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Abstract: When a surface effect ship (SES) sails in waves, the unsteady velocity potential of water can be 

decomposed into incident potential, sidehull radiation potential, sidehull diffraction potential and radiation 

potential due to fluctuating air pressure.  The potentials related to sidehulls satisfy Neumann boundary conditions 

(BC) and have been successfully addressed using the 2.5D method.  In contrast, the potential related to 

fluctuating air pressure satisfies mixed BC consisting of homogeneous Neumann BC on the wetted surface of 

sidehulls and nonhomogeneous Dirichlet BC on the interface between air and water, which has never been 

studied using the efficient 2.5D method.  In this paper, the 2.5D method is firstly proposed to solve the mixed 

boundary value problem (BVP), which can deal with the coupling between the fluctuating air pressure and 

sidehulls.  By using the 2.5D method, the radiation wave and other relative hydrodynamic parameters of a SES 

due to the fluctuating air pressure are evaluated.  The numerical results on motion response and the fluctuated air 

pressure of the SES show acceptable agreement with the experimental ones. 

Keywords: 2.5D method; mixed boundary value problem; surface effect ship; air cushion 

 

1. Introduction 

The surface effect ship (SES) is a kind of high speed vessel widely used in the marine transportation.  When 

navigating in waves, the SES makes unsteady motions, and the pressure in the air cushion fluctuating due to the 

pumping effect of waves.  Inversely, the unsteady motions of sidehulls and the fluctuating air pressure can have 

influence on the motion of water, which induce the sidehull radiation potential, sidehull diffraction potential and 

radiation potential due to fluctuating air pressure.  One needs to solve all of these velocity potentials for reckoning 

the responses of the SES in waves. 

The sidehull radiation and diffraction potentials satisfy nonhomogeneous Neumann boundary condition (BC) 

on the wetted surface of sidehulls and homogeneous Dirichlet BC on the interface between air cushion and water.  

The latter is actually similar to the conventional free surface condition, which makes the sidehull radiation and 

diffraction potentials obtained by simply solving Neumann boundary value problems (BVP).  In this sense, the 

hydrodynamics of the SES sidehulls is the same as conventional catamarans.  3D numerical methods such as 

Rankine source method (Connell et al., 2011), finite element method (García-Espinosa et al., 2015) and URANS 

method (Bhushan et al., 2017) have been employed in literature to precisely evaluate the hydrodynamics of SES 

sidehulls.  However, the 3D methods are computationally expensive and might not meet the engineering demands.  

For example, it is not suitable for establishing an SES motion control model by incorporating the 3D methods into 

the control models (Karimi et al., 2005a; Karimi et al., 2010; Zhang et al., 2015) due to its low computational 
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efficiency of the methods.  To enhance the computational efficiency, Guo et al. (2015) employed the 2.5D method 

to calculate the hydrodynamic coefficients of a special SES, which is called Partial Air Cushion Supported 

Catamaran (PACSCAT).  The 2.5D method is very efficient because the free surface condition in it is kept 

three-dimensional, while the governing equations and body surface conditions are reduced to two-dimensional 

(Faltinsen and Zhao, 1991; Ma et al., 2005). 

On the other hand, the radiation potential due to fluctuating air pressure satisfies the mixed BC consisting of 

homogeneous Neumann BC and nonhomogeneous Dirichlet BC, the latter of which is built through the Bernoulli’s 

equation.  To obtain the radiation potential due to fluctuating air pressure, one has to solve the mixed BVP.  The 

3D numerical methods can be utilized to do so, but they still consume a significant amount of computational 

resources.  For the sake of simplicity, in some works (Doctors, 1976; Xie et al., 2008) the mixed BVP was 

simplified to a Dirichlet BVP, i.e. the homogeneous Neumann BC as well as the coupling between the fluctuating 

air pressure and sidehulls was neglected.  The simplification, however, inevitably has impact on the numerical 

precision and thus one cannot obtain the accurate radiation potential due to fluctuating air pressure. 

A possible approach to overcome the aforementioned difficulties is to exploit the 2.5D method to solve the 

mixed BVP, which has advantages of accuracy and efficiency.  However, the 2.5D method generally was 

exploited to solve the Neumann BVP (Faltinsen and Zhao, 1991; Ma et al., 2005; Guo et al., 2015), i.e. 

hydrodynamic problems of displacement or planing ships, or the Dirichlet BVP (Guo et al., 2017), i.e. 

hydrodynamic problems of hovercrafts, and has never been employed to solve the mixed BVP. 

In this paper, the 2.5D method is firstly employed to solve the mixed BVP arising from the unsteady motions 

of a SES.  By using the 2.5D method, we solve the radiation potential due to fluctuating air pressure, as well as the 

radiation waves on the interface and radiation forces on the wetted surface of sidehulls.  The obtained results are 

substituted into the motion equations of a PACSCAT to find the motion response and the fluctuating air pressure in 

the air cushion.  The numerical results are compared with the experimental data in a few cases.  The object of the 

present paper is to provide an efficient and accurate method to evaluate the hydrodynamics of air cushion in a SES. 

2. Mathematical model of the mixed BVP and corresponding 2.5D numerical method 

Let 𝑂 − 𝑋𝑌𝑍 be an earth-fixed coordinate system and 𝑜 − 𝑥𝑦𝑧 a SES-accompanied coordinate system.  

The latter is always parallel to 𝑂 − 𝑋𝑌𝑍. When the SES is at its mean position, the 𝑥-axis is pointing upstream 

parallel to the longitudinal plane of the SES and the 𝑧-axis is pointing vertically upward through the center of 

gravity (COG) of the SES. The origins of both coordinate systems are located in the plane of mean free surface. 

2.1. Governing equations for hydrodynamics of the SES 

Let 𝛷I = 𝜂0𝜙Ie
i𝜔𝑡 be the incident wave, where 𝜂0 is the wave amplitude, 𝜙I the spatial component of 

𝛷I with an unit amplitude, 𝜔 the encountered frequency.  Within the framework of linear assumption, the 

unsteady disturbed velocity potential around the SES can be written as 

 𝜙T = 𝜙D + 𝜙R + 𝜙P = {𝜂0𝜙0 + ∑ 𝜂𝑗𝜙𝑗
6
𝑗=1 + ∑ 𝜂𝑗𝜙𝑗

6+𝑁P
𝑗=7 }ei𝜔𝑡  (1) 

where 𝜙D, 𝜙R, 𝜙P are sidehull diffraction potential, sidehull radiation potential and radiation potential due to 

fluctuating air pressure, respectively; 𝜙0 the spatial component of 𝜙D corresponding due the unit amplitude of 
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the incident wave, 𝜙𝑗(𝑗 = 1,… ,6) the spatial component of 𝜙R in 𝑗-th motion mode of an unit amplitude, 

𝜙𝑗(𝑗 = 7,… ,6 + 𝑁P) the spatial component of 𝜙P in 𝑗-th mode, 𝜂𝑗 (𝑗 = 1,… ,6) the amplitude of 𝑗-th motion 

mode, 𝜂𝑗(𝑗 = 7,… ,6 + 𝑁P) the equivalent waterhead of the fluctuating air pressure in 𝑗-th mode, 𝑁P the 

number of modes. 

The fluctuating air cushion pressure on the interface can be expressed as 

 �̃�(𝑥, 𝑦, 𝑡) = �̂�(𝑥, 𝑦)ei𝜔𝑡 = −ρ
w
gei𝜔𝑡 ∑ 𝜂𝑗𝑁𝑗(𝑥, 𝑦)

6+𝑁P
𝑗=7   (2) 

where �̂�(𝑥, 𝑦) is the spatial component of �̃�(𝑥, 𝑦, 𝑡), ρ
w

 the density of water, g the gravity, 𝑁𝑗(𝑥, 𝑦) a 

complete set of orthogonal Fourier modes expanded on the interface defined as (Lee and Newman, 2015) 

 𝑁𝑗(𝑥, 𝑦) = (
cos(𝛼π(𝑥 − 𝑥m) 𝑙⁄ )

sin(𝛼π(𝑥 − 𝑥m) 𝑙⁄ )
) (
cos(𝛽π𝑦 𝑏⁄ )

sin(𝛽π𝑦 𝑏⁄ )
)  (3) 

where 𝛼, 𝛽 are even for the modes corresponding to the cosine or odd for the sine; 𝑙, 𝑏, 𝑥m are the length, 

breadth, and longitudinal center of the air cushion, respectively. 

According to the Bernoulli’s equation, the boundary condition on the interface between water and air is 

 ∑ 𝜂𝑗 ((i𝜔 − 𝑈
𝜕

𝜕𝑥
)
2
+ g

𝜕

𝜕𝑧
)𝜙𝑗

6+𝑁P
𝑗=7 = g∑ 𝜂𝑗 (i𝜔 − 𝑈

𝜕

𝜕𝑥
)𝑁𝑗(𝑥, 𝑦)

6+𝑁P
𝑗=7   (4) 

where 𝑈 is the forward speed of the SES. 

If the sidehulls of the SES are slender and the forward speed is high (the Brard number 𝑈𝜔/g is far larger 

than 0.25 (Ma et al., 2005)), the high-speed slender body assumption could be applied to the sidehulls of the SES, 

under which the surge potential 𝜙1 is neglected.  Then the BVP for the sidehull radiation and diffraction 

potentials (𝜙𝑗 , 𝑗 = 0,2, … ,6) can be formulated as 

 

{
 
 
 
 

 
 
 
 
∂2𝜙𝑗

∂𝑦2
+
∂2𝜙𝑗

∂𝑧2
= 0, in 𝛺

[(i𝜔 − 𝑈
𝜕

𝜕𝑥
)
2
+ g

𝜕

𝜕𝑧
] 𝜙𝑗 = 0, on 𝑆F ∪ 𝑆P

𝜕𝜙𝑗

𝜕𝑛
= {

i𝜔𝑛𝑗 + 𝑈𝑚𝑗 ,   𝑗 = 2,… ,6

−
𝜕𝜙I

𝜕𝑛
, 𝑗 = 0

, on 𝑆B

𝜙𝑗 =
𝜕𝜙𝑗

𝜕𝑥
= 0, at 𝑥 > 𝑥0

𝜙𝑗 = ∇𝜙𝑗 = 0, on 𝑆∞

  (5) 

 

where 𝛺, 𝑆B, 𝑆P, 𝑆F, 𝑆∞ are the fluid domain enclosed by the mean wetted body surface 𝑆P, the mean interface 

𝑆P  between air cushion and water, the mean free surface 𝑆F , the boundary 𝑆∞  at infinity;  𝑥0  is the 

𝑥 -coordinate of the bow; 𝑛𝑗(𝑗 = 1,… ,6)  is the generalized normal vector, and 𝑚𝑗  is defined as 

(𝑚1, 𝑚2, 𝑚3) = (0,0,0) and (𝑚4, 𝑚5, 𝑚6) = (0, 𝑛3, −𝑛2). 

Analogously, if the air cushion is slender (the ratio of the length to beam 𝑙 𝑏⁄  is larger than 2 (Guo et al., 

2017)) and the forward speed is high (the Froude number 𝐹𝑟𝑙 is larger than 0.4 (Guo et al., 2017)), the 

high-speed slender body assumption could also be applied to the air cushion of the SES. Then the BVP for 

radiation potentials due to fluctuating air pressure (𝜙𝑗 , 𝑗 = 7,… ,6 + 𝑁P) can be formulated as 



4 

 

 

{
 
 
 
 

 
 
 
 
∂2𝜙𝑗

∂𝑦2
+
∂2𝜙𝑗

∂𝑧2
= 0, in 𝛺

((i𝜔 − 𝑈
𝜕

𝜕𝑥
)
2
+ g

𝜕

𝜕𝑧
)𝜙𝑗 = {

g (i𝜔 − 𝑈
𝜕

𝜕𝑥
)𝑁𝑗(𝑥, 𝑦)

0,
,
on 𝑆P 
           

 

on 𝑆F
𝜕𝜙𝑗

𝜕𝑛
= 0, on 𝑆B 

𝜙𝑗 =
𝜕𝜙𝑗

𝜕𝑥
= 0, at 𝑥 > 𝑥0

𝜙𝑗 = ∇𝜙𝑗 = 0, on 𝑆∞

  (6) 

 

The mixed BVP (6) is a novel model presented in this work, in which the sidehull effects on the velocity 

potential due to pressure are firstly considered. In contrast, in previous papers (Xie et al., 2008; Guo et al., 2015) 

the sidehull effects were ignored. Obviously, Eq.(5) and Eq.(6) are Neumann BVP and mixed BVP, respectively.  

The Neumann BVP (5) has be successfully solved using the 2.5D method (Ma et al., 2005), while the mixed BVP 

(6) has never been tried using the 2.5D method. 

2.2. The mixed BVP solved using the 2.5D method 

The 2.5D method resolves a 3D frequency-domain BVP by converting it into one defined in a 2D 

time-domain. To do so, the following variable substitutions need to be made 

 {

𝑥(𝑡) = 𝑥0 − 𝑈𝑡

𝜓𝑗(𝑡, 𝑦, 𝑧) = ei𝜔𝑡𝜙𝑗(𝑥(𝑡), 𝑦, 𝑧)

𝛱𝑗(𝑡, 𝑦) = ei𝜔𝑡𝑁𝑗(𝑥(𝑡), 𝑦)

   (7) 

 

Substituting Eq.(7) into the 3D frequency-domain BVP (6) yields a 2D time-domain BVP 

 

{
 
 
 
 
 

 
 
 
 
 
∂2𝜓𝑗

∂𝑦2
+
∂2𝜓𝑗

∂𝑧2
= 0, in 𝛺

𝜕2𝜓𝑗

𝜕𝑡2
+ g

𝜕𝜓𝑗

𝜕𝑧
= {

g
𝜕𝛱𝑗

𝜕𝑡

0,
,
on 𝑆P 
           

 

on 𝑆F
𝜕𝜓𝑗

𝜕𝑛
= 0, on 𝑆B 

𝜓𝑗 = 0, 𝑡 ≤ 0

𝜕𝜓𝑗

𝜕𝑡
= {

g𝛱𝑗(0, 𝑦),

0,

𝑡 = 0, on 𝑆P
𝑡 = 0, on 𝑆F

𝜓𝑗 = ∇𝜓𝑗 = 0, on 𝑆∞

  (8) 

 

The 2D time-domain free surface Green’s function is proposed to solve the time-domain mixed BVP (8): 

 𝐺(𝒑, 𝑡; 𝒒, 𝜏) = 𝛿(𝑡 − 𝜏)ln
𝑟𝑝𝑞

𝑟𝑝�̅�
− 𝐻(𝑡 − 𝜏)�̃�(𝒑, 𝑡; 𝒒, 𝜏)  (9) 

 �̃�(𝒑, 𝑡; 𝒒, 𝜏) = 2∫ √g 𝑘⁄ e𝑘(𝑧+𝜁) cos(𝑘(𝑦 − 𝜂)) sin (√g𝑘(𝑡 − 𝜏)) d𝑘
∞

0
   (10) 

where 𝒑, 𝒒 and �̅� are the field point, source point and the mirror of source point about the mean free surface, 

respectively; 𝑟𝑝𝑞 and 𝑟𝑝�̅�  are the distance from 𝒑 to 𝒒 and from 𝒑 to �̅�, respectively; 𝛿(∙) and 𝐻(∙) are 

Dirac and Heaviside functions, respectively; �̃� is the free surface memory term of the Green’s function. 

Applying the Green’s theorem to 𝜓𝑗(𝜏, 𝒒) and �̃�(𝒑, 𝑡; 𝒒, 𝜏), one gets 

 ∫ (𝜓𝑗
𝜕�̃�

𝜕𝑛𝑞
− �̃�

𝜕𝜓𝑗

𝜕𝑛𝑞
) d𝑠𝑞𝑆F+𝑆B+𝑆P+𝑆∞

= 0  (11) 
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It is well known that the integral on 𝑆∞ in Eq.(11) is equals to 0.  Considering this and integrating Eq.(11) over 

𝜏 yields 

 ∫ d𝜏 ∫ (𝜓𝑗
𝜕�̃�

𝜕𝑛𝑞
− �̃�

𝜕𝜓𝑗

𝜕𝑛𝑞
) d𝑠𝑞𝑆F+𝑆B+𝑆P

𝑡

0
= 0  (12) 

Using the free surface condition, the integral on 𝑆P in Eq.(12) comes to 

 ∫ d𝜏 ∫ (𝜓𝑗
𝜕�̃�

𝜕𝑛𝑞
− �̃�

𝜕𝜓𝑗

𝜕𝑛𝑞
) d𝑠𝑞𝑆P

𝑡

0
= ∫ 𝜓𝑗

𝜕

𝜕𝜁
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞𝑆P

+ ∫ d𝜏 ∫ 𝛱𝑗(𝜏, 𝜂)
𝜕�̃�

𝜕𝜏
d𝑠𝑞𝑆P

𝑡

0
  (13) 

Analogously, using the interface condition, the integral on 𝑆F reads 

 ∫ d𝜏 ∫ (𝜓𝑗
𝜕�̃�

𝜕𝑛𝑞
− �̃�

𝜕𝜓𝑗

𝜕𝑛𝑞
) d𝑠𝑞𝑆F

𝑡

0
= ∫ 𝜓𝑗

𝜕

𝜕𝜁
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞𝑆F

  (14) 

On the other hand, applying Green’s theorem to 𝜓𝑗(𝜏, 𝒒) and ln
𝑟𝑝𝑞

𝑟𝑝�̅�
, one obtains 

2π𝜓𝑗(𝑡, 𝒑) − ∫ (𝜓𝑗(𝑡, 𝒒)
𝜕

𝜕𝑛𝑞
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
− ln

𝑟𝑝𝑞

𝑟𝑝�̅�

𝜕𝜓𝑗(𝑡,𝒒)

𝜕𝑛𝑞
) d𝑠𝑞𝑆B

  

   = ∫ 𝜓𝑗(𝑡, 𝒒)
𝜕

𝜕𝜁
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞 + ∫ 𝜓𝑗(𝑡, 𝒒)

𝜕

𝜕𝜁
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞𝑆P𝑆F

      (15) 

Combining Eqs.(12)~(15) yields the boundary intergral equation (BIE) 

2π𝜓𝑗(𝑡, 𝒑) − ∫ (𝜓𝑗(𝑡, 𝒒)
𝜕

𝜕𝑛𝑞
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
− ln

𝑟𝑝𝑞

𝑟𝑝�̅�

𝜕𝜓𝑗(𝑡,𝒒)

𝜕𝑛𝑞
) d𝑠𝑞𝑆B

                                

 = ∫ d𝜏 ∫ (�̃�
𝜕𝜓𝑗(𝜏,𝒒)

𝜕𝑛𝑞
− 𝜓𝑗(𝜏, 𝒒)

𝜕�̃�

𝜕𝑛𝑞
) d𝑠𝑞𝑆B

𝑡

0
− ∫ d𝜏 ∫ 𝛱𝑗(𝜏, 𝜂)

𝜕�̃�

𝜕𝜏
d𝑠𝑞𝑆P

𝑡

0
.    (16) 

The BIE (16) is based on the source-sink distribution approach.  It can be changed to one based on the 

source distribution approach by extending the fluid domain into the interior of the wetted surface: 

 2π𝜓𝑗(𝑡, 𝒑) + ∫ 𝜎𝑗(𝑡, 𝒒)ln
𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞𝑆B

= ∫ d𝜏 ∫ 𝜎𝑗(𝜏, 𝒒)�̃�d𝑠𝑞𝑆B

𝑡

0
− ∫ d𝜏 ∫ 𝛱𝑗(𝜏, 𝜂)

𝜕�̃�

𝜕𝜏
d𝑠𝑞𝑆P

𝑡

0
  (17) 

where 𝜎𝑗 is the source density. 

Taking the derivative of Eq.(17) with respect to normal vector 𝒏𝑝 on the point 𝒑, one gets the source density 

equation 

 −π𝜎𝑗(𝑡, 𝒑) + ∫ 𝜎𝑗(𝑡, 𝒒)
𝜕

𝜕𝑛𝑝
ln

𝑟𝑝𝑞

𝑟𝑝�̅�
d𝑠𝑞𝑆B

= ∫ d𝜏 ∫ 𝜎𝑗(𝜏, 𝒒)
𝜕�̃�

𝜕𝑛𝑝
d𝑠𝑞𝑆B

𝑡

0
− ∫ d𝜏 ∫ 𝛱𝑗(𝜏, 𝜂)

𝜕2�̃�

𝜕𝑧𝜕𝜏
d𝑠𝑞𝑆P

𝑡

0
  (18) 

Through Eqs.(17)~(18) the radiation potential 𝜓𝑗  (𝑗 = 7,… ,6 + 𝑁P) can be solved.  Substituting 𝜓𝑗 to the 

second equation of Eq.(6), one obtains the 3D frequency-domain potential 

 𝜙𝑗(𝑥, 𝑦, 𝑧) = 𝜓𝑗(𝑡(𝑥), 𝑦, 𝑧)e
−i𝜔𝑡(𝑥)  (19) 

The flowchart for solving the mixed BVP using the 2.5D method is depicted in Fig.1. The BIE (16) or (17) 

derived from the mixed BVP are completely new.  Comparing Eq.(16) with the BIE derived from the Neumann 

BVP (Ma et al., 2005), one can find that there is an additional term related to fluctuating air pressure in the 

right-hand-most of Eq.(16), while the rest terms in two BIE are the same.  One can even observe that the air 

pressure related term is a free surface memory term rather than an instantaneous one, which suggests that the 

influence of the fluctuating air pressure on the water or sidehulls is exerted through the radiation wave.  On the 

other hand, comparing Eq.(17) with the BIE derived from the Dirichlet BVP (Guo et al., 2017), one can discover 

that the sidehulls have both instantaneous (the second term on the left-hand side of Eq.(17)) and free surface 

memory (the first term on the right-hand side of Eq.(17)) effects.  Obviously, the sidehulls should have impacts 
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on the solution of the air cushion pressure. 
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Figure 1. The flowchart for solving the mixed BVP using the 2.5D method. 

2.3. The computational complexity and numerical stability of the 2.5D method 

As compared with the 3D methods, the major advantage of the 2.5D method is its higher computational 

efficiency. The analysis and comparison of computational complexity of the 2.5D method with the 3D methods 

can be roughly drawn out as follows. 

Let 𝑀𝑠 be the number of sidehull or air cushion sections; 𝑁A and 𝑁B be the number of panels on each air 

cushion and sidehull section, respectively; 𝑓(𝑘) and 𝐹(𝑘, 𝜃) be the integrand of the 2.5D method and the 3D 

Green’s function, respectively. Then similar to the computational complexity of the catamaran sidehulls (Duan et 

al., 2000; Guo et al., 2015), the computational complexity of the 2.5D method and the 3D methods for the SES 

can be written as, respectively 

 𝑃2.5D = 𝑂 (𝑀𝑠 × (𝑁A + 𝑁B)
2 × 𝑇(∫ 𝑓(𝑘)d𝑘

∞

0
))  (20) 

 𝑃3D = 𝑂 (𝑀𝑠
2 × (𝑁A + 𝑁B)

2 × 𝑇(∫ d𝜃
π

0
∫ 𝐹(𝑘, 𝜃)d𝑘
∞

0
))  (21) 

where 𝑇(∙) represents the computational time for calculating the functions in the brackets. As 𝑀𝑠 is normally 

much larger than one, the computational complexity of the 2.5D method is much less than the 3D methods. In 

numerical practice, generally the 2.5D method only takes a few minutes, while the 3D methods such as the 3D 

Rankine source method (Zhang et al., 2011) normally requires a few hours for solving the same problem. 

It is worth noting that the matrix of the system equations generated by the abovementioned boundary 

element methods (BEM) is fully populated and unsymmetrical, which can significantly reduce the computational 

efficiency with the growth of panel number. Actually, the fast Fourier transform (FFT) methods (Zhang et al., 

2011) or wavelet function methods (Karimi et al., 2005b; Karimi, 2006) can be employed to further enhance the 

efficiency of BEM. The investigation on this topic is beyond the scope of this paper, and will be carried out in 

our future works. 

The numerical stability of the 2.5D method must be concerned due to that the instability might occur when 

the ship hulls are not wall-sided (Dai and Duan, 2008). The main cause of the numerical instability is considered 

to be related with the high numerical wave number near the free surface in the free-surface memory term of the 

2D time domain Green’s function. To enhance the numerical stability of the 2D time domain Green’s function, 

Duan (1995) set the source density near the free-surface to be zero. Dai and Duan (2008) proposed another two 

approaches to improve the numerical stability. One is to truncate the infinity upper limit of the integral with 

respect to wave number in the free-surface memory term to a finite value. The other is to use the implicit method 
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for evaluating the integral of the free-surface memory term with respect to time instead of the explicit method. 

More recently, Guo et al. (2018a; 2018b) incorporated the viscous dissipation effects into the free-surface 

equation and then developed a novel 2D time domain Green’s function, which was proved to have better 

numerical stability in evaluating the interaction between waves and floating bodies with flare angles.  

Nonetheless, the SES to be studied in this paper is almost wall-sided and not subjected to the issue of numerical 

instability, so no special treatments are needed.  If the 2.5D method would be used for floating bodies with flare 

angles, the developments in Guo et al. (2018a; 2018b) should be implemented.  

3. Motion equations for the SES 

To validate the solution of the mixed BVP solved using the 2.5D method, the motion equations for the SES 

are briefly introduced in this section, through which the motion response and the fluctuating air pressure can be 

solved after the hydrodynamic parameters are given by the 2.5D method.  Without loss of generality, the 5-DOF 

motions (the surge is always neglected in the 2.5D methods) of a SES advancing in regular waves of arbitrary 

directions are considered, though only the heave and pitch motion of a SES in head waves will be investigated in 

the next section. 

3.1. Air dynamic equations  

It is assumed that the variation of the fluctuating air pressure in the cushion along the vertical direction is not 

significant in the SES and so the air pressure can be approximated by 

 �̂�(𝑥, 𝑦) ≅
1

ℎ
∫ 𝑝(𝑥, 𝑦, 𝑧)d𝑧
ℎ

0
  (22) 

where ℎ is the height of the air cushion; 𝑝(𝑥, 𝑦, 𝑧) is the fluctuating air pressure in the cushion that satisfies the 

Helmholtz equation 

 ∇2𝑝 + 𝑘a
2𝑝 = 0  (23) 

where 𝑘a = 𝜔/𝑐, 𝑐 is the sound speed. 

Substituting Eq.(23) into Eq.(22), one obtains 

 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘a

2) �̂�(𝑥, 𝑦) = −
1

ℎ

𝜕𝑝

𝜕𝑧
|
𝑧 = ℎ
𝑧 = 0

  (24) 

Taking Eq.(2) into account and using the momentum equation, Eq.(24) comes to 

 ∑ 𝜂𝑗
6+𝑁P
𝑗=7 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘a

2) 𝑛𝑗(𝑥, 𝑦) = −
i𝜔ρa

ρwgℎ
𝑤 |
𝑧 = ℎ
𝑧 = 0

  (25) 

where ρ
a
 is the density of air cushion, 𝑤 the air flow velocity along the vertical direction in the cushion. 

Multiplying Eq.(25) by 𝑁𝑖(𝑥, 𝑦), 𝑖 = 7,… ,6 + 𝑁P, and integrating the resulting equation with respect to 

𝑥, 𝑦 on the horizontal section of the air cushion leads to 

 𝜂𝑖 (𝑘a
2 − 4π2 ((

𝛼

𝑙
)
2
+ (

𝛽

𝑏
)
2
))∬ 𝑛𝑖

2(𝑥, 𝑦)
𝑆P

d𝑥d𝑦 =
𝜔2ρa

ρwgℎ
(∬ 𝑛𝑖(𝑥, 𝑦)(𝜂3 − 𝑥𝜂5 + 𝑦𝜂4)𝑆D

d𝑥d𝑦 −

∬ 𝑛𝑖(𝑥, 𝑦)𝜁(𝑥, 𝑦)𝑆P
d𝑥d𝑦 + ∑ 𝑛𝑖(𝑥𝑗 , 𝑦𝑗)𝑞𝑗

out𝑁out
𝑗=1 − ∑ 𝑛𝑖(𝑥𝑗 , 𝑦𝑗)𝑞𝑗

in𝑁in
𝑗=1 ) − − −−                                                   (26) 

where 𝑁out and 𝑁in are the number of air leakage holes and/or gaps and the number of air charge inflow holes, 

respectively; 𝑞𝑗
out and  𝑞𝑗

in are the air leakage and inflow rate through 𝑗-th hole (gap), respectively; (𝑥𝑗 , 𝑦𝑗) the 

centroid of 𝑗-th hole (gap), 𝜁(𝑥, 𝑦) is the unsteady waves on the interface, which can be decomposed into 



8 

 

 

{
 
 
 
 

 
 
 
 𝜁
(𝑥, 𝑦) = 𝜁I(𝑥, 𝑦) + 𝜁D(𝑥, 𝑦) + 𝜁R(𝑥, 𝑦) + 𝜁P(𝑥, 𝑦) = 𝜁I(𝑥, 𝑦) + ∑ 𝜂𝑗𝜁𝑗(𝑥, 𝑦)

6+𝑁P
𝑗=0

𝜁I(𝑥, 𝑦) = 𝜂0e
−i𝑘0(𝑥 cos𝜃+𝑦 sin𝜃)

𝜁D(𝑥, 𝑦) = 𝜂0𝜁0(𝑥, 𝑦) = −
𝜂0

g
(i𝜔 − 𝑈

𝜕

𝜕𝑥
)𝜙0(𝑥, 𝑦, 0)

𝜁R(𝑥, 𝑦) = ∑ 𝜂𝑗𝜁𝑗(𝑥, 𝑦)
6
𝑗=2 = −

𝟏

g
∑ 𝜂𝑗 (i𝜔 − 𝑈

𝜕

𝜕𝑥
)𝜙𝑗(𝑥, 𝑦, 0)

6
𝑗=2

𝜁P(𝑥, 𝑦) = ∑ 𝜂𝑗𝜁𝑗(𝑥, 𝑦)
6+𝑁P
𝑗=7 = ∑ 𝜂𝑗 (𝑛𝑗(𝑥, 𝑦) −

1

g
(i𝜔 − 𝑈

𝜕

𝜕𝑥
)𝜙𝑗(𝑥, 𝑦, 0))

6+𝑁P
𝑗=7

  (27) 

where 𝜃 is the incident wave angle, and 𝑘0 the wave number.  The first term on the right hand side of Eq.(27) 

is the incident wave, while the rest terms are the disturbed waves due to unsteady motions and the fluctuating air 

pressure of the SES. 

There are 𝑁P air dynamic equations in Eq.(26), in which only motion or pressure amplitudes 𝜂𝑗 , 𝑗 =

2,… ,6 + 𝑁P  remain unknown. Eq.(26) actually builds up connections between motion responses and the 

fluctuating air pressure. 

3.2. Motion equations for the SES 

The 5-DOF motion equations for the SES can be formulated as 

 ∑ (−𝜔2(𝑀𝑖𝑗 + 𝐴𝑖𝑗) + i𝜔𝐵𝑖𝑗 + 𝐶𝑖𝑗)𝜂𝑗
6+𝑁P
𝑗=2 = 𝐹𝑖 ,     𝑖 = 2,… ,6  (28) 

where 𝑀𝑖𝑗 ,  𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐶𝑖𝑗 are the mass or inertial moment of the SES, added mass, damping, restoring force matrix, 

respectively, and 𝑀𝑖𝑗 = 0, 𝐶𝑖𝑗 = 0 for 𝑗 > 6; 𝐹𝑖 the wave fore along the 𝑖-th direction. As done in well-known 

linear potential formulation,  𝐴𝑖𝑗 and 𝐵𝑖𝑗 are obtained through following equations 

 {
𝐴𝑖𝑗 = Re{𝛬𝑖𝑗} 𝜔

2⁄

𝐵𝑖𝑗 = − Im{𝛬𝑖𝑗} 𝜔⁄
  (29) 

 𝛬𝑖𝑗 = −i𝜔ρ
w∬ 𝜙𝑗𝑛𝑖d𝑠𝑆B

+ ρ
w
𝑈∬ 𝜙𝑗𝑚𝑖d𝑠𝑆B

− ρ
w
𝑈∫ 𝜙𝑗𝑛𝑖d𝑙𝐶𝐴

  (30) 

where 𝐶𝐴 is the stern section of the SES.  The wave force 𝐹𝑖 could be decomposed into 

 𝐹𝑖 = 𝐹𝑖
I + 𝐹𝑖

D + 𝐹𝑖
P  (31) 

where 𝐹𝑖
I, 𝐹𝑖

D and 𝐹𝑖
P are the F-K force, diffraction force and air dynamic force on the wet deck, respectively. 

Their expressions are given as following 

 

{
 

 
𝐹𝑖
I = −𝜂0 ∙ i𝜌w𝜔0∬ 𝜙0𝑛𝑖d𝑠𝑆B

𝐹𝑖
D = 𝜂0 ∙ 𝛬𝑖0

𝐹𝑖
P = −ρ

w
g∑ 𝜂𝑗∬ 𝑛𝑗(𝑥, 𝑦)𝑛𝑖(𝑥, 𝑦)𝑆D

d𝑥d𝑦
6+𝑁P
𝑗=7

  (32) 

Eq.(26) and Eq.(28) together with Eqs. (29)- (32) make up the closed equations for the SES, through which 

one can solve all motions and pressure amplitudes 𝜂𝑗 , 𝑗 = 2,… ,6 + 𝑁P. 

4. Application of the 2.5D method for solving the BVPs of the PACSCAT 

In this section the solution of the mixed BVP obtained using the 2.5D method is validated through two cases, 

which evaluates the radiation wave on the interface due to fluctuating air pressure and solves heave and pitch 

response as well as air dynamics of a PACSCAT running in regular head waves.  Since the PACSCAT runs in 

head waves, the variation of the fluctuating air pressure along the transverse direction can be ignored.  So two 
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orthogonal Fourier modes from Eq.(3): 𝑁7(𝑥, 𝑦) = 1 and  𝑁8(𝑥, 𝑦) = sin(π𝑥 𝑙⁄ ) (𝑥m ≅ 0 for the PACSCAT) 

are used in the following studies.  Table 1 shows the principal parameters of the PACSCAT model.  More 

detailed information and the body plan for the PACSCAT can be found in Guo et al. (2015). 

Table 1. Principal parameters of the PACSCAT model (Guo et al., 2015). 

Parameters Value Parameters Value 

Mass (𝑀) 145 kg Moment of inertia for pitch (𝑀55) 77.4 kg·m2 

Overall length (𝐿) 3.0 m 
Static cushion overpressure (𝑝0) 

760 Pa (𝐹𝑟𝑙 = 0.73) 

Beam (𝐵) 0.7 m 510 Pa (𝐹𝑟𝑙 = 1.0) 

Cushion length (𝑙) 2.5 m Air inflow rate (𝑄0) 150 m3/h 

Cushion breadth (𝑏) 0.24 m Fan characteristic value (𝜕𝑄in 𝜕𝑝⁄ ) -7.2E-5 m3/(s · Pa) 

4.1. Radiation wave on the interface due to fluctuating air pressure 

As shown in Eqs.(26)~(27), the radiation wave 𝜁P on the interface due to fluctuating air pressure on the 

interface of the SES could have an impact on the motion responses, which suggests the importance of accurately 

predicting it.  In many publications, however, the radiation wave 𝜁P  was neglected (Faltinsen, 2005), or 

approximated by solving the Dirichlet BVP (Doctors, 1976; Xie et al., 2008; Guo et al., 2017).  Here we would 

like to compare the radiation wave 𝜁P of the PACSCAT by solving the Dirichlet BVP with the one by solving 

the mixed BVP.  Both of the mixed BVP and the Dirichlet BVP are solved using the 2.5D method. 

Fig.2 depicts the radiation wave profiles at the central longitudinal section 𝑦 = 0 for the cases of 𝐹𝑟𝑙 = 1.0 

and 𝜔√𝑙/𝑔 = 3.38.  In the figure, (a) and (b) show the real and imaginary part of 𝜁7 while (c) and (d) give the 

real and imaginary part of 𝜁8.  In addition, the label ‘Dirichlet BVP’ and ‘Mixed BVP’ indicate that the 

radiation waves are obtained by solving the Dirichlet and mixed BVP, respectively. 

 

 (a) (b) 
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 (c) (d) 

Figure 2. The profiles of radiation waves 𝜁7 and 𝜁8 (defined in Eq.(27)) due to fluctuating air pressure at 𝑦 = 0 

for 𝐹𝑟𝑙 = 1.0 and 𝜔√𝑙/𝑔 = 3.38. ‘Dirichlet BVP’ and ‘Mixed BVP’ indicate the radiation waves obtained by 

solving the Dirichlet and mixed BVP, respectively. (a) Real part of 𝜁7; (b) Imaginary part of 𝜁7; (c) Real part of 

𝜁8; (d) Imaginary part of 𝜁8. 

 

From Fig.2, one can find that the radiation wave from solving the Dirichlet BVP is very different from 

solving the mixed BVP, or more specifically, the latter is steeper than the former.  This means that the coupling 

between the fluctuating air pressure and sidehulls has significant influence on the radiation wave on the interface, 

and the selective omission of the coupling effects could bring inevitable errors to the hydrodynamics of the air 

cushion. The numerical results in this case also confirm the importance and necessity on solving the complete 

mixed BVP to accurately predict the hydrodynamics of a SES. 

4.2. Motion responses of the PACSCAT 

The significant influence of coupling between the fluctuating air pressure and sidehulls on the radiation 

wave profiles on the interface was demonstrated in Fig.2.  It might be more interesting to investigate how the 

coupling effects make the difference in the seakeeping performance and air dynamics of the PACSCAT. 

Fig.3 compares numerical results on the heave, pitch and fluctuating air pressure responses of the 

PACSCAT with the experimental data marked as ‘EFD’ under Froude number 𝐹𝑟𝑙 = 0.73 and 1.0.  The results 

labeled by ‘𝜁 = 𝜁I + 𝜁P(D)’ are obtained from the potential model that considers the incident wave and the 

radiation wave due to fluctuating air pressure on the interface by solving the Dirichlet BVP, while the sidehull 

involved waves are not taken into account.  The results labeled by ‘𝜁 = 𝜁I + 𝜁D + 𝜁R + 𝜁P(M)’ are obtained 

from the potential model that considers all possible waves on the interface, including the incident wave, 

diffraction and radiation wave of sidehulls, the radiation wave due to fluctuating air pressure by solving the 

mixed BVP.  The former is a simplified model that was utilized in Doctors (1976) and Xie et al. (2008), while 

the latter is a completely new model formed from the motion equations proposed in this work.  The results 

labeled by ‘CFD’ were obtained from the RANS (Reynolds-averaged Navier-Stokes equations) solver given by 
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Yang et al. (2015), in which the bow fingers and stern seal bags of the PACSCAT are modeled as rigid bodies. 

Note that only the heave and pitch motion of the PACSCAT were presented in Yang et al. (2015), while the 

fluctuating air pressure was not given. 

From Fig.3 (a)~(b) one can observe that two potential models generate the almost same heave RAOs in 

large encountered frequencies (𝜔√𝑙/𝑔 > 4), but the results from model ‘𝜁 = 𝜁I + 𝜁D + 𝜁R + 𝜁P(M)’ have 

slightly better agreement with EFD data in the vicinity of natural frequency of the PACSCAT.  Almost the same 

trend is obtained for the pitch RAO as shown in Fig.3 (c)~(d).  The RANS solver underestimate the heave RAO 

under low encountered frequencies but overestimate it under high encountered frequencies.  On the other hand, 

the RANS solver desirably predicts the pitch RAO under low encountered frequencies but significantly 

overestimates it under high encountered frequencies.  From Fig.3 (e)~(f), it is more evident that the model ‘𝜁 =

𝜁I + 𝜁D + 𝜁R + 𝜁P(M)’ significantly improves the numerical results of the fluctuating air pressure in the vicinity 

of the resonance frequency.  In contrast, the model ‘𝜁 = 𝜁I + 𝜁P(D)’ overestimates the resonance peak of the 

fluctuating air pressure at 𝐹𝑟𝑙 = 0.73, while underestimates that at 𝐹𝑟𝑙 = 1.0. 

  
 (a) (b) 

  
 (c) (d) 
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 (e) (f) 

Figure 3. A comparison of numerical results with experimental data marked as ‘EFD’ on seakeeping performance 

of the PACSCAT under Froude number 𝐹𝑟𝑙 = 0.73 and 1.0.  ‘𝜁 = 𝜁I + 𝜁P(D)’ represents the numerical results 

obtained from the model that considers the incident wave and the radiation wave due to fluctuating air pressure on 

the interface by solving the Dirichlet BVP, while the sidehull induced waves are not taken into account.  ‘𝜁 =

𝜁I + 𝜁D + 𝜁R + 𝜁P(M)’ are obtained from the model that considers all possible waves on the interface, including 

the incident wave, diffraction and radiation wave of sidehulls, the radiation wave due to fluctuating air pressure 

by solving the mixed BVP. ‘CFD’ are the CFD results from Yang et al. (2015). (a~b) Heave RAO; (c~d) Pitch 

RAO; (e~f) Fluctuating air pressure RAO. 

The numerical results suggest that the coupling effects could have significant influence on the air cushion 

dynamics, and the 2.5D method is helpful to capture the effects as well as to improve the numerical results on 

motion response and the fluctuating air pressure. 

5. Conclusions 

This paper firstly presents the 2.5D method to solve the mixed BVP of a SES consisting of homogeneous 

Neumann boundary condition on the sidehulls and nonhomogeneous Dirichlet boundary condition on the 

interface.  This kind of problem has never been dealt with by the 2.5D method before.  The newly developed 

2.5D method allows one to consider the coupling between the fluctuating air pressure and sidehulls, which is 

usually ignored in other publications. 

The solution of the mixed BVP obtained using the 2.5D method is validated by applying it on a special SES 

– PACSCAT through two cases.  The first case is to evaluate the radiation wave due to fluctuating air pressure 

on the interface. The numerical results confirm that the radiation wave from solving the Dirichlet BVP (Doctors, 

1976; Xie et al., 2008; Guo et al., 2017) is very different from solving the complete mixed BVP, i.e. the sidehull 

effects have significant impact on the radiation wave and should not be ignored.  The second case is employing 

the 2.5D method to calculate the relative hydrodynamic parameters of the PACSCAT and solve the motion 

equations to obtain the seakeeping performance of the PACSCAT.  The numerical results suggest that the 2.5D 

method is able to capture the sidehull effects and to improve the predicted results of the fluctuating air pressure. 

The effectiveness of the 2.5D method for solving the mixed BVP is primitively validated in this paper, and 
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more numerical tests are expected to be carried out in the future. 
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