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ASYMPTOTIC HARVESTING OF POPULATIONS IN RANDOM
ENVIRONMENTS

ALEXANDRU HENING, DANG H. NGUYEN, SERGIU C. UNGUREANU, AND TAK KWONG WONG

Abstract. We consider the harvesting of a population in a stochastic environment whose
dynamics in the absence of harvesting is described by a one dimensional diffusion. Using
ergodic optimal control, we find the optimal harvesting strategy which maximizes the as-
ymptotic yield of harvested individuals. To our knowledge, ergodic optimal control has
not been used before to study harvesting strategies. However, it is a natural framework
because the optimal harvesting strategy will never be such that the population is harvested
to extinction – instead the harvested population converges to a unique invariant probability
measure.

When the yield function is the identity, we show that the optimal strategy has a bang-
bang property: there exists a threshold x∗ > 0 such that whenever the population is under
the threshold the harvesting rate must be zero, whereas when the population is above the
threshold the harvesting rate must be at the upper limit. We provide upper and lower
bounds on the maximal asymptotic yield, and explore via numerical simulations how the
harvesting threshold and the maximal asymptotic yield change with the growth rate, max-
imal harvesting rate, or the competition rate.

We also show that, if the yield function is C2 and strictly concave, then the optimal
harvesting strategy is continuous, whereas when the yield function is convex the optimal
strategy is of bang-bang type. This shows that one cannot always expect bang-bang type
optimal controls.
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1. Introduction

Many species of animals like whales, elephant seals, bisons and rhinoceroses, are at risk of
being harvested to extinction ([Gul71, RPLB81, LHW93, Pri06]). Excessive harvesting has
already led to both local and gobal extinctions of species ([LES95]). In fact, a significant
percentage of the endangered birds and mammals of the world are threatened by harvesting,
hunting or other types of overexploitation ([LES95]), and there are similar problems for many
species of fish ([HR04]). This is why harvesting strategies have to be carefully chosen. After
significant harvests, it takes time for the harvested population to get back to the pre-existing
level. Moreover, the harvested population fluctuates randomly in time due to environmental
stochasticity. As a result, an overestimation of the ability of the population to rebound can
lead the harvester to overharvest the population to extinction ([LES95]). A less common but
nevertheless important problem is an insufficient rate of harvesting. Because of instraspecific
competition, the population is bounded in a specific environment, so an extraction rate that
is too low would lead to a loss of precious resources. For the same reason, choosing an
efficient extraction strategy for valuable species is important ([Kok01]).

We present a stochastic model of population harvesting and find the optimal harvesting
strategy that maximizes the asmptotic yield of harvested individuals. We consider a novel
framework, the one of optimal ergodic harvesting. This is based on the theory of ergodic
control ([ABG12]). In most stochastic models that exist in the literature, for example [LES95,
AS98, LØ97], the population is either assumed to become extinct in finite time, or it can end
up being harvested to extinction. In our framework, if the population goes extinct under
some harvesting strategy, the asymptotic yield is 0 and therefore this strategy cannot be
optimal. If one wants to ensure that harvested species are preserved, this framework is a
natural candidate. Our aim is to present a theory of optimal harvesting that includes the risks
of extinction from both environmental noise and harvesting. We assume that the population
is homogeneous and can be described by a one dimensional diffusion. The harvesting rate
is assumed to be bounded, as infinite harvesting rates would imply an unlimited harvesting
capacity, something that is clearly not realistic.

In most cases, environmental noise can be introduced in the system by transforming
differential equations into stochastic differential equations (SDE). Such techniques require
dealing with significant mathematical difficulties, but their use is not just a case of hon-
oring generality. First, there are direct effects of stochasticity on the predictions of the
model, and the parameters quantifying it show up in the results. Second, any realistic
biological system will depend on environmental variables that are not, or cannot be, ac-
counted for. The role of stochasticity is to ensure that the solutions proposed are ro-
bust to such omissions. For example, if avoiding extinction is important, deterministic
models can give misleading solutions even when their parameters are corrected for noise
([Smi78]). The transformation to SDE works especially well when the environmental fluctu-
ations are small and there is no chaos ([LES95]). We focus on models with environmental
stochasticity and neglect the demographic stochasticity which arises from the randomness
of birth and death rates of each indiviual of a population. Throughout the paper we as-
sume that environmental stochasticity mainly affects the growth rate of the population
(see [Tur77, BM77, MBHS78, Lei81, Bra02, Gar88, EHS15, ERSS13, SBA11, HN18a] for
more details). For computational tractability and for clarity of exposition, we look at a
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one-dimensional model. Nevertheless, our framework works for any model that can be writ-
ten as a system of stochastic differential equations (satisfying some mild assumptions - see
[ABG12]).

A major limitation of existing models in the literature is the dependence of the optimal
solutions on parameters that are hard to quantify. For example, in [LES95] the level at
which the population becomes extinct – the minimal viable population – must be assumed;
without it the yields become infinite. In [AS98] the yield must be time discounted to avoid
maximizing over yield infinities, and this requires providing a time value for resources. The
minimal viable population is a difficult scientific question ([Sha81, TBB07]), and the time
value of yields is a difficult economics and policy question, because it implies the comparison
of the utility of present and future generations ([DS87]). In contrast, our model sidesteps
the issue by assuming no time preference – and therefore no bias towards extracting in the
present, and resolves the problem of maximizing over infinite yields naturally by looking at
asymptotic behavior.

A particular case of our model was studied in [AP81]1. The authors limited themselves to
the analysis of harvesting strategies that were of bang-bang type. In [Aba79], one of the co-
authors in [AP81] proved that an optimal gathering strategy was necessarily of a bang-bang
type in a continuous time Markov chain model, making use of the simplifying assumption of
a finite state space. Here, instead, we look at very general possible harvesting strategies in
a continuous state stochastic model, and show that the optimal one is of bang-bang type.
Our contribution is therefore two-fold. We generalize the setting of [AP81] significantly by
looking at very general density-dependent growth rates, not just the logistic case. Moreover,
we prove what the authors of [AP81] intuited, namely that the optimal strategy is of bang-
bang type; and furthermore that this is true for the larger class of convex yield functions.

Stochastic optimal control applications are common in the finance literature. Following
the seminal contributions of [Mer69, Mer71], objective functions that are integrals of time
discounted instantaneous utility flows are now standard. The crucial simplifying assumption
is that of time-additive total utility. The utility flow usually depends on consumption flows,
and therefore indirectly on other variables and stochastic constraints. With the time-additive
utility assumption, our general yield function can also be interpreted as an instantaneous
utility function dependent on yield, and our objective function can be the asymptotic ex-
pected utility flow dependent on yield. Because a population stock cannot grow indefinitely
in our biological model, we diverge from the general finance literature, where financial returns
do not usually depend on the size of the holdings of an individual.

Finally, we generalise a result from one of the stochastic models in [Smi78], where the
equivalent to our yield function has a specific simple form. We show that, when the yield
function is weakly convex, the optimal control is bang-bang. However, if the yield function
is strictly concave, then the optimal harvesting strategy has to be continuous, in contrast
to the bang-bang type optimal strategy we find for a linear yield function. This generaliza-
tion is useful for economic welfare analysis (a more general form of cost-benefit analysis),
which typically relies on a concave utility function, equivalent to the concave yield function
herein. In economic models, concavity is assumed to model risk aversion (see [MCWG95,
Proposition 6.C.1] for justification), and for the convenience of interior solutions to max-
imisation problems. Concave utility leads to a trade-off between risk and returns in asset
choice [Mer71], so the connection between yield concavity and strategy continuity mentioned

1We thank the anonymous referee who has brought the paper to our attention.
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above is suggestive of risk management. However, risk management interpretations from the
finance literature are not directly applicable here. First, financial asset returns are assumed
reasonably to not be decreasing in the asset value owned by investors.2 Moreover, the risk-
return trade-off is captured in models with choice between at least two assets with different
risk profiles.3 If anything, finding a bang-bang optimal strategy when yield is linear is more
related to finding corner solutions in maximisation problems with linear utility. A bang-bang
strategy uses one of the two extremes of the harvesting rate, depending on the momentary
population stock.

The rest of the paper is organized as follows. In Section 2 we introduce our model and
results. We prove that, if the population in the absence of harvesting survives, the yield
function is the identity and the harvesting rate is bounded above by some number M > 0,
then the optimal strategy is always a bang-bang type solution: there exists an x∗ > 0 such
that one does not harvest if the current population size lies in the interval [0, x∗] and harvests
at the maximal possible rate, M , if the current population size lies in the interval (x∗,∞).
The proofs of the above results are collected in Appendix A. In Section 4 we apply our
results to the special setting of the logistic Verhulst-Pearl model. In Section 3 (proofs in
Appendix B) we show that if the yield function is strictly concave, the optimal harvesting
strategy is continuous, and when the yield function is more generally weakly convex, the
optimal strategy is bang-bang.

Finally, in Section 5 we offer some numerical simulations that show how the optimal
harvesting strategies and optimal asymptotic change with respect to the parameters of the
model. We also provide a discussion of our results.

2. Optimal ergodic harvesting

We consider a population whose density X̃(t) at time t ≥ 0, in the absence of harvesting,
follows the stochastic differential equation (SDE)

(2.1) dX̃(t) = X̃(t)µ(X̃(t)) dt+ σX̃(t) dB(t), X̃(0) = x > 0,

where (B(t))t≥0 is a standard one dimensional Brownian motion. This describes a popula-

tion X̃ with per-capita growth rate given by µ(x) > 0 when the density is X̃ = x. The
infinitesimal variance of fluctuations in the per-capita growth rate is given by σ2.

The following is a standing assumption throughout the paper.

Assumption 2.1. The function µ : [0,∞)→ R satisfies:

• µ is locally Lipschitz.
• µ is decreasing.
• As x→∞ we have µ(x)→ −∞.
• The function p(x) := xµ(x) has a unique maximum.
• There is no interval (u, v) ⊂ R+ such that p(·) is constant on (u, v).

The behavior of (2.1) is not hard to study. In the particular case when µ(x) = µ − κx
see [EHS15, DP84]. The methods there can be easily adapted to our setting. Alternatively,
one could use the general results from [HN18a]. The process X̃ does not reach 0 or ∞ in

2The assumption may not apply in models with large institutional investors.
3An ecological model extension that would link this literature to our model would consider optimal

extraction policy to maximise a time discounted concave total-yield function when there are at least two
populations, situated in different environments with no growth limitation.
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finite time and the stochastic growth rate µ(0) − σ2

2
determines the long-term behavior in

the following way:

• If µ(0) − σ2

2
> 0 and X̃(0) = x > 0, then (X̃(t))t≥0 converges weakly to its unique

invariant probability measure ν on (0,∞).

• If µ(0)− σ2

2
< 0 and X̃(0) = x > 0, then limt→∞ X̃(t) = 0 almost surely.

We let R+ := [0,∞) and R++ := (0,∞) throughout the paper.
Assume that the population is harvested at time t ≥ 0 at the stochastic rate h(t) ∈ U :=

[0,M ] for some fixed M > 0. Adding the harvesting to (2.1) yields the SDE

(2.2) dX(t) = X(t)(µ(X(t))− h(t)) dt+ σX(t) dB(t), X(0) = x > 0.

A stochastic process (h(t))t≥0 taking values in U is said to be an admissible strategy if
(h(t))t≥0 is adapted to the filtration (Ft)t≥0 generated by the Brownian motion (B(t))t≥0.
Let U be the class of admissible strategies. An important subset of U is the class Usm of
stationary Markov strategies, that is, admissible strategies of the form h(t) = v(X(t)) where
v : R++ 7→ U is a measurable function. By abuse of terminology, we often refer to the
map v(·) as the stationary Markov strategy. Using a stationary Markov strategy v(·), (2.2)
becomes

(2.3) dX(t) = X(t)(µ(X(t))− v(X(t))) dt+ σX(t) dB(t), X(0) = x > 0.

Remark 2.1. The sigma algebra Ft gives one the information available from time 0 to time
t. An admissible harvesting strategy is therefore a strategy which can take into account all the
information from the start of the harvesting to the present. These strategies are much more
general than constant strategies. Stationary Markov strategies are the harvesting strategies
which only depend on the present state of the population density.

We associate with X(t) the family of generators (Lu)u∈[0,M ] defined by their action on C2

functions with compact support in R++ as

(2.4) Luf(x) := x[µ(x)− u]fx +
1

2
σ2x2fxx.

We will call Φ : R+ → R+ a yield function if the following assumption holds.

Assumption 2.2. The function Φ : R+ → R+ satisfies:

• Φ is continuous.
• Φ(0) = 0.

• Φ has subpolynomial growth that is, there is n ∈ N such that Φ(x)
xn
→ 0 for x→∞.

Our aim is to find the optimal strategy h(t) that almost surely maximizes the asymptotic
yield

(2.5) lim inf
T→∞

1

T

∫ T

0

Φ
(
X(t)h(t)

)
dt.

In other words we want to find v such that, for any initial population size X(0) = x > 0,
we have with probability 1 that

lim inf
T→∞

1

T

∫ T

0

Φ
(
X(t)v(X(t))

)
dt = sup

h∈U
lim inf
T→∞

1

T

∫ T

0

Φ
(
X(t)h(t)

)
dt =: ρ∗.

We note that many of the existing models that look at the optimal harvesting of a population
in a stochastic environment ([LØ97, AS98, LES95]) assume that the yield function Φ is the
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identity i.e. Φ(x) = x, x ≥ 0. This assumption is not always justifiable (see [Alv00]) and as
such we present in Section 3 results for more general functions Φ.

Remark 2.2. We note that if X has an invariant probability measure π on R++, then for
any X(0) = x > 0 almost surely

lim
T→∞

1

T

∫ T

0

Φ
(
X(t)v(X(t))

)
dt =

∫
R++

Φ(xv(x))π(dx).

In particular, if X goes extinct, that is, for any X(0) = x > 0 we have with probability 1

lim
t→∞

X(t) = 0,

then the only invariant ergodic measure of X on R+ is δ0 the point mass at 0, and hence,
we get that with probability 1

lim
T→∞

1

T

∫ T

0

Φ
(
X(t)v(X(t))

)
dt = 0.

Our method for maximizing the asymptotic yield forces the optimal harvesting to be such that
the population persists.

Remark 2.3. By [ABG12, Theorems 2.2.2 and 2.2.12], the controlled systems (2.2) and (2.3)
have unique local solutions on R++ for any admissible control h(t) and stationary Markov
control v respectively. Note that one can find N > 0 large enough such that

Lu
(
x+

1

x

)
=x(µ(x)− u)

(
x2 − 1

x2

)
+ σ2x2 1

x3

≤N(σ2 +M)

(
x+

1

x

)
, x ∈ R++, u ∈ U.

With this fact in hand, we can use the arguments from [Kha12, Theorem 3.5] to obtain the
existence of global solutions on R++ of (2.2) and (2.3). In particular we get that

Px (X(t) ∈ R++, t ≥ 0) = 1, x ∈ R++.

The main result of the paper is the following.

Theorem 2.1. Assume that Φ(x) = x, x ∈ (0,∞) and that the population survives in the

absence of harvesting, that is µ(0) − σ2

2
> 0. Furthermore assume that the drift function

µ(·) satisfies Assumption 2.1. The optimal control (the optimal harvesting strategy) v has
the bang-bang form

(2.6) v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗

for a unique x∗ ∈ (0,∞). Furthermore, we have the following upper bound for the optimal
asymptotic yield

(2.7) ρ∗ ≤ sup
x∈R+

xµ(x).
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3. Continuous vs bang-bang optimal harvesting strategies

As showcased in Theorem 2.1, when Φ is the identity function the optimal harvesting
strategy is of bang-bang type. In Appendix B we prove the following result.

Theorem 3.1. Suppose Assumption 2.1 holds and the yield function satisfies

(1) Φ ∈ C2(R+),
(2) Φ is strictly concave.

Then the optimal harvesting strategy is continuous and given by

v =


0 if [Φ′]−1(V ∗x (x)) ≤ 0,
[Φ′]−1(V ∗x (x))

x
if 0 < [Φ′]−1(V ∗x (x)) < xM,

M if [Φ′]−1(V ∗x (x)) ≥ xM.

Furthermore, the HJB equation for the system becomes

ρ =


xµ(x)fx +

1

2
σ2x2fxx if [Φ′]−1(fx(x)) ≤ 0,

xµ(x)fx +
1

2
σ2x2fxx − fx[Φ′]−1(fx) + Φ([Φ′]−1(fx)) if 0 < [Φ′]−1(fx(x)) < xM,

x(µ(x)−M)fx +
1

2
σ2x2fxx + Φ(xM) if [Φ′]−1(fx(x)) ≥ xM .

(3.1)

Remark 3.1. We cannot find the exact form of the optimal harvesting strategies in this
case. Note that in Theorem 2.1 we have Φ(x) = x which is not strictly concave nor strictly
convex.

Intuitively, this is not unlike maximising a strictly concave objective function under a linear
constraint. The optimal choice usually moves smoothly over the domain as the direction of
the constraint changes. However, when the objective function is weakly convex, e.g. linear,
the optimum will jump on the allowed interval.

Here, we show that if the yield function is weakly convex, the optimal control is bang-bang.
The optimal strategy has a similar form to the one for linear yield, if a further assumption
on the joint rates of change of the population growth rate and the yield function is made.

Theorem 3.2. Assume that Φ : R+ → R+ is weakly convex, Φ grows at most polynomially,

Φ ∈ C1(R+) and the population survives in the absence of harvesting, that is µ(0) − σ2

2
>

0. Furthermore assume that the drift function µ(·) satisfies the following modification of
Assumption 2.1:

(i) µ is locally Lipschitz.
(ii) µ is decreasing.

(iii) As x→∞ we have µ(x)→ −∞.
(iv) The function

(3.2) G(x) = Φ(xM)

(
1− 2

σ2
µ(x)

)
− xMΦ′(xM)

has a unique extreme point in (0,∞) which is a minimum, and is not constant on
any interval (u, v) ⊂ R+.
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If the assumptions (i)-(iii) hold, the optimal control has a bang-bang form (i.e., the harvesting
rate is either 0 or the maximal M). If assumptions (i)-(iv) hold, the optimal harvesting
strategy v has a bang-bang form with one threshold

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗

for some x∗ ∈ (0,∞).

4. The logistic case: µ(x) = µ− κx

Throughout this section we provide a thorough analysis of the logistic Verhulst-Pearl
model. As such, we will assume that the growth rate is µ(x) = µ−κx for positive constants
µ, κ > 0. It is clear that this µ(·) satisfies Assumption 2.1. If we harvest according to a
constant strategy ` > 0 then the SDE (2.3) becomes

dX(t) = X(t)(µ− κX(t)− `) dt+ σX(t) dB(t).

It is then easy to see that, as long as µ− `− σ2

2
> 0, the asymptotic yield is

L(`) := lim
T→∞

1

T

∫ T

0

`X(t) dt = `
µ− `− σ2

2

κ
.

We can maximize this yield L(`), which is quadratic in `. The maximum will be at

`∗ =
1

2

(
µ− σ2

2

)
and the maximal asymptotic yield (among constant harvesting strategies) is

L(`∗) =

(
µ− σ2

2

)2

4κ
.

Note that L(`∗) is also called maximum sustainable yield (MSY) in the literature. Since
xµ(x) = µx− κx2 we note that

sup
x∈R+

xµ(x) =
µ2

4κ
.

Combining this with (2.7) one sees that the optimal asymptotic yield ρ∗ satisfies(
µ− σ2

2

)2

4κ
≤ ρ∗ ≤ µ2

4κ
.

Note that Theorem 2.1 does not give us information about x∗, the point at which one
starts harvesting.

One possible strategy to find out more information about x∗ is the following: Look at
controls of bang-bang type that have a threshold at η and then maximize over all possible
η. This will then give us a way of finding x∗. Let w(x; η) be the harvesting strategy

(4.1) w(x; η) =

{
0 if 0 < x ≤ η

M if x > η.

For this control w our diffusion (2.3) (with h ≡ w) is of the form

(4.2) dX(t) = a(X(t)) dt+ b(X(t)) dB(t)
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for

a(x) = x(µ− w(x, η)− κx)

and

b(x) = σx.

Standard diffusion theory shows (see [HK18, BS12]) that the boundary 0 is natural and the

boundary∞ is entrance for the process X from (4.2). As a result, when µ− σ2

2
> 0, one can

show using [BS12] that the density ρ : (0,∞)→ (0,∞) of the invariant measure π is of the
form

(4.3)

ρ(y) =
C1

b2(y)
exp

(
2

∫ y

η

a(z)

b2(z)
dz

)
=

C1

σ2y2
exp

(
2

∫ y

η

z(µ− w(z, η)− κz)

σ2z2
dz

)

=


C1

σ2y2

(
y
η

) 2µ

σ2

e−
2κ
σ2

(y−η) if 0 < y ≤ η

C1

σ2y2

(
y
η

) 2(µ−M)

σ2

e−
2κ
σ2

(y−η) if y > η,

where C1 is a normalizing constant given by

1

C1

=

∫ η

0

1

σ2y2

(
y

η

) 2µ

σ2

e−
2κ
σ2

(y−η) dy +

∫ ∞
η

1

σ2y2

(
y

η

) 2(µ−M)

σ2

e−
2κ
σ2

(y−η) dy.

In this case the harvesting yield is

(4.4)

H(η) := lim
T→∞

1

T

∫ T

0

Φ
(
X(t)w(X(t), η)

)
dt

=

∫
R++

yw(y, η)π(dy)

=

∫ ∞
0

yw(y, η)ρ(y)dy

=

∫ ∞
η

yM
C1

σ2y2

(
y

η

) 2(µ−M)

σ2

e−
2κ
σ2

(y−η) dy

=

∫ ∞
η

yM
1

σ2y2

(
y

η

) 2(µ−M)

σ2

e−
2κ
σ2

(y−η) dy∫ η

0

1

σ2y2

(
y

η

) 2µ

σ2

e−
2κ
σ2

(y−η) dy +

∫ ∞
η

1

σ2y2

(
y

η

) 2(µ−M)

σ2

e−
2κ
σ2

(y−η) dy

By Theorem 2.1 the point x∗ has to satisfy:

H(x∗) = max
η∈(0,∞)

H(η).

It is clear that H is differentiable, that x∗ exists and satisfies x∗ ∈ (0,∞). Therefore, x∗ is
a solution of

(4.5) H ′(η) = 0.
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Figure 1. Typical shape of the asymptotic yield function H(x) as a function
of the harvesting threshold x, where one begins to harvest. Here for σ2 = 1
and M = µ = κ = 1.

The condition above can be restated as an equation involving incomplete gamma functions.
We were not able to prove analytically that (4.5) has a unique solution. [BP06, BP08] show
possible analytical methods that can be applied to such equations in a simple case. However,
numerical experiments that we have done support this conjecture (see Figure 1).

Conjecture 4.1. There exists a unique x∗ ∈ (0,∞) such that H ′(x∗) = 0. Furthermore, the
optimal harvesting strategy is given by

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗.

5. Discussion and future research

We have analysed a population whose dynamics evolves according to generalization of
the logistic Verhulst-Pearl model in a stochastic environment, but subjected to strategic
harvesting. The rate at which the population gets harvested is bounded above by a constant
M > 0, and the harvested infinitesimal amount is proportional to the current size of the
population. We show that the harvesting strategy v, which describes the harvesting rate and
is chosen to maximize the asymptotic harvesting yield

lim inf
T→∞

1

T

∫ T

0

X(t)h(t) dt,

is of bang-bang type, i.e. there exists x∗ > 0 such that

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗.
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1 2 3 4 5
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Figure 2. Graph of the maximal asymptotic yield H(x) as a function of
the harvesting threshold x for different values of the growth rate µ. We take
σ2 = 1, M = κ = 1, and µ = 1 (blue), µ = 1.5 (orange), µ = 2 (green),
µ = 2.5 (red), and µ = 3 (purple).

5.1. Logistic Verhulst-Pearl. In the particular case when µ(x) = µ − κx, we can give
more information about x∗ as follows: The harvesting yield function H(η) is determined, by
letting the jump in the bang-bang control be at η. That is, we look at the yield when the
control is

v(x) =

{
0 if 0 < x ≤ η

M if x > η.

The typical behavior of the point x∗ where H is maximized and of H(x∗) as the parameters
µ, κ and M change was analyzed numerically and is presented in Figures 2, 3 and 4, with
the normalization σ2 = 1.

We note from numerical experiments that increasing the growth rate µ increases the thresh-
old x∗ at which one should start optimally harvesting (Figure 2). This is an intuitive result,
since an increased growth rate increases the maximal equilibrium value of the population in
the equivalent deterministic growth model with competition ([Smi78]). Therefore, it should
also increase asymptotic harvesting yield, as well as the point at which harvesting should
start. Moreover, higher growth rates make the population get faster to the point x∗ where
one starts harvesting, reducing the cost of a delay.

If one increases the maximal harvesting rate M then the harvesting threshold x∗ is also
increased (Figure 3). This also makes sense because if µ − σ2

2
−M < 0, then a population

with constant harvesting rate M will go extinct almost surely. An increase in the harvesting
threshold x∗ is necessary to make sure that there is no extinction. Moreover, as M gets larger
one can wait longer to start harvesting. With a larger maximal rate available, there is less
chance that there will be losses because the population overshoots the optimal extraction
point. Similarly, increasing the harvesting rate M also increases the maximal asymptotic



12 A. HENING, D. NGUYEN, S. C. UNGUREANU, AND T. K. WONG

0.5 1.0 1.5 2.0 2.5 3.0
x

0.05

0.10

0.15

H(x)

Figure 3. Graph of the maximal asymptotic yield H(x) as a function of the
harvesting threshold x for different values of the maximal harvesting rate M .
We take σ2 = 1, µ = κ = 1, and M = 0.1 (blue), M = 0.2 (orange), M = 0.5
(green), M = 1 (red), M = 2 (purple), and M = 5 (brown).

harvesting yield, for the obvious reason that there is better control on the population level
and therefore extraction can happen closer to the optimal level.

In contrast, if one increases the intraspecific competition rate κ, then the harvesting
threshold decreases (Figure 4). The equilibrium value of the population in the equivalent
deterministic model ([Smi78]) decreases with κ, and as a result so does the extraction rate.
Evidently, even in the stochastic model, if competition is very strong the population cannot
spend much time at high densities, and therefore one has to start harvesting early. An
increase in κ will also decrease the maximal asymptotic harvesting yield.

We are able to prove that the maximal asymptotic yield ρ∗ satisfies the inequality(
µ− σ2

2

)2

4κ
≤ ρ∗ ≤ µ2

4κ
.

In particular, the bang-bang optimal strategy has a higher asymptotic yield than the opti-
mal constant harvesting strategy. Moreover, the bang-bang optimal strategy gives a lower
asymptotic yield than the optimal constant harvesting strategy in the absence of noise. This
means that the analysis of the more complex stochastic model was fruitful, recommending
a qualitatively different strategy. Moreover, environmental fluctuations decrease the maxi-
mal asymptotic yield and, because the correction is negative, protecting a population from
extinction requires a careful measurement of natural fluctuations when designing optimal
harvesting. When environmental stochasticity was not taken into account, harvesting often
lead populations to extinction ([LES95]).

Real populations do not evolve in isolation. As a result, ecology is concerned with un-
derstanding the characteristics that allow species to coexist. Harvesting can disturb the
coexistence of species. In future research we intend to tackle multi-dimensional analogues
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Figure 4. Graph of the maximal asymptotic yield H(x) as a function of the
harvesting threshold x for different values of the intra-competition rate. We
take σ2 = 1, M = µ = 1, and κ = 1 (blue), κ = 2 (orange), κ = 3 (green),
κ = 4 (red), and κ = 5 (purple).

of the setting treated in the current article. Natural models for which one can add har-
vesting would be predator-prey food chains ([GH79, Gar84, HN18b, HN18c, TL16]), more
general Kolmogorov systems ([SBA11, HN18a]) and structured populations where there can
be asymmetric harvesting ([ERSS13, EHS15, HNY18, RS14, BS09, SR11]). In the multi-
dimensional setting the Hamilton-Jacobi-Bellman (HJB) equation becomes a PDE and the
analysis becomes significantly more complex. New tools will have to be developed to tackle
these problems.

Above we have imposed a bound on the extraction rate, M . This was because it is a
realistic feature, but it was also practical for the analysis. Nevertheless, it is interesting
to consider the case when the extraction rate is unbounded. A practical model with no
extraction limit corresponds to having unlimited control over a target population, which
is sometimes the case. Such a model would have the benefit of not requiring a nuisance
parameter that may be hard to determine.

5.2. Concave and convex yield functions. We have also studied the more general case
involving concave and convex yield functions. When the yield function is strictly concave,
it was shown that the optimal control is not bang-bang, but continuous in the population
parameter. Vice-versa, when the yield function is weakly convex, we have shown that the
optimal control is necessarily bang-bang. Moreover, if a certain further assumption on the
relative rate of growth of µ and Φ holds, we can also show that the bang-bang optimal
control has a single threshold x∗ where the extraction rate goes from 0 to M – as in the
linear special case.

This generalization allows us to think of applications of population harvesting where the
yield function is in fact a utility function, or some other more general social welfare measure.
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5.3. Unbounded harvesting. If we allow for general, possibly unbounded, harvesting we
would have to study the Skorokhod SDE

(5.1) dX̃(t) = X̃(t)(µ− κX̃(t)) dt+ σX̃(t) dB(t)− dZt, X̃(0) = x > 0.

where (Zt)t≥0 is supposed to be non-negative, increasing, right-continuous and adapted to
(Ft)t≥0 - we denote the set of all such strategies by A. Then the problem is to maximize the
asymptotic yield, i.e. find

V (x) = sup
(Zt)t≥0∈A

lim inf
T→∞

Ex
1

T

∫ T

0

dZt = sup
(Zt)t≥0∈A

lim inf
T→∞

ExZT
T

We want to find the harvesting strategy (Z∗t )t≥0 ∈ A, which we call the optimal harvesting
strategy, such that

V (x) = lim inf
T→∞

ExZ∗T
T

.

The analysis above, for the bounded harvesting rate, determined that the optimal strategy
has a bang-bang property, where extraction is maximal after some cut-off. This suggests that
raising the maximum would not change the bang-bang property, but determining that result
required a bounded extraction rate. Thinking of the limiting behavior of the yield function
above shows the difficulty: as M → ∞, the density of the distribution above the cut-off x∗

goes to 0 (see (4.3)). The conjectured optimal solution is akin to having a reflective boundary
at x∗, and the yield is determined by the time spent close to the boundary.

Conjecture 5.1. Assume that the population survives in the absence of harvesting i.e. µ−
σ2

2
> 0. The optimal extraction strategy (Z∗t )t≥0 has the form

(5.2) Z∗t (x) =

{
(x− x∗)+ if t = 0

L(t, x∗) if t > 0.

for some x∗ ∈ (0,∞), where L(t, x∗) is the local time at x∗ of the process X̃ from (5.1).

This conjecture is supported by the results from [AS98] where the authors study the
maximization of the discounted yield

V (x) := sup
(Zt)t≥0∈A

Ex
∫ τ

0

e−rtdZt

and τ := inf{t ≥ 0 : X̃t = 0} is the extinction time. It is shown in [AS98] that the optimal
harvesting strategy is of the form (5.2). One possible approach to prove Conjecture 5.1
would be to use the results from [AS98] and then let the discount factor r go to 0.

Acknowledgements. We thank two anonymous referees for very insightful comments
and suggestions that led to major improvements.
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Appendix A. Proofs

In this appendix we present the framework of ergodic optimal control and prove the main
results of our paper.

For any v ∈ Usm, denote the unique invariant probability measure of X(t) on R++ by πv
if it exists. Define

ρv =

{∫∞
0

Φ(xv(x))πv(dx) if πv exists,

0 otherwise.

Let p > 0. Since limx→∞ µ(x) = −∞, there exist constants k1p, k2p > 0 such that

(A.1) Luxp ≤ pxpµ(x) +
1

2
p(p− 1)σxp ≤ k1p − k2px

p, x ∈ R++, u ∈ [0,M ]

By Dynkin’s formula

Evx[X(t)]p ≤ xp + k1pt− k2pEvx
∫ t

0

[X(s)]pds.
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Thus,

(A.2)
1

t
Evx
∫ t

0

[X(s)]pds ≤ 1

k2p

(
xp

t
+ k1p

)
.

As a result, the family of occupation measures

Πv
x,t(·) :=

1

t

∫ t

0

Pvx{X(s) ∈ ·} ds, t ≥ 1

is tight. If X(t) has an invariant probability measure on R++, then
(
Πv
x,t

)
t≥0

converges

weakly to πv because the diffusion is nondegenerate. This convergence and the uniform
integrability (A.2) imply that

lim
t→∞

1

t

∫ t

0

Φ(X(s)v(X(s)))ds = ρv.

If X(t) has no invariant probability measures on R++, then the Dirac measure with mass
at 0 is the only invariant probability measure of X(t) on R+. Moreover, any weak-limit
of
(
Πv
x,t

)
t≥0

as t → ∞ is an invariant probability measure of X(t) ([EK09, Theorem 9.9]

or [EHS15, Proposition 8.4]). Thus,
(
Πv
x,t

)
t≥0

converges weakly to the Dirac measure δ0 as

t→∞. Because of (A.2) and Φ(0) = 0, we have

lim
t→∞

1

t

∫ t

0

Φ(X(s)v(X(s))ds =

∫ ∞
0

Φ(xv(x))πv(dx).

Thus, we always have

(A.3) lim
t→∞

1

t

∫ t

0

Φ(X(s)v(X(s))ds = ρv.

Define

(A.4) ρ∗ := sup
v∈Usm

{ρv}.

It will be shown later that ρ∗ > 0 whenever the population without harvesting persists, i.e.
when µ(0)− σ2/2 > 0.

Theorem A.1. Suppose µ(0) − σ2/2 > 0, µ(·) satisfies Assumption 2.1 and Φ(·) satisfies
Assumption 2.2. There exists a stationary Markov strategy v∗ ∈ Usm such that πv∗ exists
and ρv∗ = ρ∗. Moreover, for any admissible control h(t), we have

lim inf
T→∞

1

T

∫ T

0

Φ
(
X(t)h(t)

)
dt ≤ ρv∗ = ρ∗ a.s.

Proof. By (A.2) and since Φ has a subpolynomial growth rate we can conclude that

(A.5) sup
v∈Usm

∫ ∞
0

Φ(xv(x))πv(dx) <∞.

Moreover, since µ(0) − σ2/2 > 0 we note that, since our population does not go extinct,
ρ∗ > 0. On the other hand, since Φ is continuous and Φ(0) = 0 we get that Φ(x) < ρ∗ for
x is sufficiently small. This fact combined with (A.5) implies the existence of an optimal
Markov strategy v∗ according to [ABG12, Theorem 3.4.5, Theorem 3.4.7]. �



18 A. HENING, D. NGUYEN, S. C. UNGUREANU, AND T. K. WONG

Theorem A.2. Suppose µ(0) − σ2/2 > 0, µ(·) satisfies Assumption 2.1 and Φ(·) satisfies
Assumption 2.2. The HJB equation

(A.6) max
u∈U

[
LuV (x) + Φ(xu)

]
= ρ

admits a classical solution V ∗ ∈ C2(R+) satisfying V ∗(1) = 0 and ρ = ρ∗ > 0. The solution
V ∗ of (A.6) has the following properties:

a) For any p ∈ (0, 1)

(A.7) lim
x→∞

V ∗(x)

xp
= 0.

b) The function V ∗ is increasing, that is

(A.8) V ∗x ≥ 0, x ∈ R++.

A Markov control v is optimal if and only if it satisfies

(A.9)
dV ∗

dx
(x)
[
x(µ(x)− v(x))

]
+ Φ(xv(x)) = max

u∈U

(
dV ∗

dx
(x)
[
x(µ(x)− u)

]
+ Φ(xu)

)
almost everywhere in R+.

Proof. Consider the optimal problem with the yield function

Jh(x) = Ex
∫ ∞

0

e−αth(t)X(t)dt

for some fixed x ∈ R++ and h ∈ U. Note that this is the α-discounted optimal problem.
Pick any 0 < x1 < x2 <∞ and let Xx1 , Xx2 be the solutions to the controlled diffusion

dX(t) = X(t)(µ(X(t))− h(t)) dt+ σX(t) dB(t)

with initial values x1, x2 respectively. Note that we are using a fixed admissible control
h(t) which is the same for any initial value. The control h(t) here is not a Markov control
which in general depends on the initial value. Since µ(·) is continuous and decreasing, for
y1, y2 > 0, there exists ξ(y1, y2) > 0 depending continuously on y1, y2 such that µ(y1) −
µ(y2) = −ξ(y1, y2)(ln y1 − ln y2). Using Itô’s Lemma we have

d(lnXx2(t)− lnXx1(t)) = (µ((Xx2(t))− µ(Xx1(t))) dt

=− ξ(Xx1(t), Xx2(t))(lnXx2(t)− lnXx1(t))dt,

which in turn yields

lnXx2(t)− lnXx1(t) = (ln x2 − lnx1) exp

(
−
∫ t

0

ξ(Xx1(s), Xx2(s))ds

)
> 0.

Therefore, if x2 > x1, we get that

P(Xx2(t) > Xx1(t), t ≥ 0) = 1.

This implies that Jh(·) is an increasing function. Therefore, the optimal yield

Vα(x) := sup
h∈U

Jh(x)
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is also increasing. By [ABG12, Lemma 3.7.8], there is a function V ∗ ∈ C2(R++) satisfying
(A.6) for a number ρ such that

(A.10) ρ ≥ ρ∗.

Moreover,
V ∗(x) = lim

n→∞
(Vαn(x)− Vαn(1))

for some sequence (αn)n∈N that satisfies αn → 0 as n → ∞. This implies that V ∗ is an
increasing function, i.e.

(A.11) V ∗x ≥ 0, x ∈ R++.

For any continuous function ψ : R++ 7→ R satisfying

(A.12) |ψ(x)| ≤ c(1 + xp), x ∈ R++, c > 0

we have from (A.1) and [ABG12, Lemma 3.7.2] that Evx|ψ(X(t))| exists and satisfies

(A.13) lim
t→∞

(
1

t
sup
v∈Usm

Evx|ψ(X(t))|
)

= 0,

and

(A.14) lim
R→∞

Evxψ(X(t ∧ ξR)) = Evxψ(X(t)) <∞, t ≥ 0,

where ξR = inf{t ≥ 0 : X(t) > R or X(t) < R−1}. Moreover, by using [ABG12, Lemma
3.7.2] again we get that

(A.15) lim
x→∞

fR(x)

xp
= 0, R ≥ 0

where

fR(x) := sup
v∈Usm

Evx
∫ τR

0

Φ(X(t))dt,

and τR := inf{t ≥ 0 : X(t) ≤ R}.
By [ABG12, Formula 3.7.48], we have the estimate

V ∗(x) ≤ sup
v∈Usm

Evx
∫ τR

0

(Φ(X(t)) + ρ∗) dt+ sup
y∈[0,R]

{V ∗(y)}

which implies

(A.16) V ∗(x) ≤ cp(1 + xp), x ≥ R for some cp > 0.

Now, pick any ε > 0 and divide (A.16) on both sides by xp+ε. We get

V ∗(x)

xp+ε
≤ cp

(
1

xp+ε
+ x−ε

)
, x ≥ R

and by letting x→∞

lim
x→∞

V ∗(x)

xp+ε
= 0.

This implies, since p and ε > 0 are arbitrary, equation (A.7). Let χ : R++ 7→ [0, 1] be a
continuous function satisfying χ(x) = 0 if x < 1

2
and χ(x) = 1 if x ≥ 1. Then ψ(x) :=

V ∗(x)χ(x) satisfies (A.12) because of (A.16). On the other hand, since V ∗(x) is increasing
and V ∗(1) = 0, then V ∗(x) ≤ 0 when x ≤ 1. Thus, we have

V ∗(x) ≤ χ(x)V ∗(x), x ∈ R++.



20 A. HENING, D. NGUYEN, S. C. UNGUREANU, AND T. K. WONG

Let v∗ be the measurable function satisfying (A.9).

(A.17) ρ ≥ ρ∗ ≥ ρv∗ .

By Dynkin’s formula

Ev∗x χ(X(t ∧ ξR))V ∗(X(t ∧ ξR))− V ∗(x) ≥ Ev∗x V ∗(X(t ∧ ξR))− V ∗(x)

= Ev∗x
∫ t∧ξR

0

(ρ− Φ(X(s)v(X(s)))) ds

Letting R→∞, we obtain from the monotone convergence theorem and (A.14) that

1

t

(
Ev∗x χ(X(t))V ∗(X(t))− V ∗(x)

)
≥ ρ− 1

t
Ev∗x

∫ t

0

Φ(X(s)v(X(s)))ds, t > 0

Letting t→∞ and using (A.13) and (A.3), we have

0 ≥ ρ− ρv∗ .

This and (A.17) implies that ρ = ρ∗ = ρv∗ .
By the arguments from [ABG12, Theorem 3.7.12], we can show that v is an optimal control

if and only if (A.9) is satisfied. �

When Φ is the identity mapping the equation (A.9) becomes

−dV
∗

dx
v(x) + v(x) = max

u∈U

(
−dV

∗

dx
u+ u

)
,

which implies

(A.18) v(x) =

{
0 if V ∗x > 1

M if V ∗x < 1.

Our main result is the following theorem.

Theorem 2.1. Assume that Φ(x) = x, x ∈ (0,∞) and that the population survives in the

absence of harvesting, that is µ(0) − σ2

2
> 0. Furthermore assume that the drift function

µ(·) satisfies Assumption 2.1. The optimal control (the optimal harvesting strategy) v has
the bang-bang form

(2.6) v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗

for a unique x∗ ∈ (0,∞). Furthermore, we have the following upper bound for the optimal
asymptotic yield

(2.7) ρ∗ ≤ sup
x∈R+

xµ(x).

Remark A.1. If V ∗x (x) = 1 then we note that (A.18) does not provide any information
about v(x). However, in this case we can set the harvesting rate equal to anything since the
yield function will not change. This is because our diffusion is non-degenerate and changing
the values of the drift on a set of zero Lebesgue measure does not change the distribution of
X.
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We split up the proof of Theorem 2.1 into a few propositions. It is immediate to see that
the HJB equation (A.6) becomes

ρ = max
u∈U

[
x(µ(x)− u)fx +

1

2
σ2x2fxx + xu

]
= xµ(x)fx +

1

2
σ2x2fxx + max

u∈U
[(1− fx)xu]

=


xµ(x)fx +

1

2
σ2x2fxx if fx > 1

x(µ(x)−M)fx +
1

2
σ2x2fxx +Mx if fx ≤ 1.

(A.19)

Sketch of proof of Theorem 2.1. Since the optimal control is given by (A.18) we need to
analyze the properties of the function V ∗x which by (A.19) satisfies a first order ODE. The
analysis of this is split up into several propositions. Note that the ODE governing V ∗x is
different, depending on whether V ∗x > 1 or V ∗x ≤ 1.

In Proposition A.1 we analyze the ODE for when V ∗x ≤ 1 and find its asymptotic behavior
close to 0. Using this we can show in Proposition A.2 that one cannot have a η > 0 such
that V ∗x (x) ≤ 0 for all x ∈ (0, η].

Similarly, in Proposition A.3 we show that there can exist no ζ > 0 such that V ∗x (x) ≥ 1
for all x ≥ ζ.

In Proposition A.4 we explore the possible ways V ∗x can cross the line y = 1 and find using
soft arguments that there can be at most 3 crossings. Finally, we show that actually there
must be exactly one crossing of y = 1 by V ∗x and that this crossing has to be from above
(Figure 7). This combined with (A.18) completes the proof. �

Proposition A.1. Assume µ(·) is locally Lipschitz on [0,∞). Then any solution ϕ2 of the
ODE

(A.20)
dϕ2

dx
(x) +

2(µ(x)−M)

σ2x
ϕ2(x) =

2(ρ−Mx)

σ2x2

satisfies

(A.21) lim
x→0+

ϕ2(x) = ±∞.

Proof. It follows from the method of integrating factors that the solution to the ODE (A.20)
is

(A.22) ϕ2(x) =
ζ(x0)ϕ2(x0) +

∫ x
x0
ζ(y)β(y) dy

ζ(x)
,

where the non-homogeneous term is β(y) := 2(ρ−My)
σ2y2

, and the integrating factor is

ζ(x) := e
∫ x
x1
γ(y) dy

,

for γ(y) := 2(µ(y)−M)
σ2y

, and arbitrary x0, x1 ∈ (0,∞). Since µ is locally Lipschitz at x = 0,

there are constants L,K > 0 such that for any x ∈ [0, L], |µ(x)−µ0| ≤ Kx, where µ0 := µ(0).
From now on, we choose x1 := L (or any number between 0 and L). We have, for any
x ∈ [0, x1], ∣∣∣∣∫ x

x1

µ(y)− µ0

y
dy

∣∣∣∣ ≤ ∫ x1

x

|µ(y)− µ0|
y

dy ≤
∫ x1

x

Ky

y
dy ≤ K(x1 − x).



22 A. HENING, D. NGUYEN, S. C. UNGUREANU, AND T. K. WONG

This implies that as x→ 0+,

(A.23) ζ(x) = e
2
σ2

∫ x
x1

µ(y)−µ0
y

dy
e

2
σ2

∫ x
x1

µ0−M
y

dy ∼ x
2
σ2

(µ0−M).

On the other hand, from now on, if we choose x0 > 0 sufficiently close to 0 such that
ρ−Mx > 0 and (A.23) holds for all x ∈ (0, x0), then we have, for any 0 < x < x0,

(A.24)

∫ x0

x

ζ(y)β(y) dy ∼ 2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ−My) dy

=


C0 + C1x

2
σ2

(µ0−M) + C2x
2
σ2

(µ0−M)−1 if µ0 −M 6= 0, σ2

2
2
σ2 (ρ lnx0 −Mx0) + 2M

σ2 x− 2ρ
σ2 lnx if µ0 −M = σ2

2
2
σ2 (−ρx−1

0 −M lnx0) + 2M
σ2 lnx+ 2ρ

σ2x
−1 if µ0 −M = 0,

where the constants Ci are given by

C0 := −Mx
2
σ2

(µ0−M)

0

µ0 −M
+
ρx

2
σ2

(µ0−M)−1

0

µ0 − σ2

2
−M

, C1 :=
M

µ0 −M
, C2 := − ρ

µ0 − σ2

2
−M

.

Now, using the asymptotic properties (A.23) and (A.24), we can analyze the limit of ϕ2

as follows.
Case 1: µ0 < M .

In this case, we get from (A.23) and (A.24) that

lim
x→0+

ζ(x) = ±∞, lim
x→0+

ζ(x0)ϕ2(x0) +

∫ x

x0

ζ(y)β(y) dy = ±∞.

Thus, we can apply l’Hôpital’s rule and obtain

(A.25) lim
x→0+

ϕ2(x) = lim
x→0+

ζ(x0)ϕ2(x0) +
∫ x
x0
ζ(y)β(y) dy

ζ(x)
= lim

x→0+

ρ−Mx

x(µ(x)−M)
= ±∞

since ρ > 0. This shows the limit (B.4).

Case 2: M ≤ µ0 ≤M + σ2

2
.

For this range of µ0, it follows from (A.23) and (A.24) again that

lim
x→0+

ζ(x0)ϕ2(x0) +

∫ x

x0

ζ(y)β(y) dy = ±∞,

but limx→0+ ζ(x) exists and is finite. Hence, we can obtain the limit (B.4) by passing to the
limit x→ 0+ in the solution formula (A.22).

Case 3: µ0 > M + σ2

2
.

In this final case, it follows from (A.23) and (A.24) that limx→0+ ζ(x) = 0 and

J := lim
x→0+

ζ(x0)ϕ2(x0) +

∫ x

x0

ζ(y)β(y) dy

exists and is finite. If J 6= 0, then passing to the limit x→∞ in the solution formula (A.22)
will imply the limit (B.4). Otherwise, we can apply l’Hôpital’s rule and do the same com-
putations we did in (A.25). This proves the limit (B.4).

Putting together Cases 1,2 and 3 completes the proof. �

Proposition A.2. There does not exist any η > 0 such that V ∗x (x) ≤ 1, x ∈ (0, η].
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y

0

1
y = 1

x

limx→0+ V
∗
x (x) = −∞

x0

y = V ∗x (x)

Figure 5. If V ∗x crosses y = 1 from below at x0, and it has not crossed from
above before then we get a contradiction by Proposition A.2.

Proof. We will argue by contradiction. Assume there exists η > 0 such that V ∗x (x) ≤ 1, x ∈
(0, η]. Then by (A.19) we get that V ∗x follows the ODE (A.20) for all x ∈ (0, η). Making use
of Proposition A.1 we get that

lim
x→0+

V ∗x (x) = lim
x→0+

ϕ2(x) = ±∞

which contradicts that V ∗x ≥ 0 or that V ∗x (x) ≤ 1, x ∈ (0, η]. The proof is complete. �

The above Proposition shows that the scenario from Figure 5 cannot happen.

Proposition A.3. There does not exist any χ > 0 such that V ∗x (x) ≥ 1 for all x ≥ χ.

Proof. Once again we will argue by contradiction. Assume there exists χ > 0 such that
V ∗x (x) ≥ 1 for all x ≥ χ. By (A.19) V ∗x will follow the ODE

dϕ1

dx
(x) +

2µ(x)

σ2x
ϕ1(x) =

2ρ

σ2x2

for all x ≥ χ. As a result we get just as in Proposition A.1

(A.26) ϕ1(x) =
ζ(x0)ϕ1(x0) +

∫ x
x0
ζ(y)β(y) dy

ζ(x)
,

where the non-homogeneous term is β(y) := 2ρ
σ2y2

, and the integrating factor is

ζ(x) := e
∫ x
x1
γ(y) dy

,

for γ(y) := 2µ(y)
σ2y

, and arbitrary x0, x1 ∈ (χ,∞). Under Assumption 2.1 we can see that

there exist constants L > 0 and c > 0 such that µ(y) < −c for all y > L, and hence,∫ x
L
µ(y)
y
dy ≤ −c

∫ x
x1

1
y
dy = −c(lnx− lnx1)→ −∞ as x→∞. If we choose c > σ2

2
, x1 := L

we get

(A.27) xζ(x) ≤ x1− 2c
σ2 → 0
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y

0

1
y = 1

x

g(x) ≤ 0

x1 x2

y = V ∗x (x)

V ∗xx(x2) ≥ 0V ∗xx(x1) ≤ 0

Figure 6. An impossible scenario, by Proposition A.3.

as x→∞. If

ζ(x0)ϕ1(x0) +

∫ ∞
x0

ζ(y)β(y) dy > 0

then by (A.27) and the positivity of ζ one has

lim
x→∞

V ∗x
x

= lim
x→∞

ϕ1(x)

x
=
ζ(x0)ϕ1(x0) +

∫ x
x0
ζ(y)β(y) dy

xζ(x)
= +∞

which contradicts the growth condition (A.7). Therefore we need

ζ(x0)ϕ1(x0) +

∫ ∞
x0

ζ(y)β(y) dy ≤ 0.

Note that in this case

ζ(x0)ϕ1(x0) +

∫ x

x0

ζ(y)β(y) dy ≤ −
∫ ∞
x

ζ(y)β(y) dy < 0.

This implies, since ζ(x) > 0, that for x > x0

V ∗x (x) = ϕ1(x) =
ζ(x0)ϕ1(x0) +

∫ x
x0
ζ(y)β(y) dy

ζ(x)
< 0,

which contradicts the assumption that V ∗x (x) ≥ 1 for all x ≥ χ. �

The above Proposition shows that the scenario from Figure 6 is not possible.
Set g(x) := ρ − xµ(x). By assumption p(x) := xµ(x) has a unique maximum and µ is

locally Lipschitz and decreasing with limx→∞ µ(x) = −∞. This implies that g(x) has a
unique minimum for some xι ∈ (0,∞) 4. If g(xι) < 0 then g intersects the x axis in exactly
two points 0 < α1 < α2 < ∞. If g(xι) > 0 there is no intersection of g with the x axis.
Finally, if g(xι) = 0 there is exactly one intersection and this happens at x = xι.

4|µ(x)−µ(0)| < M |x| for some real M > 0 as µ locally Lipschitz by asssumption. Therefore |g(x)−g(0)| <
Mx2, so g differentiable at 0. Moreover, g′(0) = −µ(0), and µ(0) > 0 by assumption, so xι 6= 0.
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Proposition A.4. The function V ∗x crosses the line y = 1 at most three times. More
specifically, we have the following possibilities:

(I) If g(xι) < 0 then
(i) For 0 ≤ x < α1 the function V ∗x can only pass the line y = 1 at most once and

the crossing has to be from below.
(ii) For x > α2 the function V ∗x can pass the line y = 1 at most once and the crossing

has to be from below.
(iii) For α1 < x < α2 the function V ∗x can pass the line y = 1 at most once and the

crossing has to be from above.
(II) If g(xι) > 0 then the function V ∗x can pass the line y = 1 at most once and the crossing

has to be from below.
(III) If g(xι) = 0 then V ∗x can cross the line y = 1 at most three times. In particular, the

possible crossing(s) in (0, xι) ∪ (xι,∞) must be from below.
(IV) If V ∗x crosses the line y = 1 at x0 then we cannot have ε > 0 such that V ∗x = 1 on

(x0, x0 + ε). In other words, the intersections have to be at separate points and we
cannot ‘stick’ to y = 1.

Proof. It follows from the HJB equation (A.6) with ϕ := Vx that if ϕ(x0) = 1, then we have

g(x0) = ρ− x0µ(x0) =
1

2
σ2x2

0ϕ
′(x0)


< 0 if ϕ′(x0) < 0

= 0 if ϕ′(x0) = 0

> 0 if ϕ′(x0) > 0.

Therefore, when ϕ crosses the line y = 1, we obtain some information from g. More precisely,
we can infer the following:

(I) When g(xι) < 0 the function g(x) = ρ − xµ(x) has exactly two zeros at α1, α2 with
0 < α1 < α2 <∞.

(i) for 0 ≤ x < α1 we have g(x) > 0, hence ϕ is only allowed to cross the line y = 1
from below in this region;

(ii) for x > α2 we have g(x) > 0, hence ϕ is only allowed to cross the line y = 1 from
below in this region;

(iii) for α1 < x < α2, g(x) < 0 and ϕ is only allowed to cross the line y = 1 from
above in this region.

(II) If g(xι) > 0 then g(x) > 0 for all x ∈ R+. The function V ∗x can pass the line y = 1 at
most once and the crossing has to be from below.

(III) If g(xι) = 0 then g(x) has a unique intersection of the x axis at xι. As a consequence
g(x) ≥ 0 and the function V ∗x can pass the line y = 1 at most thrice: at most once
from below in the region x < xι, at most once from below in the region x > xι and at
most once from above or from below at the point x = xι.

(IV) Since xµ(x) is never constant on an interval, it is clear that for any (u, v) ⊂ R+ we
cannot have V ∗x = 1 for all x ∈ (u, v).

�

Remark A.2. By the analysis above one can note that at the intersection points (or roots)
α1,2 of the function g(x) with the x axis the derivative of ϕ is 0. This makes it more
complicated to say, in case there is a crossing at a root, if the crossing is from above or from
below. However, this does not require us to change our arguments. For example, if there is
a crossing from below on 0 ≤ x < α1 and there is a crossing at x = α1 then the crossing at
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α1 is necessarily from above. This then implies that there can be no crossing for x ∈ (α1, α2)
because in this region the crossing has to be from above and there cannot be two crossings
from above in a row.

Proof of Theorem 2.1. A direct consequence of Proposition A.4 is that V ∗x can cross the line
y = 1 at most three times. We also know, given the at most two possible solutions α1,2 of
the equation g(x) = 0 how these crossings have to happen. Next, we eliminate all but one
possibility.

i) If we get a crossing from below in (0, α1) this means that there exists η > 0 such that
for all x ∈ (0, η) we have V ∗x (x) = ϕ2(x) ≤ 1. This is not possible by Proposition A.2.
As such there can be no crossings in (0, α1).

ii) If we have a crossing from below in (α2,∞) then there is ζ > 0 such that for all x ≥ ζ

V ∗x (x) = ϕ1(x) ≥ 1.

This is not possible by Proposition A.3. Therefore, there are no crossings in (α2,∞).
iii) We cannot have that V ∗x (x) ≥ 1 for all x ∈ (0,∞) because then we get a contradiction

by Proposition A.3. Similarly, we cannot have V ∗x (x) ≤ 1 for all x ∈ (0,∞) since we get
a contradiction by Proposition A.2.

iv) If g(xι) > 0 then, in principle, there could be at most one crossing and this would have
to be from below. But this creates a contradiction by either using Proposition A.2 or
Proposition A.3. If there is no crossing then we get a contradiction by (iii) above.

v) If g(xι) = 0 then
(a) If there is no crossing, then we get a contradiction by part iii) above.
(b) If there are two crossings then we get contradictions from either Proposition A.2 or

Proposition A.3.
(c) If there are three crossings then we must have a crossing from below in (0, xι), one

from above at x = xι and one from below in (xι,∞). This yields a contradiction
because of Proposition A.2.

(d) If there is just one crossing and the crossing is from below then we get a contradiction
by Proposition A.3.

vi) By parts i)-iv) we get that there is exactly one crossing of the line y = 1, that this
crossing is from above and that the crossing happens at a point in the interval [α1, α2]
when g(xι) < 0 or at xι if g(xι) = 0.

This, together with (A.18), implies that the optimal strategy is of bang-bang type

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗.

Moreover, one can see that g(xι) ≤ 0 which in turn forces

ρ ≤ sup
x∈R+

xµ(x) = xιµ(xι).

�

Appendix B. Optimal harvesting with concave and convex yields: proofs

This appendix shows that for a class of yield functions Φ one can get continuous opti-
mal harvesting strategies. Therefore, the optimal harvesting strategy will be discontinuous.
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y = 1

x

g(x) ≤ 0

x1

y = V ∗x (x)

Figure 7. The only case which doesn’t lead to a contradiction is when V ∗x
crosses y = 1 only once and the crossing is from above.

One might wonder under which conditions on Φ the optimal harvesting strategies will be
continuous.

We proved in Theorem A.2 that the HJB equation

max
u∈U

[
LuV (x) + Φ(xu)

]
= ρ

admits a classical solution V ∗ ∈ C2(R+) satisfying V ∗(1) = 0 and ρ = ρ∗ > 0.
For any given Φ, we define

F (ω) := −Aω + Φ(ω),

where A is a shorthand of V ∗x , that is,

A := V ∗x (x).

For any fixed x, we can see A as a constant. Using these shorthands, we can rewrite the
HJB equation as

(B.1) F (xv) = max
ω∈[0,L]

F (ω),

where L := xM . A direct computation yields
F (0) = −A · 0 + Φ(0) = 0

F (L) = −AL+ Φ(L)

F ′(ω) = −A+ Φ′(ω)

because Φ(0) = 0. Therefore, the critical point(s) will be given by ωc = [Φ′]−1(A), and

F (ωc) = −Aωc + Φ(ωc) = −A[Φ′]−1(A) + Φ([Φ′]−1(A)).

If Φ is assumed to be strictly concave, the maximum on the right hand side of (B.1) can be
found easily because F ′′ = Φ′′.

Theorem 3.1. Suppose Assumption 2.1 holds and the yield function satisfies
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(1) Φ ∈ C2(R+),
(2) Φ is strictly concave.

Then the optimal harvesting strategy is continuous and given by

v =


0 if [Φ′]−1(V ∗x (x)) ≤ 0,
[Φ′]−1(V ∗x (x))

x
if 0 < [Φ′]−1(V ∗x (x)) < xM,

M if [Φ′]−1(V ∗x (x)) ≥ xM.

Furthermore, the HJB equation for the system becomes

ρ =


xµ(x)fx +

1

2
σ2x2fxx if [Φ′]−1(fx(x)) ≤ 0,

xµ(x)fx +
1

2
σ2x2fxx − fx[Φ′]−1(fx) + Φ([Φ′]−1(fx)) if 0 < [Φ′]−1(fx(x)) < xM,

x(µ(x)−M)fx +
1

2
σ2x2fxx + Φ(xM) if [Φ′]−1(fx(x)) ≥ xM .

(3.1)

Proof. Assume that Φ is C2 and strictly concave. Since Φ is C2 we have that Φ′′ < 0. In this
case, Φ′ is strictly decreasing, so its inverse is well-defined. As a result, we have a unique
critical point which is a maximum ωc = [Φ′]−1(A). A standard calculus result yields

max
ω∈[0,L]

F (ω) =

{
max {F (0), F (L)} if ωc 6∈ (0, L)

max {F (0), F (ωc), F (L)} if 0 < ωc < L

=


0 if ωc ≤ 0

F (ωc) if 0 < ωc < L

F (L) if ωc ≥ L,

where we used the fact that F (0) = 0 and the concavity of Φ in the last equality.
Depending on the maximum point, we have the corresponding optimal Markov control:

v =


0 if max

ω∈[0,L]
F (ω) = 0

[Φ′]−1(A)

x
if max
ω∈[0,L]

F (ω) = F (ωc)

M if max
ω∈[0,L]

F (ω) = F (L)

=


0 if [Φ′]−1(A) ≤ 0
[Φ′]−1(A)

x
if 0 < [Φ′]−1(A) < xM

M if [Φ′]−1(A) ≥ xM,

because v is the solution to

−Axv + Φ(xv) = max
ω∈[0,L]

F (ω).

In conclusion, in this case, v depends on A :=
dV ∗

dx
(x) continuously. Hence, since V ∗ ∈

C2 (R+) we conclude that v is continuous.
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The HJB equation (A.6) becomes

ρ = max
u∈U

[
x(µ(x)− u)fx +

1

2
σ2x2fxx + Φ(xu)

]
= xµ(x)fx +

1

2
σ2x2fxx + max

u∈U
[(Φ(xu)− xufx)]

=


xµ(x)fx +

1

2
σ2x2fxx if [Φ′]−1(fx(x)) ≤ 0,

xµ(x)fx +
1

2
σ2x2fxx − fx[Φ′]−1(fx) + Φ([Φ′]−1(fx)) if 0 < [Φ′]−1(fx(x)) < xM,

x(µ(x)−M)fx +
1

2
σ2x2fxx + Φ(xM) if [Φ′]−1(fx(x)) ≥ xM .

�

The case when the yield function Φ is convex is qualitatively similar to the case when the
yield function is linear, and the optimal solution is of the bang-bang type. We can improve
Theorem 2.1 as follows.

Theorem 3.2. Assume that Φ : R+ → R+ is weakly convex, Φ grows at most polynomially,

Φ ∈ C1(R+) and the population survives in the absence of harvesting, that is µ(0) − σ2

2
>

0. Furthermore assume that the drift function µ(·) satisfies the following modification of
Assumption 2.1:

(i) µ is locally Lipschitz.
(ii) µ is decreasing.

(iii) As x→∞ we have µ(x)→ −∞.
(iv) The function

(3.2) G(x) = Φ(xM)

(
1− 2

σ2
µ(x)

)
− xMΦ′(xM)

has a unique extreme point in (0,∞) which is a minimum, and is not constant on
any interval (u, v) ⊂ R+.

If the assumptions (i)-(iii) hold, the optimal control has a bang-bang form (i.e., the harvesting
rate is either 0 or the maximal M). If assumptions (i)-(iv) hold, the optimal harvesting
strategy v has a bang-bang form with one threshold

v(x) =

{
0 if 0 < x ≤ x∗

M if x > x∗

for some x∗ ∈ (0,∞).

Proof. This proof is similar to the proof of Theorem 2.1 from Appendix A. By (A.9)

dV ∗

dx
(x)[x(µ(x)− v(x))] + Φ(xv(x)) = max

u∈U

(
dV ∗

dx
(x)[x(µ(x)− u)] + Φ(xu)

)
.

Dropping the common terms gives

−dV
∗

dx
(x)xv(x) + Φ(xv(x)) = max

u∈U

(
−dV

∗

dx
(x)xu+ Φ(xu)

)
.

With x > 0, the right hand side is a weakly convex function of u, so one of the end points
of the interval U achieves the maximum. This already shows that the optimal control is
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bang-bang, but says nothing else of the shape of v(x).
Since Φ(0) = 0, we get

max
u∈U

(
−dV

∗

dx
(x)xu+ Φ(xu)

)
=

{
−dV ∗

dx
(x)xM + Φ(xM), if Φ(xM)

xM
> dV ∗

dx
(x),

0, else.

This implies

v(x) =

{
0, if V ∗x <

Φ(xM)
xM

,

M, if V ∗x ≥
Φ(xM)
xM

.

The function Φ(·) is weakly convex, therefore, for α ∈ (0, 1), Φ(αx + (1 − α)y) ≤ αΦ(x) +
(1 − α)Φ(y). By assumption, it is also continuous and positive valued. So, for α ∈ (0, 1),

αΦ(xM) ≥ Φ(αxM), equivalent with Φ(xM) ≥ 1
α

Φ(αxM), equivalent with Φ(xM)
xM

≥ Φ(αxM)
αxM

if x,M > 0. Therefore Φ(xM)
xM

must be positive and monotonically increasing in x for M > 0,

x > 0. In particular Φ′(0) = limx→0+
Φ(xM)
xM

exists and it is greater or equal to 0.
The HJB equation A.6 becomes

(B.2) ρ =


xµ(x)fx +

1

2
σ2x2fxx if fx >

Φ(xM)
xM

,

x(µ(x)−M)fx +
1

2
σ2x2fxx + Φ(Mx) if fx ≤ Φ(xM)

xM
.

One can easily modify the proofs from Appendix A to show the following four propositions:

Proposition B.1. Assume µ,Φ satisfy the assumptions of Theorem 3.2. Then any solution
ϕ2 of the ODE

(B.3)
dϕ2

dx
(x) +

2(µ(x)−M)

σ2x
ϕ2(x) =

2(ρ− Φ(Mx))

σ2x2

satisfies

(B.4) lim
x→0+

ϕ2(x) = ±∞.

Proof. Proceed similarly to the proof of Proposition A.1, replacing the definition β(y) :=
2(ρ−Φ(My))

σ2y2
. This time,∫ x0

x

ζ(y)β(y) dy ∼ 2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ− Φ(My)) dy.

For y ∈ [0, x0], we have Φ′(0) ≤ Φ(My)
My

≤ Φ(Mx0)
Mx0

, so

2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ− Φ(Mx0)

Mx0

My) dy ≤ 2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ− Φ(My)) dy

≤ 2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ− Φ′(0)My) dy.

For a general positive constant N ,

2

σ2

∫ x0

x

y
2
σ2

(µ0−M)−2(ρ−Ny) dy =


C0 + C1x

2
σ2

(µ0−M) + C2x
2
σ2

(µ0−M)−1 if µ0 −M 6= 0, σ2

2
2
σ2 (ρ lnx0 −Nx0) + 2N

σ2 x− 2ρ
σ2 lnx if µ0 −M = σ2

2
2
σ2 (−ρx−1

0 −N lnx0) + 2N
σ2 lnx+ 2ρ

σ2x
−1 if µ0 −M = 0,
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y

0

Φ′(0)

Φ(xM)
xM

x

V ∗xx ≤
(

Φ(xM)
xM

)′
if V ∗x intersects Φ(xM)

xM

α1 α2x∗

y = V ∗x (x)

Figure 8. The only case which doesn’t lead to a contradiction is when V ∗x
crosses Φ(xM)

xM
only once and the crossing is from above.

where the integration constants are given by

C0 := −Nx
2
σ2

(µ0−M)

0

µ0 −M
+
ρx

2
σ2

(µ0−M)−1

0

µ0 − σ2

2
−M

, C1 :=
N

µ0 −M
, C2 := − ρ

µ0 − σ2

2
−M

.

Now the case-by-case analysis of Proposition A.1 can be repeated similarly because the
constants of the dominant terms in the expression above do not depend on N . �

Proposition B.2. There does not exist any η > 0 such that V ∗x (x) ≤ Φ(xM)
xM

, x ∈ (0, η].

Proof. Noting that supx∈(0,η]
Φ(xM)
xM

= Φ(ηM)
ηM

, the proof is similar to the proof of Proposition

A.2, relying on the application of Proposition B.1 to equation (B.3). �

Proposition B.3. There does not exist any χ > 0 such that V ∗x (x) ≥ Φ(xM)
xM

for all x ≥ χ.

Proof. It follows the proof of Proposition A.3 without change, because Φ(xM)
xM

≥ 0. �

Proposition B.4. The function V ∗x intersects the curve Φ(xM)
xM

at most three times on [0,∞).

Proof. By (B.2) if we set fx := ϕ, then at the intersections x : ϕ(x) = Φ(xM)
xM

we have

ϕx =
2

σ2x2

(
ρ− xµ(x)

Φ(xM)

xM

)
,

from the HJB equation. Now we want to compare ϕx with
(

Φ(xM)
xM

)′
whenever there is a

crossing, to infer the direction from which ϕ is crossing. To do that, consider the equation

ϕx =
(

Φ(xM)
xM

)′
. Substituting and simplifying gives us the condition G(x) + 2Mρ

σ2 = 0 where

G(x) is defined in 3.2. Since G(x) has only one extremum by assumption, this equation has
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zero, one or two solutions. When there are two solutions, say α1, α2, any intersection of ϕ

with Φ(xM)
xM

for x ∈ (α1, α2) will have to be with ϕ coming from above, as ϕx < 0 in that
interval. Using similar arguments to those in Proposition A.4, this implies, together with

the condition on G from (3.2), that ϕ can intersect Φ(xM)
xM

at most three times. �

The rest of the proof also mirrors the one of Theorem 2.1. Apply the four results above
and find again that the optimal control is bang-bang with a single threshold x∗,

v(x) =

{
0 if 0 < x ≤ x∗,

M if x > x∗.

for some x∗ ∈ (0,∞) (see Figure 8). �
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