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a-quantile option in a jump-diffusion economy

Laura Ballotta*

December 2000

Abstract

In this note, we extend the analysis of the behaviour of the a-quantile op-
tion to the case of a contract’s underlying security driven by a Lévy process.
To this aim, a simulation procedure based on the order statistics is imple-
mented. The results produced are also used to study the connections between
the occurring of a jump in the market and option prices. In particular, we
show that, no matter the risk-neutral valuation framework chosen, the oc-
curring of a jump affects the tails of the distribution of the functional which
defines the option payoff. Since options pay a premium for the probability
mass existing in the tails of such a distribution, this fact might be seen as a
first key to interpret the observed biases.

Key words: Lookback option, a-quantile option, Lévy processes, Lévy-
Khintchine formula, incomplete markets, order stastistic.

1 Introduction

Lookback options represent a typology of path-dependent contracts with payoff de-
termined by the maximum or the minimum price of the underlying asset within
the life of the option. In particular, a fixed-strike lookback call pays the highest
value achieved by the stock price during the contract lifetime; hence it can be con-
sidered by an investor as an insurance against large downward movements of the
stock near maturity, and might be thought of as a way to deal with the market exit
problem. Analogously, the lookback put provides a protection from substantial rises
in the market near expiration. However, these features make lookback options too
expensive and hence not attractive to ordinary investors. To overcome this limita-
tion new types of exotic contracts came to existence in the attempt of reducing the
option price whilst preserving its potential payoff. Examples of new lookback-type
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contracts are the partial lookback options introduced by Heynen and Kat (1994),
which are characterized by a monitoring period for the extreme value of the under-
lying asset price to be a subset of the option’s lifetime; and the fractional lookback,
for which only a percentage of the extreme values is in effect in the payoff function
of the options.

Another possible alternative contract could be identified in the a-quantile option
introduced by Miura (1992). An a-quantile call option with strike K and underlying
asset S has a payoff function at maturity 7' defined as (Spe?®T) — K )+, where Sp
is the value of the underlying asset at the beginning of the contract and Q (o, T) is
the a-quantile of the process X, driving the underlying asset price S. In particular @
is defined to be the smallest level below which the process spends at least a fraction
a € (0,1) of some period [0,77], that is

T
Q(a,T) =inf {z : / 1(xe<z)dt > aT} .
0
It follows from the definition that

lim @ (e, T) = sup X;
a—1 0<t<T
and
; - .
Q)= gl X

Using this property, Ballotta and Kyprianou (2000) have shown that the a-quantile
option is comparatively cheaper than the fixed strike lookback written on the same
underlying and with monitoring period equal to the contract lifetime. Precisely
this feature suggests an interesting potential use of this path-dependent contract,
introduced mainly as a “mathematical exercise” and not yet traded in the market.
In fact, it might be seen as a valid tool to generate at maturity returns similar
to the lookback option ones but for a less expensive initial investment. Since the
convergence of the a-quantile option price to the price of the equivalent lookback,
the investor has also the possibility to increase and control the leverage effect of his
portfolio in a quite flexible way through a suitable setting of the parameter a.

Close pricing formulas for the a-quantile option have been derived in the Brow-
nian motion setting by both Akahori (1995) and Dassios (1995). However, these
valuation formulas present serious computational difficulties because they are still
expressed in integral form. Ballotta and Kyprianou (2000) have implemented a
numerical valuation procedure that removes some of these problems by taking ad-
vantage of the Dassios-Port-Wendel identity, which expresses the distribution of
the a-quantile of a Brownian motion as the convolution of the supremum and the
infimum of the process itself.



The aim of this communication is to analyze the behaviour of the a-quantile
option in a more realistic setup for the market model. Precisely, we will consider
a general Lévy motion as relevant process for the price of the underlying security
and we will derive the price of the a-quantile option in such a framework. We will
also introduce a Monte Carlo simulation procedure for this price and, since a jump-
diffusion economy identifies in general an incomplete market, such a procedure will
be extended to price the option under different risk-neutral martingale measures.
Particular attention will be given to the mispricing generated by the misspecification
of a jump-diffusion process for the underlying asset as a pure diffusion process.

The rest of the paper proceeds as follows: Section 2 develops the market setup
and the a-quantile option pricing model. In Section 3, we present the simulation
procedure and discuss the numerical evidence produced. Concluding remarks are
offered in Section 4. Proof of the pricing equation is provided in the Appendix.

2 a-quantile option and Lévy processes

In this section we will analyze more in detail the behaviour of the a-quantile option
when the underlying asset is driven by a general Lévy motion. In order to provide
a complete presentation, we need first to specify the market model used.

2.1 The market model

Let {L; : t > 0} be a Lévy process and consider a frictionless market with continuous
trading. Assume that there are no taxes, no transaction costs, no restrictions on
borrowing or short sales and all securities are perfectly divisible. Assume further
that only two securities are traded: the money market account B; = ™, r > 0, and a
non-dividend paying risky asset, S, whose value at time ¢ > 0 is Sy = Spelt, Sy > 0.
From the Lévy-Khintchine formula, it follows that the dynamic of the stock price,
under some risk-neutral equivalent probability measure P* and for some o € R, is
given by the following

dS, = [r — XE* (2)] So_dt + 0Ss_dW? + S, / 2N (dt, d2) (1)

R
where:

e 7 is the risk-free interest rate,
e W/ is a standard one-dimensional P*-Brownian motion,

e N (dt,dz) is a homogeneous Poisson counting measure on R x R*\ {0}, of rate
), with compensator v (dt,dz) = v (dz)dt on R x R*\ {0}, and independent
of Wy,



e 2 is the proportion of the stock jump and it is assumed to be such that z =
e® — 1, where X is modelled through a sequence of i.i.d. random variables
with mean py and variance o%; X is also independent of W} and N, and it
represents the jump size of the Lévy process driving the stock price. If f (dz)
is the density function of z, then v (dz) = Af (dz).

The corresponding stochastic differential equation for the driving Lévy process
is consequently given by

2
dL; = [r - % — AE* (z)} dt + odW; + / zN (dt, dz);
R

in virtue of the assumptions previously discussed and setting v* to be the P*-
compensator of N, we can rewrite this last equation as follows

2
dL, = { -Z- / v (dz)} dt + odW; + / N (dt, dz). 2)
R R

As mentioned before, the setup defined by equation (1) is an incomplete market,
meaning that there exists at least one contingent claim which cannot be hedged
and hence that, under the assumption of no arbitrage, there is a multiplicity of
equivalent martingale measures, P*, under which agents do evaluate the risk. This
implies that the risk-neutral drift of the Lévy process we observe in equation (2),
ie.

2 2
ﬁ*zr—%—)\E*(z)=r—%~/zu*(dz)
R

cannot be univocally specified.

In the following of this paper we are going to price the a-quantile option under
alternative risk-neutral paradigms in order to examine how the option can be af-
fected by choosing a specific scheme for risk pricing. In particular, we are going to
consider the Esscher martingale measure with parameter 8 (Gerber and Shiu, 1994),
the minimal martingale measure (Follmer and Schweizer, 1991) and the martingale
measure underlying the model proposed by Merton (1976) for option pricing when
the jump risk is uncorrelated with the market. The drift characterizing equation
(2) in each of the above mentioned approaches is reported in Table 1. For more
details about the derivation of the drift formulas, we refer the reader to Ballotta
(2000). What can be observed here is that this risk-neutral drift is given by two
components: the standard risk-neutral drift of the Brownian motion which char-
acterizes the Black-Scholes model, and the expected value (computed under some
martingale measure IP*) of the proportion of the variation in the stock price caused
by the occurring of a jump in the market. The only exception is represented by
the drift under the Merton measure, since this expectation is computed using the
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“Risk-neutral” martingale measure I6)
Merton measure: PM oM = - f]R zv (dz)
Esscher measure: P? f=r— ”72 Jpe (" — 1) v (dz)
Minimal measure: P™ fr=r—% — [ (bz+1)(e® —1) v (dzx)

Table 1: Drift of the Lvy process under different risk-neutral valuation framework.

real probability measure P. This is due to the fact that in his model Merton (1976)
assumes the jump risk to be asset specific, and hence diversifiable. Which implies
that no premium is paid for such a risk. Therefore the change of measure does affect
only the Brownian motion component of the Lévy process, leaving the Poisson part
unchanged.

2.2 The a-quantile option

Let us consider the market framework defined by equation (1). Define @ (o, T) to
be the a-quantile of the Lévy process L, i.e. the process such that

T
Q(O{,T) = inf {l . / 1(L;Sl)dt > OZT} .
0

Applying the risk-neutral valuation procedure, we can say that the no-arbitrage
price at time t € [0,T] of an a-quantile call option, paying (Spe®@T) — K )" at
maturity, is given by

C (80,0, — 1) = e @I [ (S0e%eD — K)* | F], (3)

where E* denotes the expectation under some equivalent risk-neutral martingale
measure P*. Then the following result holds:

Proposition 1 The price at time t € [0,T] of an a-quantile call option equals

C (SQ,OJ,T — t)

= e_’(T_t)/ P* [Q’ (,T—t)>In i} 1
K St <Ig 1(L551n

LTt /001
K (fo‘ 1

dz
5 ds>t—(1—o¢)T>
%)

0

dz, (4)
(Ls<ln§7)d$§t—(l—a)T)
- 0

where .
ol — fo I(Lsslnﬁ)ds
T—t

o =
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and Q' (.,.) s a version of the a-quantile which is independent of F, and such that

QW T-t)L sup L +

inf L, (5)
0<r<al (T—t) 0<T<(1—a/ (T —t)

Equation (5) is the generalization due to Dassios (1996) to the case of a process
with independent and stationary increments, like a Lévy motion, of the Dassios-
Port-Wendel identity (Dassios, 1995). The proof of Proposition 1 follows the same
steps as in Dassios (1995) for the case of a Brownian motion-driven underlying asset,
and it is reported in Appendix A.

The pricing formula expressed by equation (4) presents serious computational dif-

ficulties arising from the fact that all the occupation time sets f0° 1 ( <l 2 ) 2> K }
s<ngg

have to be recorded, the price is still expressed in integral form and the distribution
of the a-quantile process is known only in its convoluted form. Hence, the need
to implement a numerical pricing procedure, which will be described in the next
section.

3 Pricing the a-quantile option in a jump-diffusion
economy

For the case of an underlying asset driven by an arithmetic Brownian motion, a
simulation procedure for the a-quantile option price which exploits the Dassios-Port-
Wendel identity and the distributions of the extremes of the Brownian motion has
been implemented by Ballotta and Kyprianou (2000). Such a procedure is based on
a Monte Carlo technique where the quantile @ (c, T') is generated as the sum of two
independent samples of the extremes of the Brownian motion with drift. Despite the
fact the Dassios-Port-Wendel identity holds also for processes with stationary and
independent increments, the extension of this numerical scheme to the Lévy process
case cannot be based on the same methodology because there are no expressions
for the extremes’ distributions of a Lévy motion easy to handle in practice. In the
present note we use a standard Monte Carlo procedure in which the paths of the
Lévy process are generated as a sequence of partial sums. This allows to obtain the
a-quantile value via its discrete-time analogue, the order statistics, which can be
defined as follows.

Definition 2 Let X3, Xs, ...... be a sequence of i.i.d. random wvariables and S be
the sequence of their successive partial sums, i.e. S = (Sp,S1,...) with Sy = 0 and
Sp =1 Xi, Vn=1,2,.... Rearrange the sequence of partial sums S, S, ..., Sn in
increasing order Sy < Sy < ... < Sy, where (0),(1), ..., (n) is a permutation of



0,1,...,n. The new variables

Qo:n (S) = S(O); Ql:n ( ) 1)» . ,Qn n ( ) S(n)

are called the order statistics of a sample of size n+ 1. More precisely,

Q]n mf{ Zl(s <s) >]}

is the (j,n)-th order statistic of S, Vj € {0,1,...,n}.

Therefore, according to this definition, Qg., (S) = ming<i<, S; and Q. (S) =
MaxXo<i<n S;- In other words, the quantile of a process defined as the sequence
of partial sums arranges the sums in increasing order and the (4,n)-th quantile,
Qjin (S), is the sum which is j-th from the bottom according to the given order. More
in detail, we subdivide the option contract lifetime [0, 7] into n equal subintervals
of length At = %, and we define ¢; = %T, j =1,2,..,n. Since the occurring of a
jump is governed by a Poisson process of rate A, for each subinterval we sample a
random number R from a uniform distribution ¢ (0, 1), which allows to define an
auxiliary random variable I; such that I; = 1 if R < AAt, that is if a jump occurs
in (tj-1,t;], and I; = 0 otherwise. In this way, assuming that the jump size of the
Lévy motion is normally distributed, that is X ~ N (uy, 0%), the path of the Lévy
process can be obtained by the following

Ltj = Lt]._l +,3*At + oV Atyj + (,LLX + Zjo'x) Ij.

where y; and z; are two independent random samples from a standardized normal
distribution. Once the sequence of partial sums Ly = Ly, Lty, Ly, ..o, Ly, = L7 18
generated, it is ordered in increasing order, and the j-th value from the bottom is
then selected, where j = [an] , in order to get the a~quantile @; of the process L.
The final payoff is, therefore, computed as P = (S’erﬂ' -K )+ and the numerical
approximation to the option price at timet = 0is C := e™™" Em L& The antithetic
variable technique is then applied to all the random components 1nvolved for variance
reduction purposes.

3.1 Monte Carlo simulation and results

The Monte Carlo experiment is carried out by simulating 10,000 paths, with each
path composed by 2,500 steps (equivalent to 7 observation per day over one year).
Unless otherwise stated, the basic parameter set is:

K =100; r=5%; T=1 a=0.5;
A=059; py=—0.0537; ox =0.07.
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Stock JD (PY) GBM GBM/JD %

90 15226  1.6618 10914  -8.38
(0.028)  (0.0093)
95 3.0624  3.2801 10711 -6.64

(0.0364)  (0.0125)

100 5.5861  5.7758 10339  -3.28
(0.0418)  (0.0156)

105 8.8955  9.1075 1.0238  -2.33
(0.0406)  (0.0192)

110 12.902  13.0363 10104  -1.03
(0.0388)  (0.0226)

115  17.3031  17.4131  1.0063  -0.63
(0.0388)  (0.0255)

120 21.8755  22.004 1.0058  -0.58
(0.0384)  (0.0279)

Table 2: Quantile Options Prices under Geometric Brownian motion (GBM) and Jump-
Diffusion (JD) process, when the Merton valuation framework is used. Parameter set:
K =100;7=5%; T=1a=0.5 A=059; uxy = —0.0537; ox = 0.07; og = 0.2. The
column labeled GBM/JD represents the ratio between GBM option prices to JD option
prices. The column labeled % reports the percentage variation in the option price, (JD-
GBM)/GBM. The numbers in parentheses correspond to the standard errors of the Monte
Carlo simulation.

Finally, we assume that the instantaneous total volatility, og, of the underlying
asset is constant, in order to perform a sensible comparison between the option
price obtained in the Black-Scholes framework and the price deriving from the Lévy
model. In particular, we fix g = 0.2.

Table 2 shows prices of the a-quantile call for different stock prices obtained un-
der the Merton risk-neutral probability measure, PM. It shows that the assumption
of geometric Brownian motion-modeled underlyings overprices call options and this
mispricing is even more accentuated for out-of-the-money contracts.

Table 3 shows the same analysis for the case of option prices obtained under the
Esscher risk-neutral martingale measure, P, and the minimal martingale measure,
P™. Also in these cases, the mispricing appears to be particularly accentuated for
out-of-the-money options, especially under the Esscher pricing framework.

A first explanation for this type of mispricing might derive from the structure
of the a-quantile process itself. As seen before, it is the smallest level below which
the process spends o1 of its time. If on average a negative jump is expected to
occur, this is likely to lower the entire process L and hence also the value of ). This
would imply a lower value of the quantile option call with respect to the price of the






Stock JD (P) GBM/JD % |JD (P") GBM/JD %

90 14515 11449 1265 | 1.4828 11207 -10.77
(0.0274) (0.0277)

95 3.0042 1.0918  -841 | 2.9889 1.0974 8.8
(0.0367) (0.0368)

100 5.3462 1.0804 744 | 5.4187 1.0659  -6.18
(0.0409) (0.0421)

105  8.6931 1.0477  -455 || 8.5973 1.0593  -5.60
(0.0413) (0.0402)

110 12632 1.0320  -3.10 || 12.6079 1.0339  -3.29
(0.0388) (0.0399)

115 16.8626 1.0326  -3.16 || 16.8837 1.0314  -3.04
(0.0375) (0.0374)

120 21.4360 1.0265  -2.58 || 21.4556 1.0255  -2.49
(0.0377) (0.0373)

Table 3: Quantile Options Prices generated by a Jump-Diffusion (JD) process under the
Esscher measure and the minimal martingale measure. Parameter set: K = 100; © = 5%;
T=1a=05X=0589 uy = —0.0537; cx = 0.07; 0og = 0.2. The column labeled
GBM/JD represents the ratio between GBM option prices to JD option prices. The column
labeled % reports the percentage variation in the option price, (JD-GBM)/GBM. The
numbers in parentheses correspond to the standard errors of the Monte Carlo simulation.

PM P? pm BS
Mean 0.014075 0.011924 0.011761 || 0.013916
Variance 0.014815 0.014663 0.014683 || 0.014559
Skewness -0.01422 -0.01901 -0.01955 | -0.00742
Kurtosis 3.467914 3.467574 3.461758 || 3.437838

Table 4: Estimated moments of the 0.5-quantile process. Parameter set: r = 5%; T =1
a=0.5, A=0.59; ux = —0.0537; ox =0.07; 05 =0.2.



equivalent contract in the Brownian motion regime. In Table 4 the first four moments
of the estimated 0.5-quantile distribution are reported; in particular the mean of the
simulated quantile distribution seems to confirm what previously described, with the
only exception of the Merton valuation framework.

A second reason for the large price discrepancy in the a-quantile options might
be found looking at the other moments of the a-quantile distributions in the cited
table. In fact, as the prices of the a-quantile call at time ¢ = 0 can be rewritten as

O(SO,Q,T) = TR [(SOeQ(a,T) _ K)+]

e T / p* {Q (¢, T) > In i} dz,
So

I

K

we can say that the call contract pays a premium for the probability mass placed in
the right tail of the a-quantile distribution. Hence, the coefficients of skewness and
kurtosis provide important information about the direction of the mispricing. Table
4 shows that the a-quantile distribution arising in a jump-diffusion economy is more
negatively skewed and with higher kurtosis than in the Brownian motion economy,
which means that the Brownian motion model places more probability mass in the
right tail than the Lévy process model, causing therefore the observed overpricing.
This fact would also explain the reason why, as moneyness decreases, there is less
price sensitivity to distributional assumptions. Moreover, Table 4 outlines that this
is particularly true for the a-quantile distribution evaluated in the Esscher pricing
framework. This suggests that the moments of the estimated distribution of the
quantile process may be also a key to interpret the differences between the prices
obtained under the Merton measure, the Esscher and the minimal martingale ones.
In fact, according to Table 4, the Merton measure should provide on average the
biggest call prices, i.e. the smallest mispricing for the call contract, which is what
we observe comparing the results in Table 2 with the results contained in Table 3.

4 Conclusion

The aim of this work has been to study a new kind of financial instrument, the
a-quantile option, introduced first by Miura (1992), which is at the moment only
a theoretical object since it is not yet traded in the market. The properties of this
option have been in particular presented in a general jump diffusion setting where
the underlying asset is driven by a Lévy process with normally distributed jumps.
A numerical pricing procedure has been implemented and the numerical evidence
produced has been used to analyze the mispricing generated, and how and through
which elements the introduction of jumps in the model affects financial securities
prices. The attention has been given especially to the moments of the estimated
payoff functional’s distribution.
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One problem left open is how to deal numerically with the mid-contract value
of the quantile option. In fact, in this case pricing formulae and numerical approx-
imations cannot avoid the set of occupation times needed to define the a-quantile
itself and which makes this process not Markovian. Also a refinement of the nu-
merical procedure used to simulate the option prices would be recommended. The
simulation procedure, in fact, relies on the Monte Carlo technique which, for a
path-dependent contract, is not very efficient since the relevant stock value could be
missed. A proposal might be to try the implementation of a procedure based on the
Dassios-Port-Wendel identity, via some numerical approximation for the extremes’s
distribution of a Lévy process, as for example the one proposed by Nahum (1998)
for the running maximum of the process L. Finally, we outline that the analysis
carried on in this paper concerns only the mispricing arising for different values of
the stock price, all the other parameters kept constant. A more detailed study of
the mechanisms through which the effects produced by the occurring of a jump in
the market are spread from the underlying to the derivative security, would require
an accurate comparative statics analysis.

A Proof of Proposition 1

Let us consider first some preliminary results; precisely consider the risk-neutral
formula for the a-quantile option price

C(So, e, T —t) = e 7T IE" [(SOeQ(mT) _ K)+ | ft] 7

where E* denotes the expectation under some equivalent risk-neutral martingale
measure P*. The same expression can be also rewritten as

C(So,a,T—t) = e T / P* [S0e?@T) > 2| ) dz
K

= 7T f P* {Q(a,T)>lni|.7-}} dz (6)
K SO

By definition of a-quantile, we get:

2 T
{Q(a,T) > lns—o} & {/0 1(L551nsio)d8 < aT}.



Since L has independent and stationary increments, it follows that

P* [Lsglnsi]ft} =P* [Lt—FL;SInSi} for0<t<s<T andt+u=s,
0 0

where L], is an independent copy of the Lévy process. Therefore

T t
P |:/; I(LsSlnSio)dS<aT_/0 J(Lsglng%)dslﬂ]

T—t 13
P {/0 J(thnsio_ln%>ds<aT—/o I(Lsgnsio)ds]
St

since Ly = In g by construction. Let

ol — fgl(msmé)ds
T—t

o =

Then, under the assumption that f(f 1 ( )ds < oT, when 0 < o < 1, that is

Ls<In 73%

whenfotl( )ds>t—(1—oz)T, we get

Ls<In SZ—U

P* Q(a,T)>1n-z—|]-‘t]
So

r pT—t t
P /0 I(Lﬁﬁlnsit)ds < OzT—\/0 Z(Lssln;—o)ds}

P* -Q’ (¢/,T —t) > In é] 1)

where @' (+,-) is a version of the a-quantile which is independent of F;. Instead,
when fot 1<L oz )ds <t—(1—a)T or, equivalently, T —t < o:T—fOt 1( ds,
sSin ?0

we observe that

T—t t
P [/{; ](LsSlnsit)d8<aT_/0 Z(LSSIHS—Z)dS] =1 (8)

i
Lesing ds <T —tand [ 1 Lsﬁlnﬁ)ds < aT.
Equations (7) and (8) allow to prove Proposition 1

Lsgms—zo)

since [ Ot 1

12



Proof. At first we observe that
P* [SOBQ(Q’T) >z 1 .7:,:] = ]E* [Z(SOeQ(Q,T)>Z) l ]:t:|

E |10 o 1
[ (Soe@(=T)>2) ( (fotl(L s )ds>t—(1—o<)T)
sShn zo

|7

+1
(fo‘ 1(L5<In f_)dsst—(l—a)T)
- 0

Since the events fotl(L < z)d5>t—(1—a)T}and{f0tl(L a Z)dsgt—(l—a)T}
+<ln g5 S

are JFimeasurable by definition of the occupation time, then

P* [Spe?@ D) > 2| F] = P* [See®™D) > 2| F] 1(

Io 1(L5<1n f_)ds>t—(1—a)’1‘)
- 0

+P* [Soe?@D) > 2 | ] 1 :
(fotl(qunszﬁ)dsgt—(l—a)T)
- 0

For f; I(Lsgln £) ds < oT, in virtue of equations (7) and (8) we get

P* [Spe @D > 2| F] 1
(fg 1(L5<ln f_)ds>f,f(1~o¢)T>
- 0

= P* [Q’(O/,T*t) > 1n—SZ—} 1,
t (fo 1(LESln fa)ds>t—(1—a)T)

and
P* [SgeQ(a'T) >z ft] 1
(f; 1(“Sln s%)dsgt—(l—a)T)
T—t t
:]P’*/ 1 zds<ozT—/1 zds}]
l: 0 (Lsgln?t) 0 (Lsglns_o) (fot ](L <1n3‘ﬁ)ds§t_<l_a)T)
=75
= 1 ) .
(fo Z(Lsgln Sza)dSSt—(IAQ)T>

Hence

P* [Ser("“’T) >z | .7-',5]
- P*[QI(Q/,T—tplnSﬁ}J t +1, 9)
t (fo I(LSSInS%)dS>t7(17Q)T) (fo I(Lsglni_)dsgt—(l—a)T

0
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Whilst, if [} 1 ( Leilns—zo)ds > aT, P* [Spe?@T) > z | 7| = 0 because the events

T
{Q(a,T) > hlSio} & {/(; I(Lsglnsin)ds < aT}

are not compatible with the assumption done. The result (4) follows by substitution
of (9)in (6). m

References

(1] Akahori, J. (1995): Some formulae for a new type of path-dependent option,
The Annals of Applied Probability, 5, 383-388.

[2] Ballotta, L. (2000): Lévy processes, option valuation and pricing of the a-
quantile option, PhD Thesis - Universita degli studi di Bergamo.

[3] Ballotta, L. and Kyprianou, A. E. (2000): A note on the o-quantile option, Ac-
tuarial Research Paper N° 128, Department of Actuarial Science and Statistics,
City University London.

[4] Dassios, A. (1995): The distribution of the quantile of Brownian motion with
drift and the pricing of related path-dependent options, The Annals of Applied
Probability, 5, 389-398.

[5] Dassios, A. (1996): Sample quantiles of stochastic processes with stationary
and independent increments, The Annals of Applied Probability, 6, 1041-1043.

[6] Follmer, H. and Schweizer, M. (1991): Hedging of contingent claims under
incomplete information, Applied Stochastic Analysis, 389-414.

[7] Gerber, H. U. and E. S. W. Shiu (1994): Option pricing by Esscher trans-
forms (with discussion), Transactions of the Society of Actuaries, 46, 99-140:
discussion: 141-191.

[8] Heynen, R. and H. Kat (1994): Selective memory, RISK, Vol. 7, N° 11, 73-76.

[9] Merton, R. C. (1976): Option pricing when underlying stock returns are dis-
continuous, Journal of Financial Economics, 125-144.

[10] Miura, R. (1992): A note on lookback options based on order statistics, Hitot-
subashi Journal of Commerce and Management, 27, 15-28.

14



(11] Nahum, E. (1998): On the distribution of the supremum of the sum of a Brow-
nian motion with drift and a marked point process, and the pricing of lookback
options, Technical Report N° 516, Department of Statistics, University of Cal-
ifornia, Berkeley.

15



Egtgdlégiversiw

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

DEPARTMENT OF ACTUARIAL SCIENCE AND STATISTICS

Actuarial Research Papers since 1995

Huber P. A Review of Wilkie's Stochastic Investment Model. January 1995. 22 pages.
ISBN 1 874 770 70 0

Renshaw A.E. On the Graduation of *Amounts'. January 1995. 24 pages.
ISBN 1874 77071 9

Renshaw A.E. Claims Reserving by Joint Modelling. December 1994. 26 pages.
ISBN 1 874 770727

Renshaw A.E. Graduation and Generalised Linear Models: An Overview. February 1995.
40 pages. ISBN 1874 770 73 5

Khorasanee M.Z. Simulation of Investment Returns for a Money Purchase Fund. June 1995.
20 pages. ISBN 1 874 770 74 3

Owadally M.l. and Haberman S. Finite-time Pension Fund Dynamics with Random Rates of
Return. June 1995. 28 pages. ISBN 1 874 770 75 1

Owadally M.l. and Haberman S. Stochastic Investment Modelling and Optimal Funding
Strategies. June 1995. 25 pages. ISBN 1 874 770 76 X

Khorasanee M.Z Applying the Defined Benefit Principle to a Defined Contribution Scheme.
August 1995. 30 pages. ISBN 1 874 770 77 8

Sebastiani P. and Settimi R. Experimental Design for Non-Linear Problems. September 1995.
13 pages. ISBN 1 874 770 78 6

Verrall R.J. Whittaker Graduation and Parametric State Space Models. November 1995.
23 pages. ISBN 1 874 77079 4

Verrall R.J. Claims Reserving and Generalised Additive Models. November 1995. 17 pages.
ISBN 1 874 770 80 8

Nelder J.A. and Verrall R.J. Credibility Theory and Generalized Linear Models. November
1995. 15 pages. ISBN 1 874 770 81 6

Renshaw A.E., Haberman S. and Hatzopoulos P. On The Duality of Assumptions Underpinning
The Construction of Life Tables. December 1995. 17 Pages. ISBN 1 874 770 82 4

Chadburn R.G. Use of a Parametric Risk Measure in Assessing Risk Based Capital and
Insolvency Constraints for With Profits Life Insurance. March 1996. 17 Pages.
ISBN 1 874 770 84 0



84.

85.

86.

87.

88.

89.

90.

91.

92,

93.

94,

95,

96.

97.

98.

99.

100.

101.

Haberman S. Landmarks in the History of Actuarial Science (up to 1919). March 1996.
62 Pages. ISBN 1 874 770 85 9

Renshaw A.E. and Haberman S. Dual Modelling and Select Mortality. March 1996.
30 Pages. ISBN 1 874 770 88 3

Booth P.M. Long-Term Care for the Elderly: A Review of Policy Options. April 1996.
45 Pages. ISBN 1 874 770 89 1

Huber P.P. A Note on the Jump-Equilibrium Model. April 1996. 17 Pages.
ISBN 1 874 770 90 5

Haberman S and Wong L.Y.P. Moving Average Rates of Return and the Variability of Pension
Contributions and Fund Levels for a Defined Benefit Pension Scheme. May 1996. 51 Pages.
ISBN 1 874 77091 3

Cooper D.R. Providing Pensions for Employees with Varied Working Lives. June 1996.
25 Pages. ISBN 1 874 770 93 X

Khorasanee M.Z. Annuity Choices for Pensioners. August 1996. 25 Pages.
ISBN 1 874 770 94 8

Verrall R.J. A Unified Framework for Graduation. November 1996. 25 Pages.
ISBN 1 874 77099 9

Haberman S. and Renshaw A.E. A Different Perspective on UK Assured Lives Select Mortality.
November 1996. 61 Pages. ISBN 1 874 770 00 X

Booth P.M. The Analysis of Actuarial investment Risk. March 1997. 43 Pages.
ISBN 1 901615 03 0

Booth P.M., Chadburn R.G. and Ong A.S.K. Utility-Maximisation and the Control of Solvency
for Life Insurance Funds. April 1997. 39 Pages. ISBN 1 901615 04 9

Chadburn R.G. The Use of Capital, Bonus Policy and Investment Policy in the Control of
Solvency for With-Profits Life Insurance Companies in the UK. April 1997. 29 Pages.
ISBN 1 901615 05 7

Renshaw A.E. and Haberman S. A Simple Graphical Method for the Comparison of Two
Mortality Experiences. April 1997. 32 Pages. ISBN 1 901615 06 5

Wong C.F.W. and Haberman S. A Short Note on Arma {1, 1) Investment Rates of Return and
Pension Funding. April 1997. 14 Pages. ISBN 1 901615 07 3

Puzey A’ S. A General Theory of Mortality Rate Estimators. June 1997. 26 Pages.
ISBN 1 901615 08 1

Puzey A'S. On the Bias of the Conventional Actuarial Estimator of gx. June 1997. 14 Pages.
ISBN 1 901615 09 X

Walsh D. and Booth P.M. Actuarial Techniques in Pricing for Risk in Bank Lending. June
1997. 65 Pages. ISBN 1 901615 12 X

Haberman S. and Walsh D. Analysis of Trends in PHI Claim Inception Data. July 1997.
51 Pages. ISBN 1 901615 16 2



102.

103.

104.

105.

106.

107.

108.

109.

110.

112.

113.

114.

116.

116.

117.

118.

Haberman S. and Smith D. Stochastic Investment Modelling and Pension Funding: A
Simulation Based Analysis. November 1997. 91 Pages. ISBN 1 901615 19 7

Rickayzen B.D. A Sensitivity Analysis of the Parameters used in a PHI Multiple State Model.
December 1997. 18 Pages. ISBN 1 901615 20 O

Verrall R.J. and Yakoubov Y.H. A Fuzzy Approach to Grouping by Policyholder Age in General
Insurance. January 1998. 18 Pages. ISBN 1 901615 22 7

Yakoubov Y.H. and Haberman S. Review of Actuarial Applications of Fuzzy Set Theory.
February 1998. 88 Pages. ISBN 1 901615 23 5

Haberman S. Stochastic Modelling of Pension Scheme Dynamics. February 1998. 41 Pages.
ISBN 1 901615 24 3

Cooper D.R. A Re-appraisal of the Revalued Career Average Benefit Design for Occupational
Pension Schemes. February 1998. 12 Pages. ISBN 1 901615 25 1

Wright I.D. A Stochastic Asset Model using Vector Auto-regression. February 1998. 59
Pages.
ISBN 1 901615 26 X

Huber P.P. and Verrall R.J. The Need for Theory in Actuarial Economic Models. March 1998.
15 Pages. ISBN 1 901615 27 8

Booth P.M. and Yakoubov Y. Investment Policy for Defined Contribution Pension Scheme
Members Close to Retirement. May 1998. 32 Pages ISBN 1 901615 28 6

Chadburn R.G. A Genetic Approach to the Modelling of Sickness Rates, with Application to
Life Insurance Risk Classification. May 1998. 17 Pages. ISBN 1 901615 29 4

Wright 1.D. A Stochastic Approach to Pension Scheme Funding. June 1998. 24 Pages.
ISBN 1 901615 30 8

Renshaw A.E. and Haberman S. Modelling the Recent Time Trends in UK Permanent Health
Insurance Recovery, Mortality and Claim Inception Transition Intensities. June 1998. 57
Pages.

ISBN 1 901615 31 6

Megaloudi C. and Haberman S. Contribution and Solvency Risk in a Defined Benefit Pension
Scheme. July 1998. 39 Pages ISBN 1 901615 32 4

Chadburn R.G. Controlling Solvency and Maximising Policyholders’ Returns: A Comparison of
Management Strategies for Accumulating With-Profits Long-Term Insurance Business. August
1998. 29 Pages ISBN 1 901615 33 2

Fernandes F.N. Total Reward - An Actuarial Perspective. August 1998. 25 Pages.
ISBN 1 901615 34 0

Booth P.M. and Walsh D. The Application of Financial Theory to the Pricing of Upward Only
Rent Reviews. November 1998. 23 Pages. ISBN 1 901615 35 9

Renshaw A.E. and Haberman S. Observations on the Proposed New Mortality Tables Based on
the 1991-94 Experience for Male Permanent Assurances. February 1999. 40 Pages.
ISBN 1 901615 36 7



119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

Velmachos D. And Haberman S. Moving Average Models for Interest Rates and Applications
to Life Insurance Mathematics. July 1999. 27 Pages. ISBN 1 901615 38 3

Chadburn R.G. and Wright I.D. The Sensitivity of Life Office Simulation Qutcomes to
Differences in Asset Model Structure. July 1999. 58 Pages. ISBN 1 901615 39 1

Renshaw A.E. and Haberman S. An Empirical Study of Claim and Sickness Inception
Transition Intensities (Aspects of the UK Permanent Health Insurance Experience). November
1999. 35 Pages. ISBN 1 901615 41 3

Booth P.M. and Cooper D.R. The Tax Treatment of Pensions. April 2000. 36 pages.
ISBN 1 901615 42 1

Walsh D.E.P. and Rickayzen B.D. A Model for Projecting the number of People who wili
require Long-Term Care in the Future. Part I: Data Considerations. July 2000. 37 pages.
ISBN 1 901615 43 X

Rickayzen B.D. and Walsh D.E.P. A Model for Projecting the number of People who will
require Long-Term Care in the Future. Part 1l: The Multiple State Model. July 2000. 27
pages. ISBN 1 901615 44 8

Walsh D.E.P. and Rickayzen B.D. A Model for Projecting the number of People who will
require Long-Term Care in the Future. Part lll: The Projected Numbers and The Funnel of
Doubt. July 2000. 61 pages. ISBN 1 901615 45 6

Cooper D.R. Security for the Members of Defined Benefit Pension Schemes. July 2000.
23 pages. ISBN 1 901615 45 4

Renshaw A.E. and Haberman S. Modelling for mortality reduction factors. July 2000.
32 pages. ISBN 1 901615 47 2

Ballotta L. and Kyprianou A.E A note on the I-quantile option. September 2000.
ISBN 1 901615 49 9

Spreeuw J. Convex order and multistate life insurance contracts. December 2000.
ISBN 1 901615 50 2

Spreeuw J. The Probationary Period as a Screening Device. December 2000.
ISBN 1 901615 51 0

Owadally M.I. and Haberman S. Asset Valuation and the Dynamics of Pension Funding with
Random Investment Returns. December 2000. ISBN 1 901615 52 9

Owadally M.}, and Haberman S. Asset Valuation and Amortization of Asset Gains and Losses
in Defined Benefit Pension Plans. December 2000. ISBN 1 901615 53 7

Owadally M.I. and Haberman S. Efficient Amortization of Actuarial Gains/Losses and Optimal
Funding in Pension Plans. December 2000. ISBN 1 901615 54 5

Ballotta L. D-quantile Option in a Jump-Diffusion Economy. December 2000.
ISBN 1 901615 55 3

Renshaw A. E. and Haberman S. On the Forecasting of Mortality Reduction Factors.
February 2001. ISBN 1 901615 56 1

Haberman S., Butt Z. & Rickayzen B. D. Multiple State Models, Simulation and Insurer
Insolvency. February 2001. 27 pages. ISBN 1 901615 57 X



12.

13.

14.

16.

16.

17.

18.

19.

Statistical Research Papers

Sebastiani P. Some Results on the Derivatives of Matrix Functions. December 1995,
17 Pages. ISBN 1 874 770 83 2

Dawid A.P. and Sebastiani P. Coherent Criteria for Optimal Experimental Design.
March 1996. 35 Pages. ISBN 1 874 770 86 7

Sebastiani P. and Wynn H.P. Maximum Entropy Sampling and Optimal Bayesian Experimental
Design. March 1996. 22 Pages. ISBN 1 874 77087 5

Sebastiani P. and Settimi R. A Note on D-optimal Designs for a Logistic Regression Model.
May 1996. 12 Pages. ISBN 1 874 770 92 1

Sebastiani P. and Settimi R. First-order Optimal Designs for Non Linear Models. August 1996.
28 Pages. ISBN 1 874 770 95 6

Newby M. A Business Process Approach to Maintenance: Measurement, Decision and Control.
September 1996. 12 Pages. ISBN 1 874 770 96 4

Newby M. Moments and Generating Functions for the Absorption Distribution and its Negative
Binomial Analogue. September 1996. 16 Pages. ISBN 1 874 770 97 2

Cowell R.G. Mixture Reduction via Predictive Scores. November 1996. 17 Pages.
ISBN 1 874 770 98 0

Sebastiani P. and Ramoni M. Robust Parameter Learning in Bayesian Networks with Missing
Data. March 1997. 9 Pages. ISBN 1 901615 00 6

Newby M.J. and Coolen F.P.A. Guidelines for Corrective Replacement Based on Low
Stochastic Structure Assumptions. March 1997. 9 Pages. ISBN 1 901615 01 4.

Newby M.J. Approximations for the Absorption Distribution and its Negative Binomial
Analogue. March 1997. 6 Pages. ISBN 1 901615 02 2

Ramoni M. and Sebastiani P. The Use of Exogenous Knowledge to Learn Bayesian Networks
from Incomplete Databases. June 1997. 11 Pages. ISBN 1 901615 10 3

Ramoni M. and Sebastiani P. Learning Bayesian Networks from Incomplete Databases.
June 1997. 14 Pages. ISBN 1 901615 11 1

Sebastiani P. and Wynn H.P. Risk Based Optimal Designs. June 1997. 10 Pages.
ISBN 1 901615 13 8

Cowell R. Sampling without Replacement in Junction Trees. June 1997. 10 Pages.
ISBN 1 901615 14 6

Dagg R.A. and Newby M.J. Optimal Overhaul Intervals with Imperfect Inspection and Repair.
July 1997. 11 Pages. ISBN 1 901615 15 4

Sebastiani P. and Wynn H.P. Bayesian Experimental Design and Shannon Information.
October 1997. 11 Pages. ISBN 1 90161517 0

Wolstenholme L.C. A Characterisation of Phase Type Distributions. November 1997.
11 Pages. ISBN 1 901615 18 9

Wolstenholme L.C. A Comparison of Models for Probability of Detection (POD) Curves.
December 1997. 23 Pages. ISBN 1 901615 21 9



20.

21.

Cowell R.G. Parameter Learning from Incomplete Data Using Maximum Entropy |: Principles.
February 1999. 19 Pages. ISBN 1 901615 37 5

Cowell R.G. Parameter Learning from Incomplete Data Using Maximum Entropy Il: Application
to Bayesian Networks. November 1999. 12 Pages ISBN 1901615405



Department of Actuarial Science and
Statistics

Actuarial Research Club

The support of the corporate members

CGU Assurance
Computer Sciences Corporation
Government Actuary’s Department
HCM Consultants (UK) Ltd
Hymans Robertson
KPMG
Munich Reinsurance
PricewaterhouseCoopers
Swiss Reinsurance
Watson Wyatt Partners

is gratefully acknowledged.

ISBN 1 901615 553



