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Abstract

The tail mean-variance model was recently introduced for use in risk management and

portfolio choice, and involves a criterion that focuses on the risk of rare but large losses,

which is particularly important when losses have heavy-tailed distributions. If returns

or losses follow a multivariate elliptical distribution, the use of risk measures that satisfy

certain well-known properties is equivalent to risk management in the classical mean-

variance framework. The tail mean-variance criterion does not satisfy these properties,

however, and the precise optimal solution typically requires the use of numerical methods.

We use a convex optimization method and a mean-variance characterization to find an

explicit and easily implementable solution for the tail mean-variance model. When a risk-

free asset is available, the optimal portfolio is altered in a way that differs from the classical

mean-variance setting. A complete solution to the optimal portfolio in the presence of a

risk-free asset is also provided.
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1. Introduction

In this paper, we consider portfolio selection under the tail mean-variance criterion that

was introduced by Landsman (2010):

TMV (L) = E [L | L > VaRq(L)] + λVar [L | L > VaRq(L)] . (1)

In the above, (i) λ > 0, (ii) L is a random loss, with a continuous distribution, on a

portfolio, (iii) VaRq(L) is the value-at-risk on the portfolio and is defined as

VaRq(L) = inf(x ∈ R : FL(x) ≥ q), (2)

where q ∈ (0, 1) and FL(x) is the cumulative distribution function of loss L. (q = 0.95

therefore corresponds to a 5% value-at-risk.) The objective is to find an optimal portfolio

that minimizes the tail mean-variance criterion subject to a budget constraint.

Since portfolio return R = −L, the tail mean-variance criterion may be regarded as an

analogue of the classical mean-variance criterion (see e.g. Panjer et al., 1998, p. 379):

MV (L) = EL +
1

2
τVarL = −ER +

1

2
τVarR, (3)

with τ > 0. This originates from the mean-variance portfolio theory of Markowitz (1952),

of course. Unlike its classical counterpart, the tail mean-variance criterion focuses on the

behaviour of the tail of portfolio returns through the q-quantile specified in the value-at-

risk. This is of interest to portfolio managers whose clients may be concerned with portfolio

performance in the event of extreme losses on capital markets.

We make three significant contributions in this paper. First, we use a convex optimiza-

tion method to find an explicit and easily implementable solution for tail mean-variance

optimization. We retain the assumption of joint elliptically distributed returns on securities

but, unlike the solution of Landsman (2010), our solution is simple and avoids a sequence

of matrix partitions and manipulations. The matrices may be of a large dimension for

portfolios containing many hundred securities and involving a large variance-covariance

matrix, so our solution has a considerable computational advantage. Secondly, our opti-

mal solution is amenable to a simple interpretation. We provide a simple characterization
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for the tail mean-variance optimal portfolio in terms of mean-variance efficiency. This facil-

itates comparison with optimal portfolios under other criteria, such as the mean-variance

and value-at-risk criteria. Thirdly, we further extend the work of Landsman (2010) by the

inclusion of risk-free lending and borrowing. A complete, closed-form optimal solution is

provided.

It is convenient to introduce at this point some notation and assumptions used in

the rest of the paper. R, R+ and R++ denote the sets of real numbers, real non-negative

numbers and real positive numbers respectively. We assume that there are n risky securities

with mean return µ ∈ R
n and variance-covariance matrix Σ ∈ R

n×n. Define 0 and 1 to be

column vectors of zeros and ones respectively, of dimension n. As is usual, we assume that

µ is not collinear with 1, i.e. that securities do not all have the same mean return, and that

Σ is a (symmetric) positive definite and non-singular matrix. Let x ∈ R
n be the vector of

proportions of wealth invested in a portfolio. Define P as the set of feasible portfolios of

risky securities only:

P = {x ∈ R
n : 1Tx = 1}. (4)

We assume in the above that all wealth is invested. In section 6, a risk-free asset is included,

in which case the proportion of wealth invested in the risk-free asset is 1−1Tx. There is no

constraint other than the budget constraint that all wealth be invested and, in particular,

short sales are allowed.

The plan of this paper is as follows. The motivation and literature related to this paper

are described in section 2. In section 3, we briefly review some results on the tail conditional

expectation, the tail variance, and on the tail mean-variance criterion. A characterization of

the optimal portfolio under the tail mean-variance criterion using mean-variance efficiency

is discussed in section 4. A novel solution for the tail mean-variance optimal portfolio is

derived in section 5 when portfolios consist of risky securities only. It is illustrated with

the help of a numerical example. When risk-free lending and borrowing are introduced,

the tail mean-variance optimal portfolio is altered and this is detailed in section 6. A few

proofs appear in the Appendix.
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2. Background and Related Literature

There are two strands in the development of work related to portfolio optimization. One

strand concerns multi-period optimal portfolio selection, initiated by Merton (1969, 1971).

Security prices are modelled as continuous-time random processes based on geometric

Brownian motion: see Karatzas and Shreve (1991), Yang and Zhang (2005) and Chacko

and Viceira (2005) among others. A recent and significant development in this direction is

made by Zhao and Rong (2012) who assume investment in multiple risky assets under the

constant elasticity of variance (CEV) model with stochastic volatility. This generalizes the

geometric Brownian motion model where volatility is deterministic.

In this paper, we choose to follow the second strand of portfolio optimization, namely

single-period optimization originally due to Markowitz (1952). There are several reasons

why we make this choice. First, the single-period mean-risk model is routinely used in

the investment industry because it allows for practical trading constraints, frictional costs

and similar realistic issues. We endeavor in this paper to add to the level of sophistication

that may be applied to such models. Secondly, parameter and model mis-specification

risks are very significant in practical portfolio management. The one-period model can

accommodate these, for example through a Bayesian approach (see e.g. Garlappi et al.,

2007; Tu and Zhou, 2004; Kan and Zhou, 2007), in a way which is readily implementable

by practitioners. We supply a closed-form solution in the single-period model which may

in future be extended to allow greater robustness. Thirdly, the effect of inter-temporal

hedging is typically small, so that optimal portfolios in the dynamic setting are often

(but not always) close to those in the static setting (Chacko and Viceira, 2005). Finally,

both individual and institutional investors are concerned with downside and tail risks in

portfolio returns, and traditional models fail to capture this. We are able to obtain explicit

expressions for optimal portfolios in the one-period setting taking tail risk into account.

In order to solve for tail mean-variance optimal portfolios, we also leverage recent

findings on risk measures. Indeed, the tail mean-variance criterion may be viewed as a

weighted sum of two risk measures. The first term on the right hand side of equation (1)
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is the tail conditional expectation of losses, which is identical to the expected shortfall

risk measure since losses are assumed to be continuously distributed (see e.g. McNeil,

Frey and Embrechts, 2005, p. 45). Acerbi and Tasche (2002) show that the tail conditional

expectation satisfies a set of acceptable properties for risk measures and is therefore deemed

to be a coherent risk measure in the sense of Artzner et al. (1999). The second term on

the right hand side of equation (1) represents the tail variance, proposed by Furman and

Landsman (2006).

Notice that the tail conditional expectation is the best estimate, in a least squares sense,

of the worst losses on a portfolio, when losses larger than the q-quantile are considered:

E [L | L > VaRq(L)] = arg inf
w

E
[

(L− w)2 | L > VaRq(L)
]

. (5)

On the other hand, the tail variance of Furman and Landsman (2006) gives the estimated

squared deviation of the worst losses from the tail conditional expectation:

Var [L | L > VaRq(L)] = inf
w

E
[

(L− w)2 | L > VaRq(L)
]

. (6)

The tail conditional expectation is explicitly calculated for multivariate distributions that

are normal, elliptical, gamma, Pareto and for exponential dispersion models by Panjer

(2002), Landsman and Valdez (2003), Furman and Landsman (2005), Chiragiev and Lands-

man (2007) and Landsman and Valdez (2005) respectively. Furman and Landsman (2006)

calculate the tail variance in the case of multivariate normal distributions and, more gen-

erally, elliptical distributions.

3. Results on Tail Conditional Expectation and Tail Variance

We start by briefly reviewing some known results on spherical and elliptical distributions

and their application to risk management.

If z : Ω → R
n is spherically distributed with characteristic generator ψ, then its char-

acteristic function is a function of the Euclidean norm of t, where t ∈ R
n is the argument

of the characteristic function:

ϕz(t) = E
[

exp
(

itTz
)]

= ψ

(

1

2
||t||2

)

. (7)
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ψ is termed the characteristic generator because it specifies different members of the spher-

ical family of distributions. For example, the standard normal random variable has char-

acteristic function exp (−t2/2).
Elliptical distributions are affine transformations of spherical distributions, so that

probability density contours are distorted from spheroids to ellipsoids. Let r : Ω → R
n be

a vector of asset returns on n securities. If r is elliptically distributed with location vector

µ ∈ R
n, dispersion matrix Σ ∈ R

n×n and characteristic generator ψ, then its characteristic

function is

ϕr(t) = E
[

exp
(

itTr
)]

= exp
(

itTµ
)

ψ

(

1

2
tTΣt

)

. (8)

For further details on spherical and elliptical distributions, see Fang et al. (1990).

A key property of elliptically distributed random variables with the same characteristic

generator ψ is that any linear combination of these random variables is also elliptically

distributed with the same characteristic generator. This is easily established from equa-

tion (8). Thus, the return xTr on a portfolio x is elliptically distributed with mean µ
Tx,

variance xTΣx and characteristic generator ψ, assuming that the mean and variance exist

(Owen and Rabinovitch, 1983).

Landsman and Valdez (2003) show that, when returns are jointly elliptically distributed,

the tail conditional expectation of portfolio loss, based on the q-quantile, may be written

as

E [L | L > VaRq(L)] = −µ
Tx + λ1,q

√
xTΣx, (9)

since L = −xTr. The parameter λ1,q is uniquely specified by q:

λ1,q = hZ,Z∗(zq), (10)

where hZ,Z∗(z) = fZ∗(z)/FZ(z) is a distorted hazard rate evaluated at the q-quantile of

the standardized random variable Z = (r1 − µ1)/
√
σ11. Here, FZ(z) = 1 − FZ(z) is

the decumulative distribution function of Z whereas FZ(z) is the cumulative distribution

function of Z; the first element of r is r1 with mean µ1 = Er1 and variance σ11 = Var(r1);

and fZ∗(z) is the density of some spherical random variable Z∗, the distribution of which
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is called the distribution associated with the elliptical family (see Landsman and Valdez,

2003, for details).

The corresponding tail variance, when returns are elliptically distributed, is derived by

Furman and Landsman (2006):

Var [L | L > VaRq(L)] = λ2,q x
TΣx. (11)

The parameter λ2,q is also uniquely specified by q:

λ2,q = r(zq) + hZ,Z∗(zq)(zq − hZ,Z∗(zq)), (12)

where r(z) = FZ∗(z)/FZ(z) and is also evaluated at the q-quantile of Z, and FZ∗(z) is the

decumulative distribution function of Z∗.

In view of equations (9) and (11), the tail mean-variance criterion of equation (1) may

be written as (Landsman, 2010):

f(x;λ, q) = −µ
Tx + λ1,q

√
xTΣx + λλ2,qx

TΣx. (13)

We may write the tail mean-variance criterion more succinctly as f(x) where this causes no

confusion. The two parameters of the tail mean-variance criterion describe an investor’s risk

preferences. The first parameter, λ ∈ R++, can be regarded as a risk aversion parameter

and is akin to τ in the classical mean-variance criterion of equation (3). The larger λ,

the more risk-averse an investor is, and the larger the additional return they expect as

a compensation for a unit increase in the variance of their portfolio return. The second

parameter, q ∈ (0, 1), defines a certain threshold of loss on the portfolio. A tail mean-

variance-optimizing investor is sensitive to losses beyond the q-quantile. These are losses

which are typically rare but large.

4. Characterization of the Tail Mean-Variance Optimal Portfolio

4.1. Classical Mean-Variance Criterion

It is well-known that, when returns or losses follow a multivariate elliptical distribution,

risk management under risk measures such as the value-at-risk and the tail conditional
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expectation is equivalent to the use of the classical mean-variance framework. This is

highlighted by McNeil, Frey and Embrechts (2005), with an emphasis on the value-at-

risk measure. More specifically, Proposition 6.13 of McNeil, Frey and Embrechts (2005,

p. 247) shows that an investor who wishes to achieve a target expected return will choose

the same optimal portfolio whether his measure of risk is the variance, the value-at-risk

or any other measure that satisfies the properties of translation invariance and positive

homogeneity. (See Artzner et al. (1999) for properties of coherent risk measures.) It

is clear from equation (1) that the tail mean-variance criterion does not satisfy positive

homogeneity: TMV (kL) 6= k × TMV (L) for k > 0. Nevertheless, we shall show that the

tail mean-variance criterion, under multivariate elliptical risks, does revert to the mean-

variance setting.

To this end, consider the classical mean-variance criterion

g(x; τ) = −µ
Tx +

1

2
τxTΣx, (14)

which corresponds to equation (3). g(x; τ) expresses a risk-averse investor’s tradeoff be-

tween expected portfolio return µ
Tx and variance of portfolio return xTΣx, through a risk

aversion parameter τ > 0. Such an investor seeks to minimize g(x; τ) subject to a budget

constraint such as 1Tx = 1.

The minimization of g(x) wrt x ∈ P is straightforward (see e.g. Panjer et al., 1998, p.

382) and results in the optimal solution

x = x0 +
1

τ
z (15)

where

x0 =
(

1TΣ−11
)−1

Σ−11, (16)

z = Σ−1
µ −

(

1TΣ−1
µ
) (

1TΣ−11
)−1

Σ−11. (17)

x0 ∈ P is the global minimum variance portfolio, i.e. the portfolio that minimizes xTΣx

subject to 1Tx = 1. As for z 6∈ P , it is a self-financing portfolio since it clearly satisfies

the property that 1Tz = 0.
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The concept of efficient frontiers is natural in mean-variance optimization. We employ

the usual definition of mean-variance efficiency that is found in textbook treatments of

portfolio theory, e.g. in Panjer et al. (1998, p. 379): a portfolio x is called (mean-variance)

efficient if there exists no portfolio x1 with µ
Tx1 ≥ µ

Tx and x1
TΣx1 < xTΣx. The

mean-variance efficient frontier E is then the set of portfolios defined by

E = {x0} ∪ {x ∈ R
n : x = argmin

x∈P

g(x; τ) for each τ ∈ R++}. (18)

At this stage we collect some statistical properties about the returns of x, x0 and z, as

they will be useful later. Recall throughout that Σ is a real, positive definite, symmetric,

non-singular matrix.

It is well-known (see e.g. Lee and Lee, 2006, p. 458) that the return on the global

mean-variance portfolio x0 in equation (16) has the same covariance with the return on all

non-self-financing portfolios x ∈ P (for which 1Tx = 1), including itself:

xTΣx0 =
(

1TΣ−11
)−1

xT1 =
(

1TΣ−11
)−1

= x0
TΣx0. (19)

But the return on x0 also has zero covariance with the return on the self-financing portfolio

z of equation (17) (for which 1Tz = 0):

zTΣx0 =
(

1TΣ−11
)−1

zT1 = 0. (20)

The mean return on the global mean-variance optimal portfolio is proportional to its vari-

ance:

µ
Tx0 =

(

µ
TΣ−11

) (

1TΣ−11
)−1

=
(

µ
TΣ−11

) (

x0
TΣx0

)

(21)

in view of equation (19).

Turning to the self-financing portfolio z of equation (17), and comparing it with x0 in

equation (16), we find that z = Σ−1
µ− (1TΣ−1

µ)x0, so that its mean return is

µ
Tz = µ

TΣ−1
µ− (1TΣ−1

µ)µTx0, (22)

which equals its variance of return since

zTΣz = µ
TΣ−1

µ− 2(1TΣ−1
µ)µTx0 + (1TΣ−1

µ)2x0
TΣx0 = µ

TΣ−1
µ− (1TΣ−1

µ)µTx0.

(23)
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Replacing µTx0 from equation (21) into equation (22) results in an expression for the mean

and variance of the return on the self-financing portfolio:

µ
Tz = zTΣz =

[

(

µ
TΣ−1

µ
) (

1TΣ−11
)

−
(

1TΣ−1
µ
)2
]

(

1TΣ−11
)−1

. (24)

Finally, from equations (15), (19), (20) and (23), we find that the variance of return on

the mean-variance optimal portfolio is:

xTΣx = x0
TΣx0 +

1

τ 2
zTΣz+

2

τ
x0

TΣz =
(

1TΣ−11
)−1

+
1

τ 2
µ

Tz. (25)

4.2. Tail Mean-Variance Criterion

Landsman (2010) shows that the tail mean-variance optimal portfolio that minimizes

f(x) (in equation (13)) subject to 1Tx = 1 is

x∗ = argmin
x∈P

f(x) = x0 +
w∗

ℓ
u. (26)

In the above, x0 is the global minimum variance portfolio of equation (16), and ℓ and u

are functions of mean µ and covariance Σ of stock returns. The functions ℓ and u are

fairly complicated and involve partitioned matrices and their inverses and they are not

reproduced here: see Landsman (2010) for details. As for w∗, it is the unique real root

within the interval (0, ℓ/2λλ2,q) of the following quartic equation:

w4 − ℓ

λλ2,q
w3 +

[

(

1TΣ−11
)−1

+
ℓ2 − λ21,q
(2λλ2,q)2

]

w2 − ℓ

(

1TΣ−11
)−1

λλ2,q
w + ℓ2

(

1TΣ−11
)−1

(2λλ2,q)2
= 0

(27)

Our aim is to explain the form of x∗, relate it to mean-variance efficient portfolios, and

simplify its calculation. The following two lemmas are useful in proving our main theorem.

Lemma 1. Assume q ∈ (0, 1). Then λ1,q > 0 and λ2,q > 0.

Proof. λ1,q is a ratio of probability density and decumulative probability in equation (10).

λ2,q > 0 follows immediately from equation (11).

Lemma 2. f(x) is strictly convex on P ⊂ R
n.
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See Landsman (2010) for a proof. The mean µ
Tx and variance xTΣx are continuous

on P , and so is f(x). On the r.h.s. of equation (13), xTΣx is strictly convex on R
n and

−µ
Tx is convex (linear), while the coefficients λ1,q and λλ2,q are positive by Lemma 1. So

one only needs to show that
√
xTΣx is convex on R

n, rather than strictly convex.

A consequence of Lemma 2 is that f(x) has at most one minimum on P . The following

lemma characterizes this minimum if it exists.

Lemma 3. Assume that there exists a portfolio x∗ = argminx∈P f(x). Then x∗ ∈ E .

Proof. We wish to show that x∗ = argminx∈P f(x) ⇒ x∗ = argminx∈P g(x; τ0) for some

τ0 > 0. Proof by contradiction: Suppose that x∗ = argminx∈P f(x) and x∗ 6=
argminx∈P g(x; τ0). Then there exists a portfolio x1 ∈ P with g(x1; τ0) < g(x∗; τ0)

such that µ
Tx1 ≥ µ

Tx∗ and x1
TΣx1 < x∗TΣx∗. In equation (13), λ > 0 by defi-

nition and λ1,q, λ2,q > 0 by virtue of Lemma 1. Therefore, f(x1) < f(x∗). But then

x∗ 6= argminx∈P f(x), which is a contradiction.

The proof of Lemma 3 is simple enough, but it is illuminating to rewrite the tail mean-

variance criterion in equation (13) as follows:

f(x) = −µ
Tx+ λλ2,q

(√
xTΣx+

λ1,q
2λλ2,q

)2

−
λ21,q

4λλ2,q
. (28)

Note that λλ2,q > 0, λ1,q/2λλ2,q > 0 by Lemma 1. For
√
xTΣx > 0, the quadratic

(√
xTΣx+ λ1,q/2λλ2,q

)2

is monotonically increasing in
√
xTΣx, and therefore in xTΣx,

Thus, holding the mean of portfolio return constant, minimizing f(x) is equivalent to

minimizing the variance of portfolio return.

Based on Lemma 3, it would not be surprising if the tail mean-variance optimal portfolio

solution x∗ has the same form as the mean-variance optimal portfolio x. Comparing the

solution x∗ of Landsman (2010) in equation (26) to x in equation (15), we find that they

do indeed bear a strong resemblance in that they both involve an adjustment to the global

minimum variance portfolio x0.
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5. Tail Mean-Variance Optimization with Risky Securities Only

5.1. Optimization

If a tail mean-variance-optimizing investor has a given target expected return, then

his optimal portfolio is readily calculated using standard methods as it lies on the mean-

variance efficient frontier. This is indeed also true of investors who have a target expected

return and wish to minimize a translation-invariant and positive-homogeneous risk mea-

sure, as stated in Proposition 6.13 of McNeil, Frey and Embrechts (2005, p. 247). However,

if there is no given target expected return, and if the investor wishes to freely optimize the

tail mean-variance criterion of equation (1), the precise optimal solution is not so easily

calculated and would typically be found using numerical methods. Nevertheless, Lands-

man (2010) obtained an analytic solution and our aim in this section is to shed some light

on this solution and to simplify it.

Before proving our main theorem, we establish a simple lemma on quartic polynomials.

As will become apparent later, this lemma means that we do not need to be concerned

with the algebraic solution of quartic equations.

Lemma 4. The quartic polynomial F (x) = (x−a)2(x2+b)−cx2 with a, b, c > 0 has exactly

one non-coincident real zero in (0, a) and exactly one non-coincident real zero in (a,∞).

See Appendix A.1 for a proof of the above. The following theorem contains our main

result.

Theorem 1. The minimum of f(x;λ, q) in equation (13) wrt x ∈ P exists and is unique

and occurs at

x∗ = x0 +
1

τ ∗
z, (29)

where x0 and z are given in equations (16) and (17) respectively, and τ ∗ ∈ R is the unique

root of the quartic equation

(τ − 2λλ2,q)
2
[

(

1TΣ−11
)−1

τ 2 + µ
Tz

]

− τ 2λ21,q = 0 (30)

that is located in the range (2λλ2,q,∞).
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Proof. Define the Lagrangian Lf (x, γf ) = f(x)− γf (1
Tx− 1) where γf ∈ R is a Lagrange

multiplier. ∂Lf/∂x = 0 and ∂Lf/∂γf = 0 may be written as

µ−
(

λ1,q√
xTΣx

+ 2λλ2,q

)

Σx+ γf1 = 0, 1Tx = 1. (31)

Suppose that the solution to the equation set (31) exists and denote it by (x∗, γ∗f ).

Consider instead the mean-variance optimization problem with g(x) defined in equa-

tion (14). Define the Lagrangian Lg(x, γg) = g(x)− γg(1
Tx− 1) where γg ∈ R is another

Lagrange multiplier. The optimal solution (x, γg) is the solution to

µ− τΣx+ γg1 = 0, 1Tx = 1. (32)

Now, the solution (x∗, γ∗f ) of equation system (31) coincides with the solution (x, γf )

of equation system (32) provided that τ takes a specific value, denoted by τ ∗, such that

τ ∗ =
λ1,q√

(x∗TΣx∗)
+ 2λλ2,q =

λ1,q√ (

xTΣx
) + 2λλ2,q. (33)

The existence of x∗ depends on the existence of a solution for τ ∗ ∈ R++ in the above

equation.

Substituting xTΣx from equation (25) into equation (33) and rearranging yields

τ ∗ − 2λλ2,q =
τ ∗λ1,q√ (

(1TΣ−11)−1 + µTz
) , (34)

which can also be rewritten as the quartic equation (30). In equation (34), λ1,q > 0 and

2λλ2,q > 0 by Lemma 1, and 1TΣ−11 > 0 by positive definiteness of Σ. Furthermore,

µ
Tz > 0 because µ

Tz = zTΣz from equation (23) and Σ is positive definite and z 6= 0.

(µTz > 0 also follows from the Cauchy-Schwarz inequality on the r.h.s. of equation (24).)

Since τ ∗ ∈ R++, the r.h.s. of equation (34) is positive and real, and so should be the l.h.s.

Thus, τ ∗ > 2λλ2,q. Lemma 4 confirms the existence of a unique real root of equation (30)

in the range (2λλ2,q,∞), which also serves to confirm the existence of x∗ = x with τ = τ ∗

in equation (15). Finally, uniqueness of the minimum at x∗ is guaranteed by Lemma 2.
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5.2. Practical Advantages and Comparison with Previous Solution

Some remarks about Theorem 1 are in order. First, the optimal portfolio x∗ in equa-

tion (29) corresponds to the original solution in equation (26) derived by Landsman (2010),

but has a much simpler form. In particular, the quartic equation (30) corresponds to the

original quartic equation (27) but is simpler.

Secondly, Theorem 1 is markedly easier to implement than the original solution of

Landsman (2010). The cumbersome functions ℓ and u in equation (26) do not arise,

and successive matrix partitions, concatenations and inversions are avoided. For practical

investment purposes, a large number of securities is likely to be held in a portfolio. Our

solution speeds up considerably the computation of optimal portfolios when there are a

large number of securities, involving large covariance matrices.

Thirdly, portfolio optimization is known to be sensitive to parameter and model mis-

specification risks (see e.g. Tu and Zhou, 2004; Kan and Zhou, 2007). The simplified

optimal portfolio in equation (29) means that sensitivity analysis is feasible and more

straightforward. A portfolio manager can investigate different portfolios as parameters

change. In particular, the change in the optimal portfolio under different multivariate

elliptical distributions, capturing increasing or decreasing dependence in the tail, can be

measured. The construction of robust portfolios, for example incorporating Bayesian priors,

can also be contemplated (see e.g. Garlappi et al., 2007).

Fourthly, the original proof of Landsman (2010) proceeds by laborious substitution of

the portfolio budget constraint into the tail mean-variance optimization objective of equa-

tion (13). Our proof involves an elegant use of the Lagrangian multiplier and a comparative

analysis with another optimization problem. The solutions are numerically identical, but

the one in Theorem 1 is more insightful in addition to being more computationally conve-

nient.

Finally, a key difference between the proof of Theorem 1 and the original proof of Lands-

man (2010) is the use of Lemma 4. This obviates the need to explore the algebraic solution

of quartic equations. Lemmas 2 and 4 furnish uniqueness and existence respectively. But

the quartic equation (30) has four roots, of which three must be ruled out. Equation (34)
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shows that roots outside the range (2λλ2,q,∞) are redundant. Showing that h(0) > 0 and

h(2λλ2,q) < 0, where h(τ) is the quartic polynomial (with a positive leading coefficient) on

the l.h.s. of equation (30), establishes only that there is at least one real root in the range

(0, 2λλ2,q) and at least one real root in the range (2λλ2,q,∞). In order to establish that

there is exactly one real root in the range that corresponds to (2λλ2,q,∞) in the quartic

equation (27), Landsman (2010) uses the famous solution of Ferrari, involving the resolvent

cubic (Neumark, 1965). The algebraic solution of cubics and quartics are equally famous

for being unwieldy, and the quartic equation (30) is easily solved by numerical methods in

practice, so Lemma 4 is assuredly of greater convenience.

5.3. Numerical Illustration and Comparison with Other Portfolio Optimization Models

To illustrate our portfolio optimization solution, we use the same numerical example as

given by Landsman (2010), which facilitates comparison with this earlier study. The weekly

returns in 2007 on 10 stocks, which are listed on Nasdaq and grouped in the Computers

industrial sector, are used in this example. The stocks and their means and covariances of

returns are displayed in Landsman (2010) and we do not reproduce them here, in order to

save space.

Optimal portfolio weights are tabulated in Landsman (2010) when returns are multivari-

ate normal. The optimal portfolios can be calculated more quickly using our Theorem 1,

so we model the stock returns with a multivariate Student-t distribution with 6 degrees of

freedom (ν = 6) thereby capturing the heavy-tailed feature of asset returns. We use the

mean vector and covariance matrix estimated by Landsman (2010). It is worth mentioning

that comparable statistics are obtained by McNeil, Frey and Embrechts (2005, p. 85) who

fit a Student-t distribution to the weekly and daily returns on 10 of the Dow Jones stocks.

Tu and Zhou (2004) and Jorion (1996), among other authors, also find that the Student-t

distribution cannot be rejected on U.S. stock return data over different periods and return

horizons, and they report statistics commensurate to those used here.

As is well known, the dispersion matrix in the Student-t distribution is a scaled version

of the covariance matrix, with the scaling factor depending on the number of degrees
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Stock ADBE TISA HAUP IMMR LOGI

Min TMV q = 0.95 0.3653 0.2034 0.0842 -0.0315 0.0358

Min MV 0.4931 0.3264 0.1699 -0.1176 0.0390

Min VaR q = 0.95 0.4042 0.2409 0.1103 -0.0577 0.0368

Min Variance 0.3298 0.1691 0.0603 -0.0075 0.0349

Stock NVDA OIIM PANL SCMM SSYS

Min TMV q = 0.95 0.0138 0.1316 -0.0261 0.1836 0.0400

Min MV -0.0778 0.1357 -0.0994 0.1480 -0.0174

Min VaR q = 0.95 -0.0141 0.1328 -0.0484 0.1728 0.0225

Min Variance 0.0393 0.1304 -0.0057 0.1935 0.0559

Table 1: Optimal portfolio weights obtained by minimizing (i) tail conditional expectation (Min TCE),

(ii) value-at-risk (Min VaR), (iii) variance (Min Variance).

of freedom. Landsman and Valdez (2003) and Landsman (2010) introduce a generalized

Student-t distribution whose kurtosis may be adjusted through a certain power parameter,

while keeping its covariance matrix constant and equal to the dispersion matrix. We use

the classical multivariate Student-t here, as also discussed by Landsman and Valdez (2003),

since it is better known and has numerous applications in finance and other areas.

Optimal portfolio weights are shown in Table 1. In the table and subsequent figures,

‘Min TMV’, ‘Min MV’, ‘Min VaR’ and ‘Min Variance’ denote the portfolios obtained when

minimizing the tail mean-variance criterion, the mean-variance criterion, the value-at-risk

and the variance respectively. The optimal portfolios in Table 1 are comparable, but not

identical, with those tabulated in Landsman (2010) since we use the multivariate Student-t

distribution and therefore capture heavy tails.

The optimal tail mean-variance portfolio (‘Min TMV’), calculated at the confidence

level q = 0.95, is displayed in mean-standard deviation space in Figure 1. The mean-

variance frontier is also displayed. We note that ‘Min TMV’ lies on the efficient frontier,
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Figure 1: Portfolio frontier showing optimal portfolios obtained by minimizing (i) variance (Min Variance),

(ii) tail mean-variance criterion (Min TMV), (iii) value-at-risk (Min VaR), (iv) mean-variance criterion

(Min MV).
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defined as E in equation (18), which consists of the concave segment of the frontier in

Figure 1. This is consistent with Lemma 3, of course.

In Figure 1, it is natural to compare the ‘Min TMV’ portfolio, which is obtained by

minimizing the criterion in equation (1), with the corresponding mean-variance optimal

portfolio (‘Min MV’), which is obtained by minimizing the criterion in equation (3). We set

λ = τ/2 for consistency between equations (1) and (3). The ‘Min MV’ portfolio also lies on

the efficient frontier in Figure 1, of course. In fact, a comparison of the tail mean-variance

optimal portfolio x∗ in Theorem 1 and the classical mean-variance optimal portfolio x of

equation (15) immediately yields the following corollary.

Corollary 1. argmin
x∈P

f(x;λ, q) = argmin
x∈P

g(x; τ ∗), where τ ∗ is given in Theorem 1.

Corollary 1 says that optimization of the tail mean-variance criterion can be achieved

by optimizing the classical mean-variance criterion with the risk aversion parameter τ ∗

being evaluated as the root of a quartic equation according to Theorem 1. This is also

consistent with Lemma 3, but it goes further because, through the calculation of τ ∗, it

gives a simple method for a portfolio manager to allow for leptokurtic asset returns and

aversion to tail risk, through the tail mean-variance model.

In Figure 1, the ‘Min TMV’ portfolio is more conservative than the ‘Min MV’ portfolio,

that is, its return has a lower standard deviation than that of the ‘Min MV’ portfolio. This

is not surprising since avoiding large losses is a key objective in the tail mean-variance

criterion.

It is also natural to compare the ‘Min TMV’ portfolio with the portfolio that minimizes

value-at-risk (denoted by ‘Min VaR’ in Figure 1). Recall that q, in equations (1) and

(2), represents the quantile threshold beyond which an investor is sensitive to losses. Our

numerical experiments, as illustrated by Figure 1, show that the optimal tail mean-variance

portfolio appears to be more conservative than the minimum value-at-risk portfolio at the

same confidence level q, in the sense that it consists of higher weights in the less volatile

stocks.

Figure 2 shows that the tail mean-variance criterion affords greater control than the
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(ii) tail mean-variance criterion (Min TMV) at different confidence levels q = 0.4, 0.7, 0.95, (iii) mean-
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mean-variance criterion in that an investor can account for his aversion to tail risk. As

demonstrated by Landsman (2010) and depicted in Figure 2, the ‘Min TMV’ portfolio tends

to the ‘Min MV’ portfolio as q → 0; on the other hand, it tends to the global minimum

variance portfolio as q → 1. An investor can specify the q-quantile of loss beyond which he

is sensitive to losses. The greater this threshold is, the more sensitive he is to large losses,

and the more conservative his optimal portfolio becomes.

6. Tail Mean-Variance Optimization with a Risk-Free Asset

Suppose that a risk-free asset earning a non-random rate r is introduced to the portfolio

opportunity set. The overall portfolio of an investor then consists of holding a proportion,

say y ∈ R, of total wealth in a sub-portfolio of risky securities and the remainder (1 − y)

in the risk-free asset. We assume that there is no constraint on the risk-free asset, i.e. that

both risk-free lending and borrowing at rate r are possible.

6.1. Classical Mean-Variance Optimization with Risk-Free Lending and Borrowing

We first consider classical mean-variance optimization only. It is well-known that the

efficient frontier of the overall portfolio, in mean-standard deviation space, is a straight line

with a positive slope and a vertical intercept at r. As emphasized by Merton (1972), three

cases can arise, depending on the level of the risk-free rate r relative to the mean return

of risky assets. The three cases depend, more specifically, on the relationship between the

risk-free rate r and the mean return on the minimum variance portfolio x0. The first case

is economically significant and tends to be the only one dealt with in elementary texts

(Sharpe et al., 1995; Elton et al., 2011), but for completeness we consider all three possible

cases below.

Case 1. r < µ
Tx0 ⇔ 1TΣ−1(µ− r1) > 0.

In mean-standard deviation space, the efficient frontier is a straight line with a positive

slope starting from the risk-free asset rf and going through a “tangency” portfolio xt:

xt =
Σ−1(µ− r1)

1TΣ−1(µ− r1)
. (35)
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See e.g. Kennedy (2010, p. 16). Note that xt ∈ E , where E is defined in equation (18) and

represents the original efficient frontier of risky securities only. In this case, xt is never

shorted, i.e. y ≥ 0. If y > 1, then the investor borrows at rate r; if y < 1, the investor

lends at rate r; and if y = 1, there is neither lending nor borrowing.

Case 2. r > µ
Tx0 ⇔ 1TΣ−1(µ− r1) < 0.

The efficient frontier is again a straight line with a positive slope from r, but this time

it consists of short positions in xt financing long positions in the risk-free asset. Thus,

y ≤ 0.

Notice that the denominator of xt in equation (35) is negative in Case 2. In fact, xt

now lies in the lower half of the hyperbolic mean-variance frontier of risky securities only,

so the straight line efficient frontier is not tangential to E in this case, but rather lies above

it. For details, see Merton (1972) and Huang and Litzenberger (1988, p. 79).

Case 3. r = µ
Tx0 ⇔ 1TΣ−1(µ− r1) = 0.

The efficient frontier is again a straight line with a positive slope from r, but now

consists of all wealth invested in the risk-free asset, along with investment, of a proportion

y ≥ 0 of wealth, in the self-financing portfolio z introduced in equation (17). While we

do not show this explicitly here, it is not difficult to show that the “arbitrage portfolio”

derived by Huang and Litzenberger (1988, p. 80) is identical to z.

6.2. Tail Mean-Variance Optimization with Risk-Free Lending and Borrowing

We now return to tail mean-variance optimization.

Theorem 2. Suppose that both risk-free lending and borrowing at rate r are available.

(a) If r 6= µ
Tx0, then the optimal tail mean-variance portfolio consists of holding a

proportion y∗ of wealth in tangency portfolio xt and the rest in the risk-free asset, where

y∗ =















A(B − λ1,q)

2λλ2,qB
if λ1,q ≤ B

0 if λ1,q ≥ B

(36)
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and xt is given in equation (35). In the above, A = 1TΣ−1(µ− r1) and

B =
√

(µ− r1)TΣ−1(µ− r1).

(b) If r = µ
Tx0, then the optimal tail mean-variance portfolio consists of investing all

wealth in the risk-free asset and investing a proportion y∗ of wealth in the self-financing

portfolio z, where

y∗ =















C − λ1,q
2λλ2,qC

if λ1,q ≤ C

0 if λ1,q ≥ C

(37)

and z is given in equation (17). In the above, C =
√

µTΣ−1(µ− r1).

Refer to Appendix A.2 for a proof of Theorem 2.

In the most common situation (described by case 1 in section 6.1), the risk-free rate is

lower than the average return on the global minimum variance portfolio of risky securities.

A situation where this did not hold would be unsustainable in the long term as it would

result in a flight from risky assets into short-term Treasury bills, depressing risky security

prices to the point where their expected return would rise relative to the risk-free rate.

Equation (36) in Theorem 2 is then seen to be a sensible proposition from a portfolio

management point of view. The more risk-averse a tail mean-variance-minimizing investor

is, the larger λ or λ1,q or λ2,q in equation (13) is likely to be, and therefore the more of

his wealth, in relative terms, he will invest in the risk-free asset and the lower y∗ is in

equation (36). If he is so risk-averse that λ1,q is greater than the threshold represented by

B, then he will invest only in the risk-free asset (y∗ = 0).

The fact that there is such a threshold is peculiar to the tail mean-variance criterion.

Indeed, there is no such threshold in classical mean-variance portfolio theory. To explain

this feature, we resort to a visual interpretation in µ–σ space, where µ is the mean and σ

is the standard deviation of portfolio returns. From equations (1) and (13), µ = λλ2,qσ
2 +

λ1,qσ − TMV and contours of equal tail mean-variance criterion are convex in µ–σ space.

Contours of lower TMV lie above contours of higher TMV. An optimal portfolio is located

at the point where the contour of lowest TMV is tangential to the mean-variance efficient

frontier.
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Now, iso-TMV contours have a slope that is not less than λ1,q, since dµ/dσ = 2λλ2,qσ+

λ1,q. In fact, at their point of intersection with the vertical axis (σ = 0), they have a slope

of λ1,q. On the other hand, the straight line mean-variance efficient frontier, joining the

risk-free asset r to the tangency portfolio xt, has a slope of (µTxt − r)/
√
xt

TΣxt = B

(in case 1). Consequently, when λ1,q > B, the iso-TMV contours are always steeper than

the straight line efficient frontier, so that no point of tangency occurs. The portfolio that

yields the lowest TMV occurs at the point where the highest iso-TMV contour intersects

the efficient frontier, and is therefore the risk-free asset (y∗ = 0). The lower λ1,q is, the less

steep the contours of level TMV are; the tangency point between iso-TMV contours and

efficient frontier then moves higher up along the straight line efficient frontier.

This is in sharp contrast to classical mean-variance optimization with the MV criterion

(g(x)) in equation (14), where there is always a tangency point between contours of equal

MV and the straight line efficient frontier (at least for investors who are not perfectly

risk-averse and for whom τ < ∞ in equation (14)). These contours are also convex but

have a slope of zero when σ = 0, compared to a positive slope of λ1,q in the TMV case. In

a loose sense, one might state that the TMV criterion generally implies a higher degree of

risk aversion than the MV criterion.

Part (b) of Theorem 2 is also deserving of comment. This refers to the unusual case

where the risk-free rate coincides exactly with the mean return on the minimum variance

portfolio (case 3 in section 6.1), whereupon no tangency portfolio exists. This result was

first derived by Merton (1972) in the classical mean-variance context. The efficient frontier

of risky securities only, defined as E in equation (18), has an asymptote that goes through

the risk-free asset and has a slope of C (Huang and Litzenberger, 1988, p. 79). In the

classical mean-variance case, optimal portfolios then lie on this asymptote, and consist

of all wealth being lent risk-free, together with a self-financing investment in portfolio z

requiring no additional wealth. Again, if a TMV -minimizing investor is sufficiently risk-

averse, the slope of his contours of level TMV will be high enough that they are never

tangential to the asymptote, so that investment in z does not occur (y∗ = 0).
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7. Conclusion

Asset return distributions are known to be heavy-tailed. Investors are also sensitive

to extreme events in the capital and insurance markets, which occur in the tail of return

distributions. The tail mean-variance criterion, which is considered in this paper, enables

investors to select portfolios that take into account the risk of large but rare losses. It

uses both the tail conditional expectation and the tail variance risk measures. If returns or

losses are jointly elliptically distributed, then an analytic solution for the optimal portfolio

under the tail mean-variance criterion is available. We characterized this optimal portfolio

as a mean-variance efficient portfolio, even though the tail mean-variance criterion is not

a translation-invariant positive-homogeneous risk measure. We also derived an explicit

solution for the optimal portfolio, which improves on previous work by providing both

insight and computational convenience, avoiding the partition, inversion and concatenation

of large matrices. In the presence of a risk-free asset, the optimal portfolio remains mean-

variance efficient. For a range of parameter values in the tail mean-variance criterion that

imply greater aversion to losses beyond a certain threshold, it turns out to be optimal to

invest only in the risk-free asset. The optimal portfolios that we calculated are simple

enough that risk managers and portfolio managers can readily compute and implement

them.

Appendix A. Proofs

Appendix A.1. Proof of Lemma 4

F (0) > 0 and F (a) < 0 and F (x) → +∞ as x → ±∞, hence F (x) has at least one

real zero in (0, a) and at least one real zero in (a,∞). Denote these two zeros by x1 and

x2 respectively. There are two possible cases concerning the remaining two zeros, say x3

and x4.

First, x3 and x4 may be complex conjugates, in which case x1 and x2 are indeed non-

repeated real zeros. Secondly, x3 and x4 may both be real zeros, either of which could be
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coincident with x1 or x2.

F (x) = x4 − 2x3 + (a2 + b− c)x2 − 2bx+ a2b. (A.1)

The coefficient of x3 in the above is negative ⇒ ∑

xi < 0. Therefore, at least one of x3 and

x4 is negative. Further, the coefficient of x is also negative ⇒ F ′(0) < 0. Since F (0) > 0,

it follows that both of x3 and x4 are negative (possibly coincident). Hence, x1 and x2 are

non-repeated real zeros.

This completes the proof of Lemma 4.

As an aside, we note that a2 + b− c < 0 ⇒ x1 ∈ (0, a), x2 ∈ (a,∞), and x3 and x4 are

complex conjugate roots, by virtue of Descartes’ rule of signs applied to the coefficients of

F (x) in equation (A.1). In fact, were the sign of a2 + b − c to be specified, then Sturm’s

theorem (Itô, 1993, p. 36) would be applicable.

Appendix A.2. Proof of Theorem 2

Let µ be the mean return on an overall portfolio (of risky and risk-free assets) and σ

be the standard deviation of return on this overall portfolio. Then the tail mean-variance

criterion may be written as

f(x) = −µ+ λ1,qσ + λλ2,qσ
2. (A.2)

Note that the proportion invested in the risk-free asset is 1− y = 1− 1Tx.

By an argument similar to the proof of Lemma 3, the portfolio that minimizes the tail

mean-variance criterion in equation (A.2) must lie on the straight line efficient frontier:

denote the mean return on the tail mean-variance optimal portfolio by µ∗, its standard

deviation by σ∗, and the minimal value of the criterion by ϕ∗; suppose that the tail mean-

variance optimal portfolio does not lie on the efficient frontier; then there exists an overall

portfolio, with mean return µ1 and standard deviation σ1 and tail mean-variance criterion

ϕ1, that satisfies µ1 ≥ µ∗ and σ1 < σ∗; but, by equation (A.2), this would imply that

ϕ1 < ϕ∗, which is a contradiction.
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The tail mean-variance optimal portfolio is therefore a mean-variance efficient portfolio

belonging to one of the three cases described in section 6.1. Given sgn(µTx0 − r), the

optimal portfolio is fully specified by y.

Case 1. y ≥ 0 and A > 0. Define µt to be the mean return on the tangency portfolio xt

and σt to be its standard deviation of return. The mean return on an efficient portfolio

in case 1 is µ = yµt + (1 − y)r and the standard deviation of its return is σ = yσt, with

y ≥ 0. The tail mean-variance criterion of equation (A.2) is therefore f(y) = −r − (µt −
r)y + λ1,qσty + λλ2,qσ

2
t y

2 and has at most one minimum, since f ′′(y) = 2λλ2,qσ
2
t > 0.

From the tangency portfolio xt in equation (35), it is straightforward to find that

µt = C2/A and µt − r = B2/A and σ2
t = B2/A2. Furthermore, σt = B/|A| = B/A, since

A > 0 in case 1. Note that B2 = (µ− r1)TΣ−1(µ − r1) > 0 and B ∈ R++ by virtue of

positive definiteness of Σ (and hence of Σ−1), and by the assumption of linear independence

of µ and 1. Therefore, f(y) = −r − (B2/A)y + λ1,q(B/A)y + λλ2,q(B/A)
2y2

The Kuhn-Tucker conditions are y ≥ 0, f ′(y) ≥ 0 and yf ′(y) = 0. The complementary

slackness condition is satisfied either by f ′(y∗) = 0 ⇔ y∗ = A(B − λ1,q)/2λλ2,qB, with

y∗ ≥ 0 provided that λ1,q ≤ B; or by y∗ = 0, in which case f ′(0) ≥ 0 provided λ1,q ≥ B.

Case 2. y ≤ 0 and A < 0. Constrained minimization proceeds as in case 1 above. The

standard deviation of return on the tangency portfolio is now σt = B/|A| = −B/A,
since A < 0 in case 2. But the standard deviation of return on the overall portfolio is

σ = −yσt = yB/A (since y ≤ 0). Therefore, f(y) is unchanged from case 1.

The Kuhn-Tucker conditions do change because of the non-positivity constraint: they

are y ≤ 0, f ′(y) ≤ 0 and yf ′(y) = 0, and are satisfied either by f ′(y∗) = 0 ⇔ y∗ =

A(B − λ1,q)/2λλ2,qB, with y∗ ≤ 0 provided that λ1,q ≤ B; or by y∗ = 0, in which case

f ′(0) ≤ 0 provided λ1,q ≥ B. (Recall that A < 0 in case 2.)

y∗ for cases 1 and 2 may therefore be combined in equation (36), which captures both

long and short positions in the tangency portfolio.

Case 3. Finally, in case 3, y ≥ 0 but A = 0. All wealth is invested in the risk-free

asset but the self-financing portfolio z is also held and is worth a proportion y of wealth.
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Define µz to be the mean return on portfolio z and σz to be its standard deviation of

return. Substituting r = µ
Tx0 into equation (22) gives µz = µ

TΣ−1(µ− r1) = C2. From

equation (24), σ2
z = µz = C2. Note that C2 = µ

TΣ−1(µ − r1) > 0 and C ∈ R++ since

µz = σ2
z > 0. This is also confirmed by an application of the Cauchy-Schwarz inequality

to the term in square brackets on the r.h.s. of equation (24).

The mean return on an efficient portfolio in case 3 is therefore µ = r + µzy = r +C2z,

and the standard deviation of its return is σ = yσt = yC, with y ≥ 0 and C > 0. The tail

mean-variance criterion of equation (A.2) is therefore f(y) = −r−C2y+λ1,qCy+λλ2,qC
2y2

and has at most one minimum, since f ′′(y) = 2λλ2,qC
2 > 0.

The Kuhn-Tucker conditions for a minimum in f(y) wrt y subject to the non-negativity

constraint on y lead again to two possible solutions: either f ′(y∗) = 0 ⇔ y∗ = (C −
λ1,q)/2λλ2,qC which is non-negative provided λ1,q ≤ C; or y∗ = 0 with f ′(0) ≥ 0 provided

that λ1,q ≥ C.

This completes the proof of Theorem 2.
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