

T∑
i=1

h̃(Xi; θ)− 2

[(T + 1)τ ]

[(T+1)τ ]∑
i=1

h̃(Xi; θ)

− 2

T − k

T∑
i=k+1

h̃(Xi; θ)| = OP (T ). (13)

The remaining steps in the proof follow along the lines of the proofs of Theorems 6.2.1

and 5.2.1 of Szyszkowicz (1992). With this, statement i) of the proposition follows.

For statement ii), we appeal to Theorem 1.1 of Szyszkowicz (1997) and employ the

symmetrization method used in the proof of Theorem 5.2.1 of Szyszkowicz (1992) as

well as the result established in (13).

11



2.1 Parameters Known

Here, the properties of the statistic defined in (6) will be explored. Before this can be

done, the following additional assumptions will be made.

IIEf(Xi; θ) = γ

IIEf 2(Xi; θ)− γ2 = ∆2, (14)

with γ a parameter. Now, as a special case of Proposition 2.1, the following statements

can be made regarding the process defined in (6), each is detailed in Proposition 2.2.

Proposition 2.2. Let {Xt}∞t=1 be a sequence of i.i.d multivariate rvs that satisfy (7);

let f(X1; θ) satisfy (14); and let q ∈ Q. Then we can define a sequence of Brownian

bridges {BT (τ); 0 ≤ τ ≤ 1} such that, as T →∞,

(i) sup
0<τ<1

˛̨̨
1
∆

M
(2)
T (τ)−BT (τ)

˛̨̨
q(τ)

=


oP (1), if and only if I(q, c) < ∞ for all c > 0

OP (1), if and only if I(q, c) < ∞ for some c > 0,

(ii) sup
0<τ<1

| 1
∆

M
(2)
T (τ)|

q(τ)

D−→ sup0<τ<1
|B(τ)|
q(τ)

,

if and only if I(q, c) < ∞ for some c.

Proof: This follows from Proposition 2.1, and observing that M
(2)
T (τ) can be expressed

in terms of Z[(T+1)τ ].
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2.2 Parameters Unknown

In most situations the vector of parameters θ is unknown and must be estimated by a

consistent sequence of estimators {θ̂T}∞T=1. This leads to the following slightly altered

process,

M̂
(2)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

f(Xt; θ̂T )− τ
T∑

t=1

f(Xt; θ̂T )

 , 0 ≤ τ ≤ 1. (15)

With such substitution, it would seem natural that the limiting distribution of the

slightly altered process detailed in (15) would be different from that detailed in Propo-

sition 2.2, but Proposition 2.3 reveals otherwise.

To establish the main proposition of this section, we first use a result from Buck

[(1965), Lemma page 244] to establish the following equality,

M̂
(2)
T (τ) = M

(2)
T (τ) + (θ̂T − θ)

′ 1

T 1/2


[(T+1)τ ]∑

t=1

Dθf(Xt; θ)|θ=eθ

− τ
T∑

t=1

Dθf(Xt; θ)|θ=eθ
}

, 0 ≤ τ < 1, (16)

for some θ̃. Dθ represents the vector of partial derivatives with respect to θ and super-

script
′
represents the transpose operation.

Lemma 2.1. Let {Xt}T
t=1 be i.i.d multivariate rvs that satisfy (7); let f(X1; θ) satisfy

(14); and let q(·) ∈ Q with I(q, c) < ∞ for some c > 0. Then, as T →∞,

sup
0<τ<1

|M̂ (2)
T (τ)−M

(2)
T (τ)|

q(τ)
= oP (1). (17)
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Proof. The following majorization can be obtained via equation (16).

sup
0<τ<1

|M̂ (2)
T (τ)−M

(2)
T (τ)|

q(τ)
≤ ||(θ̂T − θ)

′||Rp sup
0<τ<1

∣∣∣∣∣∣ 1

T 1/2

[(T+1)τ ]∑
t=1

Dθf(Yt; θ)|θ=eθ

− τ
1

T 1/2

T∑
t=1

Dθf(Xt; θ)|θ=eθ
∣∣∣∣∣

= oP (1)OP (1), (18)

= oP (1), as T →∞,

where the term oP (1) follows from consistency of the vector of estimators and OP (1)

follows from Donsker’s (1951) theorem restated on D[0, 1]. || · ||Rp refers to Euclidean

norm in Rp.

Now, the main statement regarding the process developed in (15) can be made.

Proposition 2.3. Let {Xt}T
t=1 be i.i.d rvs that satisfy (7); let f(X1, θ) satisfy (14);

and let q ∈ Q. Then we can define a sequence of Brownian bridges {BT (τ); 0 ≤ τ ≤ 1}

such that, as T →∞,

(i) sup
0<τ<1

˛̨̨
1
∆

cM(2)
T (τ)−BT (τ)

˛̨̨
q(τ)

=


oP (1), if and only if I(q, c) < ∞ for all c > 0

OP (1), if and only if I(q, c) < ∞ for some c > 0,

(ii) sup
0<τ<1

1
∆

|cM(2)
T (τ)|
q(τ)

D−→ sup0<τ<1
|B(τ)|
q(τ)

,

only if I(q, c) < ∞ for some c.

Proof.
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(i)

sup
0<τ<1

∣∣∣ 1
∆

M̂
(2)
T (τ)−BT (τ)

∣∣∣
q(τ)

≤ sup
0<τ<1

∣∣∣ 1
∆

M̂
(2)
T (τ)−M

(2)
T (τ)

∣∣∣
q(τ)

+ sup
0<τ<1

∣∣∣ 1
∆

M
(2)
T (τ)−BT (τ)

∣∣∣
q(τ)

= oP (1) + oP (1) as T →∞, (19)

where the last line in (19) follows from Lemma 2.1 and Proposition 2.2.

(ii)

This follows from statement ii) of Proposition 2.2 and Lemma 2.1 (Lemma 2.1 requires

the integral condition to hold only for some c > 0). This implies that, as T →∞;

∣∣∣∣∣IIP
{

sup
0<τ<1

|M̂ (2)
T (τ)|
q(τ)

≤ x

}
− IIP

{
sup

0<τ<1

|B(τ)|
q(τ)

≤ x

}∣∣∣∣∣ ≤

∣∣∣∣∣IIP
{

sup
0<τ<1

|M̂ (2)
T (τ)|
q(τ)

≤ x

}

− IIP

{
sup

0<τ<1

|M (2)
T (τ)|
q(τ)

≤ x

}∣∣∣∣∣+
∣∣∣∣∣IIP
{

sup
0<τ<1

|M (2)
P (τ)|
q(τ)

≤ x

}

−IIP

{
sup

0<τ<1

|B(τ)|
q(τ)

≤ x

}∣∣∣∣∣
= 0,

for all x ∈ R.
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3 Tests for Structural Change

The purpose of this section is to design a simultaneous and joint test that detect a

change in intercept/slope and permit control of global error rates. It will be shown that

the test uses OLS residuals directly rather than require calculation of recursive residuals

as in the CUSUM test of BDE. An interesting by-product of the simultaneous test is

that it exhibits power to detect a one-time change in intercept regardless of where it

may occur in the sample - early, in the middle or later on.

Before these statistics can be fashioned, the appropriate metric must be constructed

as well as some additional notation; let D2[0, 1] = D[0, 1] X D[0, 1] and let the metric

associated with this space be given by

sup
0<τ<1

|x1(τ)− y1(τ)|+ sup
0<τ<1

|x2(τ)− y2(τ)|, (20)

where [x1(τ), x2(τ)]
′
and [y1(τ), y2(τ)]

′
are elements of D2[0, 1].

3.1 Parameters Known

Consider the following process;

Yt =


β

(1)
0 + β

′(1)Xt + σεt, 1 ≤ t ≤ t∗,

β
(2)
0 + β

′(2)Xt + σεt, t∗ < t ≤ T.

(21)

where the εt’s satisfy conditions detailed in (2). In addition, assume that at least one

of the following holds: β
(1)
0 6= β

(2)
0 or β

′(1) 6= β
′(2). The values of parameters β

(1)
0 ,
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β
(2)
0 , β

′(1), β
′(2), σ and t? are all unknown. β

′(1) and β
′(2) are 1 x K vector of slope

parameters. The data, {(Yt,Xt)
′}T

t=1, is a random sample.

The null and alternative hypothesis are as follows;

HO : t∗ ≥ T

versus the alternative hypothesis of at-most-one change (AMOC) in intercept or slope;

HA : 1 ≤ t∗ < T.

As advertised, the task here is to construct a test to detect such deviations. To

construct such test two processes are required. These two processes will be constructed

from two kernels each being unbiased for the intercept and variance parameters of LRMs,

respectively. The kernel that is unbiased for the intercept sets h(x, y; β0, β
′
) = (y−β

′
x)−

(y−β
′
x); while that for the variance sets h(x, y; β0, β

′
) = (y−β0−β

′
x)2−(y−β0−β

′
x)2.

Even though the latter kernel is unbiased for the variance and not for slope parameters,

it is employed here for two reasons. One, it closely corresponds to CUSUM of squares

test of BDE and secondly, it will be shown in the section that studies the asymptotic

behaviour of the statistics under one-time change in parameters (cf. Section 3.4), that

a change in the slope will translate into a change in the variance of the residuals as long

as a particular condition holds. Remark 3.3 will detail said condition.

Section 4 will confirm that the test statistic fashioned from the first kernel is par-

ticularly sensitive to a one-time change in the intercept, while the statistic fashioned
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from the second kernel is designed to detect deviations in the slope, and desirably, does

not detect a one-time change in intercept when it occurs. With this in mind, these two

kernels are now substituted into equation (6) which results in the following processes;

M
(3)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Yt − β
′

0 − β
′
Xt)

2 − τ

T∑
t=1

(Yt − β
′

0 − β
′
Xt)

2

 (22)

M
(4)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Yt − β
′
Xt)− τ

T∑
t=1

(Yt − β
′
Xt)

 . (23)

As these processes remain a function of τ , they cannot be used in their present form

to test the null hypothesis of no change in intercept/slope: that is, they are not yet

statistics because of their dependency on τ . Here, interest centers on how large these

processes can be for 0 < τ < 1. If there is in fact a change in one of the parameters:

intercept or slope, the value of the supremum of the process that corresponds to the

parameter that changed should be large. These considerations lead to the following test

statistics:

sup
0<τ<1

|M (i)
T (τ)|
q(τ)

(24)

for i = 3, 4, where q(·) ∈ Q. When i = 3 in (24), the test statistic can be used to test

for AMOC in slope parameters; when i = 4 the statistic can be used to test for AMOC

in intercept.

With the test statistics now defined, it is possible to make the following statement

regarding their asymptotic behavior.
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Proposition 3.1. Assume HO; let {(Yt,Xt)}T
t=1 be a sequence of i.i.d rvs; let the con-

ditions detailed in (2) hold; and let q(·) ∈ Q. Then, as T →∞,

MT :=

 1

σ2
√

V ar(ε2
1)

M
(3)
T (τ)

q(τ)

1
σ

M
(4)
T (τ)

q(τ)

⇒
 B(1)(τ)

q(τ)

ρB(1)(τ) + (1−ρ2)−1/2B(2)(τ)
q(τ)

 ,

only if I(q, c) < ∞ for all c > 0. B(1)(τ) and B(2)(τ) are independent Brownian bridges,

ρ =
IIE[ε3

1]√
V ar(ε2

1)
, and ⇒ refers to weak convergence.

Proof. Let || · || be the metric on D2[0, 1] as defined in (20). Define two sequences

of Brownian bridges {B(i)
T (τ); 0 ≤ τ ≤ 1} for i = 1, 2. Then, via statement (i) of

Proposition 2.2, ||MT −BT (τ)|| = oP (1), as T →∞, where BT (τ) = [B
(1)
T (τ), B

(2)
T (τ)]

′
,

is a sequence of bivariate Brownian Bridges and
′
refers to the transpose.

Proposition 3.1 characterizes the limiting behaviour of test statistics (22) and (23) in

terms of a vector of Brownian bridges that depend on unknown parameters. Such de-

pendence poses a practical problem as the distribution of the limiting stochastic process

depends on the correlation between error and the squared error. The following corol-

lary introduces an alternative reformulation of the above proposition that solves this

problem.

Corollary 3.1. Under the same assumptions of Proposition 3.1, the following holds, as
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T →∞,  1

σ2
√

V ar(ε2
1)

M
(3)
T (τ)

q(τ)

−ρ((1−ρ2)σ4V ar(ε2
1))−

1
2 M

(3)
T (τ) + ((1−ρ2)σ2)−

1
2 M

(4)
T (τ)

q(τ)

⇒
 B(1)(τ)

q(τ)

B(2)(τ)
q(τ)

 . (25)

Using Corollary 3.1 in conjunction with the continuous mapping theorem, it is possible

to conclude with the following statement regarding the bivariate distribution of the

supremum of the processes developed in (22) and (23).

Corollary 3.2. Under the same assumptions of Proposition 3.1, the following holds, as

T →∞,
sup

0<τ<1

1

σ2
√

V ar(ε2
1)

|M(3)
T (τ)|
q(τ)

sup
0<τ<1

|−ρ((1−ρ2)σ4V ar(ε2
1))−

1
2 M

(3)
T (τ) + ((1−ρ2)σ2)−

1
2 M

(4)
T (τ)|

q(τ)

 D−→


sup

0<τ<1

|B(1)(τ)|
qτ)

sup
0<τ<1

|B(2)(τ)|
q(τ)

 . (26)

The U -statistic type processes and the corresponding asymptotic theory introduced

above enable us now to introduce two different test statistics for the above null hypothesis

of no change in either intercept or slope in linear regression models.

In particular, our simultaneous test is defined by the hypothesis

HO,sim : β
(1)
0 = β

(2)
0 and β

′(1) = β
′(2), (27)

versus

HA,sim : β
(1)
0 6= β

(2)
0 or β

′(1) 6= β
′(2). (28)
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The appropriate test statistic is RMT , the simultaneous test, and R = [0 0; 0 1] is the

selector matrix. By Corollary 3.2 and the continuous mapping theorem the asymptotic

distribution of this test is sup
0<τ<1

|B(2)(τ)|
qτ)

, that is parameter free, implying critical values

for the test that can be universally tabulated via simulation.

The nature of the test, however, does not distinguish the source of the rejection,

that is, whether intercept or slope have changed after some t∗. This can be corrected

by exploiting the U -statistic type process
M

(3)
T (τ)

q(τ)
and the bivariate distribution derived

in Corollary 3.2. More specifically, it has been discussed that this process is devised to

detect deviations of the slope and not from the intercept. We exploit this property by

devising an auxiliary test HO,slope : β(1) = β(2) versus HA,slope : β(1) 6= β(2), used to

define a joint test that can be carried out in one step and that controls for the global

error rate.

The joint test is HO,joint = HO,sim versus

HA,joint :=


HA,intercept : HO,slope

⋂
HA,sim

HA,slope

, (29)

where HA,slope and HA,intercept define a test for change only in slope, and a change only

in intercept, respectively. To be more specific, if the simultaneous rejects but the test

statistic based on
M

(3)
T (τ)

q(τ)
accepts, then HA,intercept holds; there is a change only in in-

tercept. Otherwise, one can conclude only a slope parameter has changed, while no

statement can be made regarding a change in intercept.

This joint test has several interesting features. First, the standardization provided

21



in Corollary 3.1 guarantees that the marginal asymptotic distributions are independent

and identically distributed. This implies that the critical values of each test at the same

significance level are identical. Furthermore, one can control the global error rate by

simply taking the product of one minus the error rate idiosyncratic to each marginal test

and noting the global error rate is one minus this product; i.e, if the idiosyncratic error

is 5% then then the global error rate is 1− (1− 0.05)2 = 0.091. Finally note that for

symmetric error distributions, ρ = 0, and the joint test boils down to two independent

hypothesis tests based on the marginal U -statistic type processes
M

(3)
T (τ)

q(τ)
and

M
(4)
T (τ)

q(τ)
.

As mentioned above, in the joint test, if
M

(3)
T (τ)

q(τ)
rejects there remains the question of

whether the intercept has changed. In this situation a second layer of hypothesis testing

must be considered. One would then run an individual test, based on sup
0<τ<1

|M(4)
T (τ)|
q(τ)

,

suited for changes in intercept. Its asymptotic distribution is detailed in Proposition

2.2 statement ii). H
′
O,intercept : β

(1)
0 = β

(2)
0 versus H

′
A,intercept : β

1)
0 6= β

(2)
0 . If this

test rejects the null hypothesis of no change in intercept then one concludes there was a

change in both slope and intercept. Otherwise one concludes only the slope has changed.

Unfortunately in this case, we lose independence between the asymptotic distribution

of this test and the marginal distributions of the joint test and therefore lose control of

the global error rate.
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3.2 Parameters Unknown

The processes defined in (22) and (23) depend on unknown parameters. OLS will

produce consistent estimators of β0 and β under HO,sim; let these sequences of estimators

be denoted {β̂T,0}∞T=1 and {β̂T}∞T=1. When these sample estimates are substituted for the

population parameters, this produces the following slightly altered sequence of partial

sum processes;

M̂
(3)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Yt − β̂
′

T,0 − β̂
′

TXt)
2 − τ

T∑
t=1

(Yt − β̂
′

T,0 − β̂
′

TXt)
2

 (30)

M̂
(4)
T (τ) := T−1/2


[(T+1)τ ]∑

t=1

(Yt − β̂
′

TXt)− τ
T∑

t=1

(Yt − β̂
′

TXt)

 . (31)

Proposition 3.2. Assume HO; let {(Yt,Xt)
′}T

t=1 be a sequence of i.i.d rvs; let the con-

ditions detailed in (2) hold; and let q(·) ∈ Q. Then, as T →∞,

 1

σ2
√

V ar(ε2
1)

cM(3)
T (τ)

q(τ)

1
σ

cM(4)
T (τ)

q(τ)

⇒
 B(1)(τ)

q(τ)

−ρB(1)(τ) + (1−ρ)−
1
2 B(2)(τ)

q(τ)

 ,

only if I(q, c) < ∞ for all c > 0.

Proof. This follows from Propositions 2.3, and Lemma 2.1.

As in the case when the parameters were known, there is a similar statement to

Corollary 3.1 that can be made regarding the sequence of partial sum processes detailed

in (30) and (31).
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Corollary 3.3. Under the same assumptions of Proposition 3.2, the following holds, as

T →∞,  1

σ2
√

V ar(ε2
1)

cM(3)
T (τ)

q(τ)

−ρ((1−ρ2)σ4V ar(ε2
1))−

1
2 cM(3)

T (τ) + ((1−ρ2)σ2)−
1
2 cM(4)

T (τ)

q(τ)

⇒
 B(1)(τ)

q(τ)

B(2)(τ)
q(τ)

 .

Using Corollary 3.3 in conjunction with the continuous mapping theorem, it is possible

to conclude with the following statement regarding the bivariate distribution of the

supremum of the processes developed in (30) and (31).

Corollary 3.4. Under the same assumptions of Proposition 3.1, the following holds, as

T →∞,
sup

0<τ<1

1

σ2
√

V ar(ε2
1)

|cM(3)
T (τ)|
q(τ)

sup
0<τ<1

|−ρ((1−ρ2)σ4V ar(ε2
1))−

1
2 cM(3)

T (τ) + ((1−ρ2)σ2)−
1
2 cM(4)

T (τ)|
q(τ)

 D−→

 sup
0<τ<1

|B(1)(τ)|
q(τ)

sup0<τ<1
|B(2)(τ)|

q(τ)

 .

(32)

Remark 3.1. Let {ρ̂T}∞T=1, {σ̂T}∞T=1 and { ̂V ar(ε2
1)T}∞T=1 be sequences of consistent es-

timators of ρ, σ and V ar(ε2
1). Note that Proposition 3.2 and Corollaries 3.3 and 3.4

continue to hold when the parameters are replaced by the above estimators.

When the null hypothesis of no change in intercept or slope is rejected, it becomes

important then to locate the value of the sample where this change occurred. One

estimator that has been suggested is given below in equation (33). The properties of this
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estimator have been studied by GHH (1996) and others (cf. Antoch and Hušková (1995)

and Ferger (2001)).

t̂∗i = min

{
t;
|M (i)

T (t)|
q( t

T
)

= min
1≤t≤T

|M (i)
T (t)|

q( t
T
)

}
(33)

for i = 3, 4. The information contained in this estimator allows the researcher to develop

different LRMs; one for data up to and including t̂∗i and the other for data that occur

after this estimate.

Up to now no discussion on the nature of the weight functions q(·) has been made.

We correct this oversight now. One family of weight functions that has received some

attention is due to GHH. This family of functions is given below;

q(τ, ν) := {(τ(1− τ))ν ; 0 ≤ ν < 1/2}. (34)

This class of functions has been shown to be sensitive to a change that occurs both

early and later on in the sample (cf. Olmo and Pouliot (2008)). Moreover, this class

is a member of Q and satisfies I(q, c) < ∞ for all c > 0. Since this condition holds

for all c > 0, it is possible to construct the simultaneous and joint tests for AMOC in

parameters, intercept or slope, of the linear model.

3.3 Dynamic LRM

The LRM model detailed in (21) is now altered to allow for lagged dependent variables.

To accommodate this alteration, let
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Yt =


β

(1)
0 + γ1Yt−1 + · · ·+ γmYt−m + β

′(1)Xt + σεt, 1 ≤ t ≤ t?,

β
(2)
0 + γ1Yt−1 + · · ·+ γmYt−m + β

′(2)Xt + σεt, t? < t ≤ T.

(35)

where the εt’s satisfy conditions detailed in (2). In addition, assume that at least one of

the following holds: β
(1)
0 6= β

(2)
0 or β

′(1) 6= β
′(2). The values of parameters β

(1)
0 , β

′(2)
0 ,

β
′(1), β

′(2), σ and t? are all unknown. β
′(1) and β

′(2) are 1 x K vector of slope parameters.

The data, {(Yt, Yt−1, . . . , Yt−m,Xt)
′}T

t=m+1, is a random sample. With this notation, it is

now possible to conclude with the following statement regarding the processes detailed

in (22) and (23).

Corollary 3.5. Assume HO; let {(Yt, Yt−1, . . . , Yt−m,Xt)
′}T

t=m+1 be a sequence of i.i.d

rvs; let the conditions detailed in (2) hold; and let q(·) ∈ Q and the dynamic LRM

specified in (35). Then we can define a sequence of Brownian bridges {BT (τ); 0 ≤ τ ≤

1} for i = 3, 4 such that, as T →∞,

(i) sup
0<τ<1

˛̨̨
1

∆(i)
M

(i)
T (τ)−BT (τ)

˛̨̨
q(τ)

=


oP (1), if and only if I(q, c) < ∞ for all c > 0

OP (1), if and only if I(q, c) < ∞ for some c > 0,

(ii) sup
0<τ<1

1
∆(i)

|M(i)
T (τ)|
q(τ)

D−→ sup
0<τ<1

|B(τ)|
q(τ)

, if and only if I(q, c) < ∞ for some c > 0, i = 3, 4.

Proof. The corollary follows from the fact that processes (22) and (23) have, under
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the LRM specified in (35), the following representation:

M
(3)
T (τ) = T−1/2


[(T+1)τ ]−m∑

t=1

ε2
t+m − τ

T−m∑
t=1

ε2
t+m


M

(4)
T (τ) = T−1/2


[(T+1)τ ]−m∑

t=1

εt+m − τ

T−m∑
t=1

εt+m

 .

As a result of this representation one can directly apply Theorem 2.1 of Szyszkowicz

(1991) to obtain the result detailed in i) and ii) of the proposition.

A similar result to Corollary 3.5 can be extended to processes (30) and (31) via the

following lemma.

Lemma 3.1. Under the same conditions as Corollary 3.5 along with the consistency of

{γ̂l,T}∞T=1 for l = 1, . . . ,m, {β̂T,0}∞T=1 and {β̂T,0}∞T=1, then as T →∞,

sup
0<τ<1

|M (i)
T (τ) − M̂

(i)
T (τ)|

q(τ)
= oP (1),

only if I(q, c) < ∞ for some c > 0 and i = 3, 4.

Proof: The lemma follows from the following decomposition of processes (30) and (31).

M̂
(3)
T (τ) = M

(3)
T (τ) + oP (1)

M̂
(4)
T (τ) = M

(4)
T (τ) + (β − β̂T )

′
T−1/2


[(T+1)τ ]−m∑

t=1

Xt+m − τ

T−m∑
t=1

Xt+m


+

m∑
l=1

(γl − γ̂T,l)T
−1/2


[(T+1)τ ]−m∑

t=1

Yt−l+m − τ

T−m∑
t=1

Yt−l+m

 .
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Remark 3.2. As a result of Lemma 3.1, Proposition 3.2 and Corollaries 3.3 and 3.4

continue to hold for processes (30) and (31) in the dynamic LRM setting.

3.4 Asymptotics Under the Alternative Hypothesis

Here, the asymptotics of statistics defined as supremum of (22) and (23) are studied.

The first of two theorems to follow describes the distribution of statistics (22) under

local alternatives of AMOC change in the slope.

Proposition 3.3. Assume HA, moment conditions (2), equation (21), t? = [Tτ ?], τ ? ∈ (0, 1)

hold and β(2) = β(1) + δ. Then σ?2 = IIE(Y1 − β
(1)
0 − β(1)′X1)

2 + δ
′
IIE[X1X

′
1]δ, with

δ = δ(T ) → 0, as T → ∞. Let q(·) ∈ Q with I(q, c) < ∞ for some c > 0, then as

T →∞,

q(τ ?)√
τ ?(1− τ ?)

1

σ2
√

V ar(ε2
1)

{
sup

0<τ<1

|M (3)
T (τ)|
q(τ)

− T 1/2δ
′
IIE[X1X

′

1]δ
t?

T

(
1− t?

T

)
q( t?

T
)

}
D−→ N(0, 1).

Proof. This follows from Theorem 1.4 of GHH (1996).

Remark 3.3. Proposition 3.3 reveals that a one-time change in slope parameters will

cause a one-time change in variance if and only if the following condition holds:

δ
′
X1 6= 0.

A direct result of Proposition 3.3 is the consistency of this test for a one-time change

in slope. This result is formally introduced in the next corollary.
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Corollary 3.6. Under the conditions of Proposition 3.3, and as T →∞,

1

T 1/2δ′IIE[X1X
′
1]σδ

sup
0<τ<1

|M (3)
T (τ)|
q(τ)

P−→ τ ?(1− τ ?)

q(τ ?)
.

The next proposition details the asymptotic distribution of the AMOC in intercept

statistic (cf. (23)).

Proposition 3.4. Assume HA, moment conditions (2), (21), t? = [Tτ ?], τ ? ∈ (0, 1)

and β
(2)
0 = β

(1)
0 + Λ hold. Then for q(·) ∈ Q with I(q, c) < ∞ for some c > 0, and as

T →∞,

q(τ ?)

σ
√

τ ?(1− τ ?)

{
sup

0<τ<1

|M (4)
T (τ)|
q(τ)

− T 1/2Λ
t?

T

(
1− t?

T

)
q( t?

T
)

}
D−→ N(0, 1).

Proof. Without loss of generality, let t?

T > τ , t? = [(T + 1)τ?] and assume δ(T ) → 0, as
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T → 0 and δ(T )T → 0, as T →∞. Then

sup
t?

T
−δ(T )<τ< t?

T
+δ(T )

1
q(τ)

|M (4)(τ)|
q(τ)

= T−1/2 sup
t?

T
−δ(T )<τ< t?

T
+δ(T )

∣∣∣∣∣∣
[(T+1)τ ]∑

t=1

(Yt − β
′
Xt)− τ

t?∑
t=1

(Yt − β
′
Xt)

− τ

T∑
t=t?+1

(Yt − β
′
Xt)

∣∣∣∣∣
= T−1/2 sup

t?

T
−δ(T )<τ< t?

T
+δ(T )

1
q(τ)

∣∣∣∣∣∣
[(T+1)τ ]∑

t=1

(Yt − β
′
Xt)− τ

t?∑
t=1

(Yt − β
′
Xt)

− τ

T∑
t=t?+1

(Yt − β
′
Xt)

∣∣∣∣∣
= T−1/2 sup

t?

T
−δ(T )<τ< t?

T
+δ(T )

1
q(τ)

∣∣∣∣∣∣
[(T+1)τ ]∑

t=1

((Yt − β
′
Xt)− β

(1)
0 )− τ

t?∑
t=1

((Yt − β
′
Xt)− β

(1)
0 )

− τ

T∑
t=t?+1

((Yt − β
′
Xt)− β

(2)
0 ) + ([(T + 1)τ ]− τt?)β(1)

0 − τ(T − t?)β(2)
0

∣∣∣∣∣
= T−1/2 sup

t?

T
−δ(T )<τ< t?

T
+δ(T )

∣∣∣∣∣∣σ
[(T+1)τ ]∑

t=1

εt − τ

T∑
t=1

εi

 − τ(T − t?)Λ

∣∣∣∣∣∣
=

∣∣∣∣∣ σ

T 1/2

(
t?∑

t=1

εt − τ

T∑
t=1

εi

)
− T 1/2 t?

T

(
1− t?

T

)
Λ

∣∣∣∣∣ (36)

Lemma 3.2, found below, will be needed to establish the proposition. The absolute value in

equation (36) can be removed as it has no effect on the limiting distribution: that is, when

inside the absolute value is negative, simply multiply by -1 and remove the absolute value.

Hence, we have

σ

T 1/2

(
t?∑

t=1

εt − τ

T∑
t=1

εt

)
+ T 1/2 t?

T

(
1− t?

T

)
Λ. (37)

Now, Lemma 3.2 and (36) establish the above proposition.

Lemma 3.2. Under the same conditions as specified in Proposition 3.3, and as T →∞,
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
Pt?

t=1 εt

T 1/2PT
t=1 εt

T 1/2

 D−→ N


 0

0

 , Ψ

 ,

where

Ψ = σ2
1

 τ?2 τ?

τ? 1

 .

Proof. This follows from the bivariate version of the Lindberg-Levy Central Limit Theorem.

A corollary similar to Corollary 3.6 holds here as well and is a direct consequence of

Proposition 3.4.

Corollary 3.7. Under the conditions of Proposition 3.4, and as T →∞,

1
Λ T 1/2

sup
0<τ<1

|M (4)
T (τ)|
q(t)

P−→ τ?(1− τ?)
q(τ?)

.

4 Monte Carlo Simulation

This section is concerned with the comparison of the power of statistics developed from (15)

with the CUSUM test of BDE and fluctuation test of PKK (1989). The comparison of power

of each test will be done via simulation. Even though power is an important criteria for

comparison, the accuracy of the nominal size of the tests should also be considered. Both

criteria, power and accuracy of nominal coverage, were adopted by Kramer, Ploberger and Alt

(hereafter KPA) (1988, page 1359) to evaluate performance of the BDE CUSUM with their

fluctuation test within a dynamic LRM. As in their study, both criteria will be adopted here

as well.
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For the purpose of this simulation, the entertained model is given by

Yt =


β

(1)
0 + β(1)Xt + σεt, 1 ≤ t ≤ t?,

β
(2)
0 + β(2)Xt + σεt, t? < t ≤ T.

(38)

where the εt’s satisfy conditions detailed in (2), and the corresponding change point hypothesis

test is

HO : t? ≥ T

versus the one-time change alternative,

HA : 1 ≤ t? < T.

Interest here is with alternatives that involve a small change in intercept as well as slope;

in small sample sizes; and in detecting a change in either intercept/slope when it occurs early

and later on in the sample.

Within the LRM specified in (38), the specific alternatives considered for the intercept

are β(1) = β(2) = 1, while β
(2)
0 = 1.25, 1.5, 1.75, 2. The change in intercept considered in

this simulation increased from a 125% - a small change, to 175% - a moderate change, to

200% - a large change. The sample size considered here ranged from T = 75 - a small size,

to T = 100 - a moderate size and then T = 125 - a large size. Since interest is also with the

skew of the distribution that generates the errors, it will first be assumed that εt
D= χ2 with 1

degree of freedom, for t = 1, . . . , T and a second simulation will then assume εt
D= N(0, 1) for

t = 1, . . . , T . Note that the structure of our test statistics based on U-statistic type processes
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implies that the tests are invariant to location transformations of the error distribution. For

simplicity, then, we only study the χ2, defined in the positive domain.

A third and fourth simulation will explore a one-time change in slope parameter allowing

the errors of the LRM to follow the two distributions specified in the first two simulations: that

is, χ2 and standard normal. The LRM for this part of the Monte Carlo exercise is specified

as follows: the LRM detailed in (38) with β
(1)
0 = β

(2)
0 = 1 and β(1) = 3 and under the

alternative β(2) = 3 + δ where δ = 0.75, 1.5, 2.25, 3.

As the CUSUM test statistic of BDE and the fluctuation test of PKK are the competitors

here, a brief introduction to each will be provided below. The CUSUM test of BDE is based on

recursive residuals, standardized appropriately. In particular, the cumulative sum of recursive

residuals is given by

W (r) =
1
σ̂

r∑
t=K+2

wt, (39)

where wt is the recursive residual. This leads to an equivalent test statistic detailed by the

following formula

CUSUM Test := max
K+1<r≤T

|W (r)
t |√

T−K−1

1 + 2 r−K−1
T−K−1

. (40)

In this formula, T refers to the sample size and K, the number of slope parameters. The null

hypothesis of parameter constancy is rejected whenever BDE statistic exceeds some critical

value.

The fluctuation test of PKK (1989) is based on estimates of the parameters from a LRM.

Define X(t) = [x1, . . . ,xt]
′
, Y(t) = [Y1, . . . , Yt]

′
, t = 1, . . . , T and β(t) = (X(t)′X(t))(−1)X(t)y(t)
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for t = K, . . . , T . The test statistic is defined as

S(T ) = max
t=K,...,T

t

σ̂T
||(X(T )′X(T ))1/2(β̂(t) − β̂(T )||∞, (41)

where ||β̂(t) − β̂(T )||∞ = maxt=1,...,K |β̂(t) − β(T )|. The test statistic S(T ) rejects HO, given

below, of a one-time change in β of the LRM whenever it is too large, i.e. the parameter

estimates fluctuate too much.

4.1 Estimation Effects

In this section the LRM (cf. (38)) is estimated and the statistic calculated first under the

assumption that t? ≥ T which provides an estimate of nominal coverage of these tests and then

with a one-time change in the intercept β0. This will allow a more realistic assessment of the

ability of the newly fashioned statistics to detect a change in intercept and follows closely the

criteria used by PKA. The first simulation considered here sets the distribution of the error

term in the LRM to be a χ2 with one degree of freedom and then a second simulation sets

the errors as standard normal rvs. The results from the simulation with the first choice of

error distribution are tabulated under the null hypothesis of no change and are recorded in

Table I, while Table II records results for a one-time change in intercept. Table I reveals that

the nominal coverage of all the test statistics under study, except the fluctuation test of PKK,

achieve a nominal coverage of 8% or less - the significance level throughout the simulations will

be 5%. The nominal coverage of the fluctuation tests of PKK was over 20% (cf Table I bold

numbers) for all sample sizes considered here. As a result of this consideration and employing

the first criteria of KPA, the fluctuation test is not appropriate for the sample sizes entertained

here. On the contrary, the three statistics constructed from the U -statistic process (cf. Section
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3) and weighted by function q(τ, ν = 15
128) perform very well in terms of nominal coverage as

the coverage is less than or equal 8%. As a by-product of this research, it was found that

ν = 15
128 performed better - in terms of nominal coverage - than other choices of ν.

Table I

T = 75 T = 100 T=125

sup
0<t<1

|M(3)
T (τ)|

q(τ,ν= 15
128

)
0.02 0.02 0.02

sup
0<t<1

|M(4)
T (τ)|

q(τ,ν= 15
128

)
0.046 0.046 0.038

CUSUM Test 0.044 0.026 0.044

FLUCTUATION 0.192 0.18 0.152

SIMULT 0.08 0.08 0.07

Table II, found below, details the results from the simulation under HA,intercept with a one-

time change in intercept. Since the errors of the LRM were generated from a χ2 distribution

with 1 degree of freedom, the third moment is not 0. This has a positive effect on the finite

sample properties of the simultaneous test (cf. SIMULT in Table II) as the empirical power

for a one-time change in intercept that occurs on the middle of the sample ranges from a low

of 0.26 when the sample size is only 75 and intercept is increased by 25% to a high of 1. For a

change in intercept that occurs early or later on in the sample, the simultaneous test exhibits

low empirical power when the sample size is small (T=75). Otherwise, the simultaneous test’s

power reaches a high of 0.80 and 0.67 when the change occurs early and then later on in

the sample, respectively. When the simultaneous test is compared to the CUSUM test, its

performance in terms of empirical power is strikingly better for all values of the sample size
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and change in intercept.

Table III records the nominal coverage of the entertained tests when the errors of LRM are

standard normal random variables. As the third moment of a standard normal distribution

is zero, there should be little gain in efficiency from using the simultaneous test but this test

still permits control of global error rates. All tests, except the fluctuation test, have nominal

coverage probabilities that are less than 6% - the fluctuation test exceeds 20%.

Table III

T = 75 T = 100 T=125

sup
0<t<1

|M(3)
T (τ)|

q(τ,ν= 15
128

)
0.030 0.028 0.026

sup
0<t<1

|M(4)
T (τ)|

q(τ,ν= 15
128

)
0.044 0.050 0.046

CUSUM Test 0.050 0.056 0.040

FLUCT 0.224 0.224 0.208

SIMULT 0.052 0.046 0.048

Table IV details the empirical power under HA,intercept for a one-time change in inter-

cept. The symmetry of the standard normal distribution decreases the empirical power of the

simultaneous test but increases the empirical power of the CUSUM test.

The simultaneous test as well as statistic sup
0<t<1

|M(4)
T (τ)|

q(τ,ν= 15
128

)
outperform the CUSUM test for

changes that occur in the middle and later on in the sample. When the change in intercept oc-

curs early on in the sample, the CUSUM test has an empirical power of 80% while the empirical

power of the simultaneous and sup
0<t<1

|M(4)
T (τ)|

q(τ,ν= 15
128

)
empirical power is 53% and 56% respectively. It
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is evident that the CUSUM test is significantly affected by the asymmetry of the distribution

of the errors.

The last simulation undertaken was to determine the ability of the simultaneous test to

detect a one-time change in slope of the LRM detailed in (38). Table V summaries the

nominal coverage under HO,joint of the five test statistics considered here. Regarding the

nominal coverage, again the tests designed via U -statistic type processes performed well. The

simultaneous test for a one-time change in slope did have a slightly higher nominal coverage of

9% when the sample was 75. The nominal coverage fell to 6.6% when the sample size increased

to 100 and then to 125. Again, the fluctuation test of PKK had a much larger nominal coverage

at 20% (cf. bold numbers in Table V).

Table V

T = 75 T = 100 T=125

sup
0<t<1

|M(3)
T (τ)|

q(τ,ν= 15
128

)
0.024 0.03 0.034

sup
0<t<1

|M(4)
T (τ)|

q(τ,ν= 15
128

)
0.056 0.058 0.052

CUSUM Test 0.038 0.03 0.034

FLUCT 0.202 0.208 0.158

SIMULT 0.094 0.076 0.066

Under the alternative hypothesis, the simultaneous test performed very well for a one-time

change in slope when it occurs in the middle of the sample (cf. Table VI). This test is able

to detect a 25% change in slope 13% of time when the sample is only 75. This rises to 40%

of the time when the sample is 125 and the change is 75%. Moreover, the simultaneous test
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does better than each individual test as it exploits the asymmetry in the distribution which is

χ2 with 1 degree of freedom. For example, when the change in slope is 50% and the sample

is 125, the individual tests detect the change 3% and 27%, respectively, of the time, while the

simultaneous test detects it 34% of the time. Table VI reveals that the simultaneous test does

not perform well when the change occurs early or later on in the sample - at best it detects

the change 9% of the time. But the individual test statistic sup
0<t<1

|M(3)
T (τ)|

q(τ,ν= 15
128

)
performs very well

and this is one reason to employ the joint test; that is, both the simultaneous test as well as

the individual test for change in slope should be calculated. As these tests are asymptotically

independent, the global error rate is easy to control. For example, if the global error rate is

set at 10%, then the critical level used for the joint test would be approximately 5%. If this

procedure is followed instead of using only the simultaneous test, this joint test performs much

better than the CUSUM test of BDE.
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5 Conclusion

One simultaneous test statistic and two individual test statistics have been developed which

can be used to test the hypothesis of a one-time change in intercept or slope in LRMs. The

simultaneous is preferred because it controls the global error rate and exploits additional in-

formation which permits improvements in the power. This is particularly important when the

distribution of the errors follow a distribution that is highly skewed. Moreover, the simul-

taneous test also performs very well when compared to CUSUM test of BDE. There is one

drawback from the simultaneous test; the simulation revealed it is unable to detect a change in

slope that occurs early and later on in the sample but this can be adjusted for by employing the

joint test that calculates the simultaneous test as well as the statistic that detects a one-time

change in slope. As these statistics are asymptotically independent, the global error rate can

be controlled.
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6 Appendix

G(x) = IIP
{

sup
0<τ<1

|B(τ)|
q(τ,ν= 15

128
)
≤ x

}
x G(x) x G(x) x G(x) x G(x) x G(x)

0.534 0.01 0.792 0.21 0.934 0.41 1.087 0.61 1.290 0.81

0.568 0.02 0.799 0.22 0.941 0.42 1.096 0.62 1.303 0.82

0.597 0.03 0.806 0.23 0.950 0.43 1.104 0.63 1.317 0.83

0.615 0.04 0.813 0.24 0.958 0.44 1.112 0.64 1.333 0.84

0.632 0.05 0.820 0.25 0.966 0.45 1.120 0.65 1.349 0.85

0.648 0.06 0.827 0.26 0.974 0.46 1.128 0.66 1.368 0.86

0.661 0.07 0.834 0.27 0.981 0.47 1.136 0.67 1.385 0.87

0.673 0.08 0.840 0.28 0.988 0.48 1.144 0.68 1.400 0.88

0.684 0.09 0.847 0.29 0.994 0.49 1.153 0.69 1.422 0.89

0.695 0.10 0.854 0.30 1.001 0.50 1.163 0.70 1.447 0.90

0.707 0.11 0.861 0.31 1.008 0.51 1.175 0.71 1.471 0.91

0.720 0.12 0.868 0.32 1.014 0.52 1.186 0.72 1.496 0.92

0.729 0.13 0.875 0.33 1.021 0.53 1.196 0.73 1.531 0.93

0.738 0.14 0.882 0.34 1.029 0.54 1.206 0.74 1.563 0.94

0.746 0.15 0.890 0.35 1.037 0.55 1.216 0.75 1.609 0.95

0.753 0.16 0.897 0.36 1.045 0.56 1.228 0.76 1.668 0.96

0.761 0.17 0.904 0.37 1.053 0.57 1.240 0.77 1.723 0.97

0.769 0.18 0.912 0.38 1.061 0.58 1.252 0.78 1.797 0.98

0.778 0.19 0.919 0.39 1.069 0.59 1.264 0.79 1.916 0.99

0.785 0.20 0.926 0.40 1.078 0.60 1.277 0.80 2.040 1.00
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