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Abstract

We implement a specialised iterative regression methodology in R for the analysis of
age-period mortality data based on a class of generalised Lee-Carter (LC) type modelling
structures. The LC-based modelling frameworks is viewed in the current literature as
among the most efficient and transparent methods of modelling and projecting mortality
improvements. Thus, we make use of the modelling approach discussed in Renshaw and
Haberman (2006), which extends the basic LC model and proposes to make use of a tailored
iterative process to generate parameter estimates based on Poisson likelihood. Furthermore,
building on this methodology we develop and implement a stratified LC model for the
measurement of the additive effect on the log scale of an explanatory factor (other than age
and time). This modelling methodology is implemented in a publically available collection of
programming functions that facilitate both the preparation of mortality data and the fitting
and analysis of the given log-linear modelling structures. Also, the package incorporates
methods to produce forecasts of future mortality rates and to compute the corresponding
future life expectancy.
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1 Introduction

The Iterative Lee-Carter (ilc) package is a freely available collection of R1 (programming)
functions for the analysis of age-period mortality data that implements specific regression and
descriptive methods to fit a generalised class of LC type modelling structures. The purpose of
the mortality modelling package described here is to apply an improved modelling framework,
which extends the standard LC method based on the Normal error structure that was originally
proposed in Lee and Carter (1992). Consequently, we depart from the traditional Singular Value
Decomposition (SVD) fitting method, that assumes Gaussian residuals, and instead implement
a regression tool based on Poisson likelihood maximization process. In particular, we make use
of the approach proposed and illustrated in Renshaw and Haberman (2006), which generalises
the basic LC modelling framework and extends the work of Brouhns et al. (2002), to develop a
tailored iterative process for updating the parameter estimates. Furthermore, building on this
methodology, we develop and implement a new modelling approach, referred to as the stratified
(or extended) LC model, that can be applied to measure the overall effect of an explanatory
factor (other than age and time) on the log mortality rates across all ages and periods.

This generalised modelling methodology is implemented within the R statistical software in
the form of a specialised set of command functions that apply the above mentioned iterative
fitting method. The package contains methods for the analysis of a class of six different types of
log-linear models in the GLM framework with Poisson errors that includes the basic LC model
too. In addition, the ilc package also include tools for the fitting and analysis of the stratified LC
model. In order to assess the goodness of fit of the regression, the estimation routines support
a range of residual analyses with corresponding target fitted values, which can be visualised
by specialised diagnostic plots. The package allows preliminary data corrections, primarily in
order to replace missing data-cells, but also to eliminate potential outliers that might result
from data inaccuracies. Further, the package includes two simple methods of ’closing-out’
procedures to correct the original data at very old ages before the application of the models.
Finally, the functionality of this software is currently being enhanced with the inclusion of a
number of control parameters and flexible plotting methods.

The remaining sections of this working paper are organised as follows. Section 2 presents
in detail the variants of the adopted modelling framework and discusses the main features of
mortality forecasting within the ilc application. Further, section 3 provides a brief description
of the iterative fitting approach used for the estimation of the model parameters. Following
on, section 4 gives instructions for installing and using the ilc package in R, including how to
prepare mortality data and how to fit the models and to run the regression diagnostics. Some
numerical illustrations are provided using the CMI pensioners mortality data.

1A gentle introduction for beginners about methods of statistical analysis and graphical illustration in the R

programming environment is provided in Venables et al. (2005).

http://www.cass.city.ac.uk/facact/files/ZoltanButt/ilc-v1.0.zip
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2 Modelling Framework

The application and extension of the LC modelling approach has dominated the recent liter-
ature in the field of mortality forecasting (see Brouhns et al. 2002, Renshaw and Haberman
2003a,b, Booth 2006 and further references therein). According to Booth (2006), the LC-based
approach is widely considered in the current literature to be among the most efficient and
transparent methods to date that produces fairly realistic life expectancy forecasts, which are
used as reference values for other modelling methods. For instance, the accepted framework
of modelling and projecting mortality improvements in the USA for the last decade or so has
been the LC-based age-period (AP) model (see Lee and Carter 1992, Lee 2000). Similarly, the
model has been applied successfully to Canadian (Lee and Nault 1993), as well to Japanese (see
Wilmoth 1993) mortality data and formed part of official projections. While the model has
gained acceptance in the UK too, the persistent cohort effects observed for generations born
between 1925 and 1945 has led to a special adaptation of the LC method by Renshaw and
Haberman (2006), developing the so-called age-period-cohort (APC) log-bilinear generalised
linear models (GLM) with Poisson error structures.

In terms of forecasting, the LC family of models are part of the extrapolative stochastic
methods that assume that the observed historical trends of human mortality improvements
will persist into the future. Many authors consider that the relative stability of the past
trends provide a sufficiently reliable basis for future projections. While the validity of these
assumptions have been debated (see Gutterman and Vanderhoof 2000), the view of the majority
is that these methods still offer the most effective and dependable alternative to date. Given the
inherent complexity of the factors affecting human mortality and the lack of our understanding
of the intricate mechanisms governing our aging process (Brouhns et al. 2002), econometric or
structural models based on causality and interactions of biological and/or demographic factors
have so far failed to give rise to plausible theory-informed forecasting methods (see Booth
2006).

In the LC type modelling approach, the age effects are assumed to be constant in time and
the time-variant period and/or cohort effects are projected forward using autoregressive time-
series models. Thus, the period and/or cohort factors are extrapolated in time by a stochastic
ARIMA process (e.g. random walk with drift) in order to make forecasts of the future force of
mortality and, implicitly, future (period- and cohort-based) life expectancy.

In the modelling framework described here, we aim to provide a common platform for
fitting LC type models and making future forecasts of mortality and of life expectancy. Thus,
we model the force of mortality based on GLM regression methods using a log-link with a class
of parameterised predictors that contain bilinear terms. However, the presence of the bilinear
predictors prevents the application of the standard estimation methods normally used within
the GLM approach. Instead, the parameters are estimated through an iterative minimisation
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technique applied to the deviance of the non-linear model structure that is dependent on the
choice of error distribution. In the following we describe in more detail the particular modelling
structures implemented in the ilc package.

2.1 Mortality Data

Consider a mortality experience observed at individual ages (x) and calendar years (t), giving
rise to a total of (k × n) available data cells, so that we can estimate the central mortality rate
(mxt) and the corresponding force of mortality (µxt) by

(µ̂xt =) m̂xt =
yxt

ext
,

where yxt and ext represent the number of deaths and the matching central exposure for any
given subgroup, respectively. In addition, for each combination of age x and period t, we define
the cohort year z = t− x representing the year of birth of each subgroup in the data.

2.2 Basic Age-Period (AP) Lee-Carter Model

The basic AP LC model was first proposed by Lee and Carter (1992) and it was introduced
as a type of principal components model of the mortality rate (mxt) dependent only on factors
related to age and period. The model is expressed as

LC : log (mxt) = αx + βxκt + εxt , (1)

where the parameters are interpreted as follows:

αx represents a constant age-specific pattern of mortality;

κt measures the trend in mortality over time;

βx measures the age-specific deviations of mortality change from the overall trend;

εxt are Gaussian distributed N
(
0, σ2

)
random effects by age and time.

Due to the bilinear multiplicative construct (βxκt) present in equation (1), there is a clear
identifiability problem that is traditionally resolved by ensuring that these parameters satisfy
a pair of specified constraints, given by

∑
x

βx = 1 ,

tn∑
t=t1

κt = 0 . (2)
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Then, the standard LC model can be estimated using the singular value decomposition
(SVD) method that leads to the following estimator of the age-specific effects:

α̂x =
1
n

tn∑
t=t1

log (m̂xt) , (3)

which minimises the sum of squares of the error term
(
S =

∑
xt ε2

xt

)
. Lee and Carter also

advocates a set of adjustments to the κ̂t estimates in order to ensure that in each year, the
total deaths predicted by the model equals the total of the observed deaths

∑
x yxt.

Subsequently, the LC model was re-evaluated in the mortality forecasting literature (see
Tabeau 2001, Brouhns et al. 2002, Renshaw and Haberman 2003a) and it was proposed that the
model can also be formulated within a GLM framework with a generalised error distribution. In
this setting, the LC model parameters can be estimated by maximum likelihood (ML) methods
based on the choice of error distribution. Thus, in line with traditional actuarial practice,
this approach assumes that the age- and period-specific number of deaths are independent
realizations from a Poisson distribution with parameters

E [Yxt] = ext µxt , Var [Yxt] = φE [Yxt] , (4)

where φ is a measure of over-dispersion to allow for heterogeneity (e.g. from duplicate policies
in the case of insurance data). Making use of the LC type parameterization (1), now in terms of
the force of mortality (µxt), equations (4) correspond to a GLM model of the response variable
Yxt with log-link and non-linear parameterized predictor:

LC : ηxt = log(ŷxt) = log(ext) + αx + βxκt . (5)

In order to obtain unique parameter values, the above model is formulated in line with the
same constraints (2), while log(ext) is treated as an offset value during fitting.2

It is important to emphasise that model (5) is conceptually different from the original LC
framework (1), because the modelling errors have a generalised class of distribution that are
determined by the direct fitting of the number of deaths instead of the logarithmic transform
of the rates. That is, the GLM regression is based on ML methods with theory-based dis-
tributional assumptions in contrast to the SVD fitting, which relies on empirical measures
(i.e. least squares). Indeed, the parameter estimates under the original framework (1) can also
be obtained within the GLM approach by adjusting the target variable to Yxt = log (mxt) and
applying the identity link function with a Normal error structure.

A measure of the overall goodness of fit in the GLM settings is the scaled deviance between
the observed and the fitted target variable values, which depends on the chosen distributional

2The interpretation and treatment of model (5) in terms of a mortality reduction factor F (x, t) is beyond

the scope of the current paper (see Renshaw and Haberman 2006).
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assumption. Thus, ML point estimates under the GLM approach are obtained at the minimum
value of the total deviance of model (5) with Poisson errors, which is given by

D (yxt, ŷxt) =
∑
x, t

dev (x, t) =
∑
x, t

2 ωxt

{
yxt log

yxt

ŷxt
− (yxt − ŷxt)

}
, (6)

where dev(x, t) are the deviance residuals that depend on a set of prior weights ωxt where
ωxt = 1 is assigned to each non-empty data cell, with ωxt = 0 for empty cells.3 However,
standard minimisation techniques cannot be applied due to the presence of the bilinear inter-
action term (bx κt). Thus, we resort to an alternative fitting strategy, as described in Renshaw
and Haberman (2006), which is based on an iterative Newton-Raphson method applied to the
deviance function (6). In section 3, we offer a brief description of the core algorithmic rule
that governs the fitting process of this approach, with specific application to the LC model
summarized in section 3.1.

Model diagnostics of goodness of fit can be carried out by visual inspection and by formal
testing of the following types of residuals, that are listed below in an increasing order of their
relevance in the current modelling framework:

a) log-rates: rxt = log (µxt)− log µ̂xt ;

b) rates: rxt = (µxt)− (µ̂xt) ;

c) deaths: rxt = yxt − ŷxt = ext µxt − ext µ̂xt ;

d) deviance: rxt = sign(yxt − ŷxt)
√

devxt

φ̂
, φ̂ = D(yxt, ŷxt)

ν ,

where φ̂ is an empirical scaling factor and ν represents the degrees of freedom, dependent
on the particular model structure.

Thus, in the ilc package, we make available plotting methods that can produce residual
plots of the above residuals with respect to age, period and year of birth. The latter can be
used also to check for cohort effects in case these are not directly measured in the model. As
an additional model diagnostic, the program can also make plots of the fitted values (i.e. either
mortality rates or number of deaths) against age and period.

2.3 Generalized Family of Lee-Carter Models

In a more recent development, the basic setting has been further extended to include an addi-
tional bilinear term, containing a second period effect (as in Renshaw and Haberman 2003b) or

3In contrast to the GLM approach, in the SVD fitting the application of data matrix containing empty cells

is not possible. Nonetheless, as mentioned before, the ilc program can optionally correct missing data cells by

’closing-out’ methods in order to improve fitting.
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a cohort effect (as in Renshaw and Haberman 2006). In particular, the latter approach sheds
new light on the early 20th century England and Wales mortality patterns. Thus, the basic LC
model can be transformed into a more general framework in order to analyse the relationship
between age and time and their joint impact on the mortality rates. In the current application,
we follow the APC modelling framework and fitting methodology proposed by Renshaw and
Haberman (2006) that specifies the force of mortality by a generalized structure written as

M : µxt = exp
(
αx + β(0)

x ιt−x + β(1)
x κt

)
, (7)

where αx maps the main age profile of mortality, ιt−x and κt represent the cohort and period
effects, respectively, whereas β

(0)
x and β

(1)
x parameters measure the corresponding interactions

with age.

We note that model (7) represents a family of six generalized non-linear models of the LC
type structure with log-link function. The sub-categories of the overall model can be defined
by independently setting the interaction parameters

(
β

(0, 1)
x

)
to one of the following:

a) unknown (to be estimated);

b) =1 (fixed);

c) =0 (void).

Thus, the basic LC type structure results by defining the age-specific parameters as

LC : β(0)
x = 0 (∀x) and β(1)

x = βx .

Alternative formulation can result by cancelling out the period effect altogether and maintaining
only the age and the cohort effects, as follows:

AC : β(0)
x = βx and β(1)

x = 0 (∀x) .

Following the same approach, other 3 substructures can be defined, namely (using the notations
introduced by Renshaw and Haberman 2006):

H0 : β(0, 1)
x = 1 ; H1 : β(0)

x = 1 ; H2 : β(1)
x = 1 .

We note that the main regression function of the ilc package implements all six substructures
of model (7) making use of either the Gaussian or the Poisson error distribution. The overall
estimation of this class of model structures proceeds along the same iterative minimisation
techniques, which are described in section 3. However, in order to obtain unique parameter
estimates, we need to make slight modifications to the parameter updating cycle depending
on the particulars of the sub-structure. Given its overwhelming importance, we illustrate the
algorithmic rule of the most general APC framework (i.e. model M) in part 3.2.
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2.4 Stratified (or Extended) Lee-Carter Model

The purpose of the methodology described here is to quantify the differences in the mortality
experience of population subgroups differentiated by an additional measurable covariate (other
than age and period). This is a new modelling approach that assumes a direct additive effect
of an observable factor on the log mortality rates across all ages and calendar time periods.
Clearly, the usefulness of an all-encompassing additional factor strongly depends on the size
and nature of the mortality experience. Examples where additional effects might exist that
could act constantly across age and time in human mortality experience include factors related
to geographical, socio-economic or race differences. The modelling framework and estima-
tion methodology proposed here builds on the previous LC type structure with Poisson errors
presented in the previous section.

Consider a cross-classified mortality experience observed over age (x), period (t) and an
extra variate (g), made up of (k × n× l) data cells, such that we can estimate the central
mortality rates (mxtg) and the force of mortality (µxtg) for any given subgroup by the ratio of
the number of deaths and the corresponding central exposure (see section 2.1).

As in the previous approaches, our aim is to model the number of deaths (yxtg) within a
generalized LC framework with a Poisson error structure, shaped by the following parameterized
(non-linear) predictor:

SLC : ηxtg = log(ŷxtg) = log(extg) + αx + αg + βx κt , (8)

where log(extg) is treated as an offset value during fitting and the model parameters are subject
to the usual constraints defined in equations (2).

We note that relationship (8) can be viewed as an adjusted LC model, whereas the overall
trend of mortality change (κt) over time and its interaction (βx) with age is the same for the
entire population, while the main effect is now stratified in order to capture both the effect of
age and an additional variate (g), namely:

µ̂xtg = exp (αx g + βx κt) ,

where αx g = αx + αg. We note that, in this formulation, the parameter αg measures the
relative differences between the age-specific mortality profiles on the log scale of the population
subgroups defined by the extra variate (g). It is interesting to observe that this modelling
structure corresponds to the “common factor” model of Li and Lee (2005). The estimation
method of this modelling framework is presented in more detail in section 3.3.

This is the simplest extension of the LC model to allow for stratification. More complex
models involving βxg and κtg could also be introduced — these are left for future development.
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2.5 Forecasting Approach

The forecasting of mortality rates in the case of the LC family of models (7) is based on time
series prediction of the calendar time dependent parameters (ιt−x, κt). This can be written as
follows:

µ̇x, tn+s = exp
(
α̂x + β̂(0)

x ι̇tn+s−x + β̂(1)
x κ̇tn+s

)
, s > 0 , (9)

where ι̇tn+s−x and κ̇tn+s represent the forecasted cohort and period effects, respectively. Ob-
serve that, in the case of cohort effects, the forecasted values revert to the fitted parameters
(i.e. ι̇tn+s−x = ι̂tn+s−x) whenever the forecasting horizon falls within the available data range
(i.e. ∀ s ≤ x− x1). This forecasting method allows us to generate future average values and
to evaluate the future variability of the central mortality rates. In turn, the variability of the
predictions can be applied to measure the uncertainty in the longevity risk.4

The most common type of time series extrapolation methods applied in the LC framework
are the univariate ARIMA (Auto-Regressive Integrated Moving Average) processes, which are
characterised by three parameters (p, d, q). The type of ARIMA model used depends on the
fitted parameter profile within the available data range (e.g. the size of deviations from the
mean, extent of stationarity etc.). In the majority of applications of the LC framework the
random walk with drift (0,1,0) is the usual choice for the period effects (κt), which can be
expressed as:

κt = κt−1 + d + et , (10)

where d measures the drift in the form of average annual deviations and et represents the white
noise in the stochastic process.

According to Booth et al. (2006), ARIMA(0,1,0) is a reasonable choice in the cases where
there is a stable linear tendency in the annual mortality improvements, but would be inap-
propriate for the cases characterised by regular dynamic changes in slope (i.e. non-linear).
Nevertheless, the authors have found that this model has performed well in many large data
applications, even when a more complex model might have been indicated by the shape of the
period effects. Similarly, on inspection of the output results of our own empirical trials, we are
satisfied that this method is appropriate for many human mortality data sets. In the current
version of the ilc package, there are methods only for the time dependent parameter to be
projected forward, although with slight adjustments it is possible to extrapolate (indirectly)
the cohort dependent parameter values too. In future versions, we plan to implement complete
and automated forecasting methods using a wider range of ARIMA models for all six modelling
structures considered in this application. Note there are several choices for the forecast formula

4We recognise that a method based purely on the extrapolated time dependent parameters might fail to

capture all of the variability in future predicted values because it does not allow for the uncertainty in the other

model parameters. However, as noted by Lee and Carter (1992), this simplified approach should still provide a

good approximation for the calculation of the prediction intervals. This has recently been explored in extensive

bootstrapping investigations, as evidenced, for example by Renshaw and Haberman (2008, 2009).
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– thus, equation (9) uses the model µx, tn as the jump off value for forecasting. We could also
use last observed data point µ̂x, tn (see Lee 2000) or an average value.

3 Fitting Methodology

As mentioned before, the fitting methodology implemented in this application is based on an
iterative algorithm that minimises the deviance function. That is, we make use of a cyclical
updating process of the parameter estimates until the minimum difference between the likeli-
hood of the fitted model and the likelihood of the saturated model (i.e. one parameter for each
observation) is achieved. Thus, the updating mechanism for a given parameter θ is provided
by the Newton-Raphson minimisation method applied to the deviance function, which can be
expressed as

u(θ̂) = θ̂ −
∂ D
∂ θ

∂2 D
∂ θ2

. (11)

Looking at the deviance function (6) with Poisson error structure, we can observe that

∂ D

∂ θ
=
∑ ∂ dev

∂ θ
=
∑

2 ω

{
−y

ŷ′

ŷ
+ ŷ′

}
=
∑

2 ω
ŷ′

ŷ
(ŷ − y) =

∑
2 ω a (ŷ − y) , (12)

where

ŷ′ =
∂ ŷ

∂ θ
⇒


∂ ŷ

∂ αx
= ŷ

∂ ŷ
∂ bx

= κt ŷ
∂ ŷ
∂ κt

= bx ŷ

= a ŷ such that


a = 1

a = κt

a = bx

.

Making use of the above simplified notations, we can express the second partial derivative
of the deviance function as follows:

∂2 D

∂ θ2
=
∑

2 ω a ŷ′ =
∑

2 ω a2ŷ . (13)

Substituting the expressions (12) and (13) into (11) yields the following general fitting
routine:

u(θ̂) = θ̂ −
∑

2 ω a (ŷ − y)∑
2 ω a2ŷ

= θ̂ +
∑

2 ω a (y − ŷ)∑
2 ω a2 ŷ

. (14)

We note that similar updating rule can be determined in the case of the model with Gaussian
distributed errors (see Renshaw and Haberman 2006). Without going into further details, we
note that the ilc package implements the updating algorithms corresponding to the models
with both Gaussian and Poisson error structures. For the purpose of the current paper, in the
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following parts we focus on the detailed estimation methodology of the latter with respect to
the base LC, the APC and the SLC modelling frameworks.

3.1 Updating cycle of the base LC fitting

1. Get appropriate initial values:

α̂x = 1
n

∑
t log m̂xt (i.e. make use of the SVD estimate (3));

b̂x = 1
k ; κ̂t = 0 .

→ calculate fitted values ŷ(α̂x, b̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

2. Update parameter α̂x :

α̂x = α̂x +
∑

t 2 ω (y − ŷ)∑
t 2 ω ŷ

→ calculate fitted values ŷ(α̂x, b̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

3. Update parameter κ̂t :

κ̂t = κ̂t +
∑

x 2 ω (y − ŷ)∑
x 2 ω b̂2

x ŷ

– adjust the updated parameter such that κ̂t = κ̂t − κ̂t ;
→ calculate fitted values ŷ(α̂x, b̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

4. Update parameter b̂x :

b̂x = b̂x +
∑

t 2 ω (y − ŷ)∑
t 2 ω κ̂2

t ŷ

→ calculate fitted values ŷ(α̂x, b̂x, κ̂t) → calculate deviance Du(yxt, ŷxt) .

5. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 4.
– if ∆D > 1× 10−6 ⇒ goto step 2.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider using

other starting values or declare the iterations non-convergent.
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6. Once convergence is achieved, re-scale the interaction parameters: b̂x and κ̂t :

b̂x =
b̂x∑
x b̂x

; κ̂t = κ̂t ×

(∑
x

b̂x

)
,

in order to satisfy the usual LC model constraints
∑

t κt = 0 and
∑

x bx = 1.

3.2 Updating cycle of APC fitting

In the full age-period-cohort GLM model (7), the sum log (ext) + αx is treated as an offset
value. Consequently, the αx parameter is not adjusted during the iterative process when both
the year and the cohort effects are included in the model structure.

1. Estimate the (fix) age effects:

α̂x = 1
n

∑
t log m̂xt (i.e. make use of the SVD estimate (3));

2. Get appropriate initial values:

b̂
(0)
x = b̂

(1)
x = 1

k ;
Estimate the simplified period-cohort predictor (i.e. model H0, see section 2.3):

ηxt = (log (ext) + αx) + ιz + κt;
in order to get initial values for ιz and κt .

→ calculate fitted values ŷ(α̂x, b̂
(0)
x , b

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

3. Update parameter ι̂z :

ι̂z = ι̂z +
∑

x 2 ω (y − ŷ)∑
x 2 ω

(
b̂
(0)
x

)2
ŷ

– shift the updated parameter such that ι̂z = ι̂z − ι̂1 ;
→ calculate fitted values ŷ(α̂x, b̂

(0)
x , b

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

4. Update parameter b̂
(0)
x :

b̂(0)
x = b̂(0)

x +
∑

t 2 ω (y − ŷ)∑
t 2 ω ι̂2z ŷ

→ calculate fitted values ŷ(α̂x, b̂
(0)
x , b

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

5. Update parameter κ̂t :

κ̂t = κ̂t +
∑

x 2 ω (y − ŷ)∑
x 2 ω

(
b̂
(1)
x

)2
ŷ
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– shift the updated parameter such that κ̂t = κ̂t − κ̂1 ;
→ calculate fitted values ŷ(α̂x, b̂

(0)
x , b

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

6. Update parameter b̂
(1)
x :

b̂(1)
x = b̂(1)

x +
∑

t 2 ω (y − ŷ)∑
t 2 ω κ̂2

t ŷ

→ calculate fitted values ŷ(α̂x, b̂
(0)
x , b

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

7. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 6.
– if ∆D > 1× 10−6 ⇒ goto step 3.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider using

other starting values or declare the iterations non-convergent.

8. Once convergence is achieved, re-scale the interaction parameters: b̂
(0)
x , b̂

(1)
x , ι̂z and κ̂t :

b̂(0)
x =

b̂
(0)
x∑
x b̂

(0)
x

, b̂(1)
x =

b̂
(1)
x∑
x b̂

(1)
x

; κ̂t = κ̂t ×

(∑
x

b̂(1)
x

)
,

in order to satisfy the APC model constraints
∑

x b
(0)
x =

∑
x b

(1)
x = 1 and

∑
t κt = 0.

3.3 Updating cycle of SLC fitting

Due to the stratified nature of the main effect variable (αx g) and the target Poisson error struc-
ture, the parameters of model (8) cannot be fitted by the SVD method used in the traditional
LC approach. Therefore, in order to estimate the above SLC model (8) we make use of the
iterative methodology given in section 3 by making a few necessary adjustments to allow for
the extra explanatory variable (αg ). Thus, the extended deviance function of model (8) with
Poisson errors is given by the sum of the deviance residuals in all of the available data cells,
and this can be written as:

D (yxtg, ŷxtg) =
∑
x, t, g

dev (x, t, g) =
∑

2 ω

{
y log

y

ŷ
− (y − ŷ)

}
, (15)

where in the last sum notation we drop the subscripts for the sake of simplicity.
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Then, we make the corresponding adjustments regarding the extra dimension in the model,
so that the Newton-Raphson minimising routine of the adjusted deviance function (15) can
proceed along similar lines to those described earlier. Thus, we can make use of equations (12)
and (13) in order to find the first and the second order differentials, as follows:

∂ ŷ

∂ αg
= ŷ (= a ŷ) .

Hence, one needs to substitute a = 1 value in the updating rule (14) corresponding to para-
meter αg . The iterative calculations need to take into account the higher dimension in the
cross-classified data by age, period and factor g . In the following, we demonstrate the adjusted
updating cycle that allows for this extra dimension in the observed mortality experience.

1. Get appropriate initial values:

α̂x = 1
n×l

∑
t, g log m̂xtg (i.e. the average logrates across all t, g indexed cells);

α̂g = 0; b̂x = 1
k ; κ̂t = 0 .

→ calculate fitted values ŷ(α̂x, α̂g, b̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

2. Update parameter α̂x :

α̂x = α̂x +

∑
t, g 2 ω (y − ŷ)∑

t, g 2 ω ŷ

→ calculate fitted values ŷ(α̂x, α̂g, b̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

3. Update parameter α̂g :

α̂g = α̂g +

∑
x, t 2 ω (y − ŷ)∑

x, t 2 ω ŷ

– adjust the updated parameter such that α̂g = α̂g − α̂g1 , where g1 is the first
level/group of the extra variate g (i.e. set the first level as a base value);
→ calculate fitted values ŷ(α̂x, α̂g, b̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

4. Update parameter κ̂t :

κ̂t = κ̂t +

∑
x, g 2 ω (y − ŷ)∑

x, g 2 ω b̂2
x ŷ

– adjust the updated parameter such that κ̂t = κ̂t − κ̂t ;
→ calculate fitted values ŷ(α̂x, α̂g, b̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .
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5. Update parameter b̂x :

b̂x = b̂x +

∑
t, g 2 ω (y − ŷ)∑

t, g 2 ω κ̂2
t ŷ

→ calculate fitted values ŷ(α̂x, α̂g, b̂x, κ̂t) → calculate deviance Du(yxtg, ŷxtg) .

6. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 5.
– if ∆D > 1× 10−6 ⇒ goto step 2.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider using

other starting values or declare the iterations non-convergent.

7. Once convergence is achieved, re-scale the interaction parameters: b̂x and κ̂t :

b̂x =
b̂x∑
x b̂x

; κ̂t = κ̂t ×

(∑
x

b̂x

)
,

in order to satisfy the usual LC model constraints
∑

t κt = 0 and
∑

x bx = 1.

4 Application of the Generalized LC Models in R with ilc

In the following, we present the most important features of using the ilc package to fit and
analyse age and time dependent mortality models. The data manipulation and regression
methods are illustrated in context of the CMI (lives) data containing the mortality experience
of male life office pensioners retiring at or after normal retirement age. The data is made up
of observed central exposure and deaths for ages 50-108, all durations combined, investiga-
tion years 1983-2003 (Source: Continuous Mortality Investigation). The main regression and
diagnostic methods used in the ilc package are adequate to run independently, however most
data formatting and life expectancy forecasting features are built such that to integrate with
the demography and forecast packages of R, written by Rob J Hyndman.5 However, the ilc

package accommodates many specific methods which allow improved inspection and graphical
visualisation of both the mortality data and the regression outputs.

5Detailed reference manuals of the demography and other complementary packages are available at URL:

www.robhyndman.info/Rlibrary/demography.

http://www.robhyndman.info/Rlibrary/demography


4.1 Package Installation 16

The ilc package has been developed and tested in the R statistical software version 2.8 and
the following packages are required for its trouble-free use:6

• demography (version 0.98);

• forecast (version 1.11);

• tseries (version 0.10-14);

• addb (version 3.221);

• mgcv (version 1.3-29);

• zoo (version 1.5-5).

• survival (version 2.34-1).

4.1 Package Installation

The ilc package is still in an early development phase and it is not fully prepared yet for unaided
installation in R (e.g. issuing: > install.packages(“ilc”) command). Nevertheless, the program
command functions and the mortality data used for illustration purposes are provided in a
binary pre-compiled form and they can be made easily available in R. Thus, the compressed
package archive (ilc-v1.0.zip) can be downloaded here (e.g. open the link in a web browser
and save the zip file into a local directory.), which contains detailed instructions, examples
for demonstration and the source code itself, which is provided for ease of reference and also
to encourage the users to contribute fixes and new features. Thus, the installation of the ilc

package content into R can be carried out in the following way:

1. Extract the ilc-v1.0.zip archive into a chosen working directory:
e.g. “c:\Program Files\R”;

(Note that this creates by default a subfolder ilc.)

2. From the R console set the working directory to the newly created folder:
> setwd(“c:/Program Files/R/ilc”)

3. Attach the pre-compiled program functions (as provided in the zip archive):
> attach(“ilc.rdata”)

6The latest versions of these packages can be downloaded and installed in R from the CRAN archive (or one

of its mirrors) at: cran.r-project.org using the > install.packages function. We note that newer versions of

the demography and forecast package than the ones illustrated here seem to run into errors when computing life

expectancy forecasts.

http://www.cass.city.ac.uk/facact/files/ZoltanButt/ilc-v1.0.zip
http://cran.r-project.org
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4. Optionally, attach the pre-compiled CMI male pensioners’ mortality experience data set
– designated as: dd.cmi.pens – (as provided in the demography format in the zip archive
for illustration purposes):
> attach(“cmi.rdata”)

4.2 Preparing the Mortality Data for Analysis

In order to fit the generalised LC type family models the mortality data need to be arranged
in a demogdata class format of the demography package. For instance, assuming that the above
mentioned CMI mortality experience is made up by the cross-tabulated mortality rates (mu)
and the central exposures (e) by individual ages (x) and calendar years (t) sequences, we can
create an R data object (dd.cmi.pens) for the generalised LC analysis by making use of the
following purpose-built function:

> dd.cmi.pens <− demogdata(data=mu, pop=e, ages=x, years=t, type=”mortality”,

label=”CMI”, name=”male”)

where the arguments data and pop must be matrices (or data-frames) of equal dimensions.
Also, the arguments label and name are additional (string) qualifiers that specify the origin and
the series (e.g. gender) of the data, respectively. Such data objects can contain more than one
set of mortality experiences that can be identified by the name argument. For further details
and examples of using the demogdata format/function, the reader is referred to the demography

package manual. Following on, a summary description can be printed out by typing the data
object’s name:
> dd.cmi.pens

Mortality data for CMI

Series: male

Years: 1983 - 2003

Ages: 50 - 108

Alternatively, more detailed data inspections and/or graphical illustrations may be produced
using the following type of commands:7

– print a query table of mortality rates:
> insp.dd(dd.cmi.pens, age=50:80, year=1985:1990)

– print a query table of central exposures:
> insp.dd(dd.cmi.pens, what=’pop’, age=70:100, year=1988:1993)

7Observe here that only the available segments of data are used whenever the ages and/or years sequences

mismatch the given data array.
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– print a query table of number of deaths:
> insp.dd(dd.cmi.pens, what=’deaths’, age=seq(100), year=1980:2010)

– produce simple plots (i.e. without legend) of log- or untransformed rates:
> plot(dd.cmi.pens)

> plot(dd.cmi.pens, transf=F)

– produce annotated plots (i.e. with legend) of log- or untransformed rates:
> plot.dd(dd.cmi.pens, xlim=c(40, 110), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85))

where the optional lpar list controls the legend layout (see pane a) of Figure 1)
> plot.dd(dd.cmi.pens, year=1985:1995, transf=F)

> plot.dd(dd.cmi.pens, year=1995:1997, transf=F, lty=1:3, col=1:3)

– produce annotated plots of number of deaths:
> tmp.d <− extract.deaths(dd.cmi.pens, ages=55:100)

# without correction of empty cells, or

> tmp.d <− extract.deaths(dd.cmi.pens, ages=55:100, fill=’perks’)

# This makes use of fill.demogdata() function to replace all

# empty cells using the ’Perks’ model (see ilc source code).

# Other correction methods available are: ’interpolate’ and ’mspline’

# (see demography package manual).

> tmp.d$type <− ’mortality’

> plot.dd(tmp.d, year=1995:2003, transf=F, lty=1:8)

(see pane b) of Figure 1)

Since in the case of the SLC model, the mortality experience is cross-classified by an addi-
tional covariate, the data set is best represented by a three dimensional matrix (i.e. array). For
this purpose, the ilc package introduces a special class of data object (rhdata) that holds the
necessary information about the grouping factors and the aggregate data of number of deaths,
central exposures and the corresponding mortality rates. For example, consider a raw data
set (tab) that comes in the form of individual observations of survival times and additional
covariate(s), such as:
> tab[1:5, ] # show first 5 observations only

refno dob dev event cov1 cov2 (dob) (dev)

1 -14485 15177 1 k 1 05/05/1920 21/07/2001

2 -13993 15177 1 j 1 09/09/1921 21/07/2001

3 -15800 15177 0 a 3 ⇒ 28/09/1916 21/07/2001

4 -15973 15177 1 c 2 08/04/1916 21/07/2001

5 -12776 15177 1 j 1 08/01/1925 21/07/2001

where the columns headed dob and dev represent the date of birth and of the date of event
(i.e. 1=death, 0=survive), respectively, of individual cases with reference refno, that must be
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Figure 1: Illustration of CMI (lives) pensioners mortality experience:
a) log central mortality rates and b) observed number of deaths.

entered in a format of class date (i.e. Julian dates – number of days since 1/1/1960, see survival

package manual). Further, the last columns, headed cov1 and cov2, represent some additional
grouping factors (other than age and time) with observable levels a–m and 1–3, respectively.
Then the rhdata function of ilc can extract the aggregate data matrices for individual ages
60–95 over the period 2000–2005 by, say, cov1 and place them in the appropriate format:8

> mtab <− rhdata(dat=tab, covar=’cov1’, xbreaks=60:96, xlabels=60:95,

ybreaks=mdy.date(1,1,2000:2006), ylabels=2000:2005, name=’M’, label=’MDat’)

A short synopsis about the data source and the cross-tabulation parameters can be printed out
by typing the newly created rhdata object’s name:

> mtab

Multidimensional Mortality data for: MDat [M]

Across covariates:

years: 2000 - 2005

8We note that the column names dob, dev and event of the source data set (tab) cannot be changed.
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ages: 60 - 95

cov1: a, b, c, d, e, f, g, h, i, j, k, l, m

Here, we note that the sub-grouping of the data set can be carried out by more than one
additional covariate at once by specifying the argument covar=c(’cov1’, ’cov2’).

Currently, there are no user-friendly methods to extract specific parts of the rhdata class
data object (e.g. covariate-specific tables by given ages and years). However, we can run the
following commands to show the components of mtab data set:

– print a query table of mortality rates by individual ages 70-75 and by the first level (’a’)
of cov1:
> mtab$mu[60:95%in%70:75, ,1]

– print a query table of central exposures by individual ages 70-75 and level ’e’ of rscov1:
> mtab$pop[60:95%in%70:75, ,mtab$covariates$cov1%in%c(’e’)]

– print a query table of number of deaths for all ages by levels ’k-m’ in the first 3 years:
> mtab$deaths[ ,1:3, 11:13]

Due to the extensive data segmentation, we are likely to get a considerable number of unde-
termined mortality rates corresponding to zero exposures. Thus, it can be useful, before fitting
the SLC model, to make use of a suitable ’closing-out’ procedure to replace these data cells.
This can be carried out with the aid of fill.rhdata function, as follows:

> mtab <− fill.rhdata(mtab, method=’mspline’)

# multidimensional wrapper of the fill.demogdata() function;

The above routine makes use of the smooth.demogdata function wherever it is needed in or-
der to fit monotonic regression splines (see demography package manual) to the age-specific
mortality rates and replaces all zero or missing values. Similarly, it is possible to make use
of the ’interpolate’ method from the demography package that interpolates between the values
corresponding to the available nearby years of the same age group. An alternative smoothing
method implemented in the ilc package is ’perks’, which attempts to fit a generalised Perks
model

(
µx = a

1+exp(b−px)

)
to the age-specific mortality rates (see Thatcher 1999).

For demonstration and/or testing purposes, it may be helpful to create an artificially strat-
ified mortality experience with a Poisson error structure from a demogdata class object. The
function dd.rfp can take a demogdata class object of ’mortality’ type and adjust the observed
log mortality rates by a vector of Poisson distributed additive effects (i.e. reduction factors)
with predetermined means (for further details see ilc source code). For instance, taking the
CMI experience as the base data set, we can produce a randomly stratified mortality data of
rhdata format, as follows:
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> rfp.cmi <− dd.rfp(dd.cmi.pens, rfp=c(0.5, 1.2, -0.7, 2.5))

with a data summary shown as
> rfp.cmi

Multidimensional Mortality data for: CMI [male]

Across covariates:

years: 1983 - 2003

ages: 50 - 108

X: base, a, b, c, d

Plots of the central exposures and log mortality rates held in the rfp.cmi by the additional
covariate (X) can be produced in the following way (see Figure 2):

> matplot(rfp.cmi$age, rfp.cmi$pop[,,1]), type=’l’, xlab=’Age’,

ylab=’Ec’, main=’Base Level’) # base level
> matplot(rfp.cmi$age, rfp.cmi$pop[,,2]), type=’l’, xlab=’Age’,

ylab=’Ec’, main=’Level 1’) # first level (a)
...

> matplot(rfp.cmi$age, log(rfp.cmi$mu[,,1]), type=’l’, xlab=’Age’,

ylab=’log(mu)’, main=’Base Level’) # base level
> matplot(rfp.cmi$age, log(rfp.cmi$mu[,,2]), type=’l’, xlab=’Age’,

ylab=’log(mu)’, main=’Level 1’) # first level (a)
...

The plots illustrated in Figure 2 of the randomised data (rfp.cmi) with respect to the (arti-
ficial) additional effect (X) show entirely indistinguishable central exposures and log mortality
profiles. However, as will be demonstrated further on, the SLC fitting method can successfully
identify the base mortality experience and estimate accurately the means of the additive effects.

4.3 Fitting the Mortality Models and Making Forecasts

In order to explore the fitted model objects and to run diagnostic checks, the ilc package
caters for specialised methods of generic functions (like coef, plot, fitted and residuals) and also
contains model specific utility functions (like deviance.lca, residual.plots, and fitted.plots). In the
following, we illustrate the use of these tools and we give a brief interpretation of the outputs.
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Figure 2: Illustration of randomised CMI (lives) pensioners mortality experience:
central exposures and log central mortality rates by additional covariate (X).

4.3.1 Analysis of the Generalised LC Model Structures

The lca.rh is a universal routine of the ilc package developed to fit any of the six variants of the
LC model structures (i.e. including the base LC model) using the iterative fitting method (see
sections 2 and 3) . The function arguments are defined as:9

> args(lca.rh)

function (dat, year = dat$year, age = dat$age, series = 1, max.age = 100, dec.conv = 6,

clip = 3, error = c(”poisson”, ”gaussian”), model = c(”m”, ”h0”, ”h1”, ”h2”, ”ac”, ”lc”),

restype = c(”logrates”, ”rates”, ”deaths”, ”deviance”), scale = F, interpolate = F,

verbose = T, spar = NULL)

The functionality of the arguments are aimed to be self-explanatory and user-friendly. In
9We acknowledge that lca.rh is designed to mimic some of the features and functionality of the lca function

of the demography package. Also, as mentioned before, it makes use of the ’interpolate’ correction method to

replace missing data cells. However, the modelling and fitting methodology implemented in lca.rh are based

entirely on the iterative approach presented in this paper.
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the following we clarify further the main features:

dat : source data object of demogdata class;

series : target series to be used from the source data;

dec.conv : number of decimal places used to achieve convergence;

clip : number of marginal cohorts to remove from the rectangular data array (i.e. give 0
weights – it’s only applicable to the first 5 models);

error : type of error structure of the model choice;

model : model choice (see section 2.3) – it can be a character or a numeric value (1-6) corre-
sponding to the described models;

restype : type of residuals, which controls the type of the fitted value too;
Thus, in the cases of ’logrates’ and ’rates’ the function returns as fitted values the log
and untransformed mortality rates, respectively. Likewise, the choices of ’deaths’ and
’deviance’ correspond to the fitted number of deaths.

scale : based on lca of demography package to re-scale the interaction parameters so that the
κt has drift parameter equal to 1;

spar : numerical smoothing spline parameter (see smooth.spline function);
If not NULL (i.e. ranging from 0 to 1, with a recommended value of 0.6) the interaction
effects

(
β

(0,1)
x

)
are smoothed out after fitting. As a consequence, the period/cohort effects

are adjusted accordingly.

verbose : logical parameter to control the output amount of process information;
If set to TRUE the program prints out the updated deviance values along with the starting
and final parameter estimates.

In the following two examples, we aim to give a general feel of how to make use of the above
iterative fitting routine and then we discuss briefly the program outputs:

1) Estimate the base LC model (with Poisson errors)

In this application, we make use of the CMI (lives) data up to the age of 100 to avoid any data
irregularities at very old ages and any remaining 0/NA values we can replace by interpolation:

> mod6 <− lca.rh(dd.cmi.pens, mod=’lc’, interpolate=T, verbose=F)

Original sample: Mortality data for CMI

Series: male

Years: 1983 - 2003
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Ages: 50 - 108

Applied sample: Mortality data for CMI (Corrected: interpolate)

Series: male

Years: 1983 - 2003

Ages: 50 - 100

Fitting model: [ LC = a(x)+b1(x)*k(t) ]

- with Poisson error structure and with deaths as weights -

Iterations finished in: 14 steps

Warning messages:

1: In lca.set(dat, year, age, series, max.age, interpolate) :

⇒ data above age 100 are grouped.

2: A total of 62 0/NA central mortality rates are re-estimated by the ”interpolate” method.

3: In lca.set(dat, year, age, series, max.age, interpolate) :

There are 45 cells with 0/NA exposures, which are ignored in the current analysis.

Try reducing the maximum age or choosing a different age range.

Alternatively, fit LC model with error= ”gaussian” .
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Figure 3: LC regression parameters for CMI male pensioners (lives) for age range
50 – 100 over the observation period of 1983 – 2003.
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We note here that the same call to lca.rh function with error= ”gaussian” setting, computes
the standard LC model of Lee and Carter (1992), however, using the iterative fitting method
instead of the traditional SVD. Alternatively, the lca function of the demography package can
fit the standard LC model with SVD approach by issuing a call like:

> modlc <− lca(dd.cmi.pens, interpolate=T, adjust=’none’)

that yields the same parameter estimates (for further details of using the lca function, the
reader is referred to the demography manual).

A short printout of the model summary is produced by:

> mod6

—————————————————————–

Iterative Lee-Carter Family Regression:

Fitted Model: LC = a(x)+b1(x)*k(t)

—————————————————————–

Call: lca.rh(dat = dd.cmi.pens, model = ”lc”, interpolate = T, verbose = F)

Error Structure: poisson

Data Source: CMI [male] over

calendar years: (1983 - 2003) and ages: (50 - 100)

Deviance convergence in: 14 iterations

dev dev.c df df.c

1 Mean deviance base 1.386 df base 905

2 Mean deviance total 1.733 df tot 969

The estimated model parameters can be printed out using the coef function:

> coef(mod6)

ax ax.c bx1 bx1.c kt kt.c

1 50 -3.665 50 0.110 1983 13.735

2 51 -4.199 51 0.048 1984 11.988

3 52 -4.633 52 0.037 1985 12.331

4 53 -4.812 53 0.017 1986 9.747

5 54 -4.664 54 0.013 1987 10.772
...

where the columns headed with .c extension give the estimated coefficients and the other
columns indicate the corresponding parameter labels. Alternatively, we can illustrate graphi-
cally the fitted parameters (see Figure 3) by the simple command:

> plot(mod6)
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Figure 4: LC cross-classified fitted values for CMI male pensioners (lives) for age
range 50 – 100 over the observation period of 1983 – 2003.
a) by age versus year and b) by year versus age

Further graphical illustrations of the regression outcome can be produced with the following
command:

> fitted.plots(mod6)

that plots the cross-classified fitted values by age against calendar year; and also by year against
age (see Figure 4 panes a) and b), respectively).

According to Renshaw and Haberman (2006), the preferred type of residuals to conduct
diagnostic checks on the model are the standardised deviance residuals. Thus, we should change
the current LC fitted object’s residual values from ’logrates’ type, which was only needed in
order to produce the corresponding fitted values. In order to compute the ’deviance’ residuals
from a fitted object with different type of residuals, we can make use of the function lca.dev.res,
though this utility also needs the central exposures matrix used in the LC fitting (see source
code for further details and examples). In cases where deviance convergence is achieved fairly
quickly, it is also possible to simply re-fit the original model, as follows:
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> mod6d <− lca.rh(dd.cmi.pens, mod=’lc’, restype=’deviance’, interpolate=T, verbose=F)

Then, we can run the residuals plotting method on the new output object (see Figure 5):

> residual.plots(mod6d)

although, we note that the above function works on any type of residuals of the LC class family
models.

Finally, we can produce forecasts of future mortality improvements and the corresponding
future life expectancy based on the fitted LC model. The ilc application makes use of the forecast

package to predict future values of the trend parameter (κt) using a traditional ARIMA(0, 1, 0)
model over a given time horizon. This is accomplished by running the forecast method on the
fitted model object. For instance, in order to produce a forecast over a 20 years period, we can
issue the following type of command:

> forc6 <− forecast(mod6, h=20, jump=’fit’, level=90, shift=F)

which returns a “fmforecast” class object that contains the predicted mean trend parameter
and the corresponding predicted mean mortality rates, alongside with their lower and upper

limits of a 90% confidence interval (CI).

We can visualise the forecasted log-mortality rates with the demogdata plotting method:

plot.dd(forc6, xlim=c(45, 100), lpar=list(x.int=-0.2, y.int=0.9, cex=0.95))

Figure 6 shows the above and we can note that the overly low rates at age 50 are the results
of the corresponding peaked interaction effect (β50), as it can be seen in Figure 3.

Further, the forecast object forc6 also contains the predicted mean life expectancy and its
90 % CI, which can be extracted by:

> forc6$e0

Time Series:

Start = 2004

End = 2023

Frequency = 1

e0 e0.lo e0.hi

2004 34.18014 33.63142 34.73744

2005 34.46238 33.66483 35.28137

2006 34.74726 33.74325 35.79047

2007 35.03522 33.84356 36.28940

2008 35.32670 33.95714 36.78839

However, we can also compute life expectancy forecasts at other ages too by making use of the
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Figure 5: LC standardised deviance residuals for CMI male pensioners (lives) for
age range 50 – 100 over the observation period of 1983 – 2003.
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Figure 6: LC future log mortality rates values for CMI male pensioners (lives) for
age range 50 – 100 over a 20 years prediction horizon.

following demography package command, say, at target age of 60:10

> le6 <− life.expectancy(forc6, age=60)

The ilc package contains two specialised functions: fle.plot and flc.plot that can make fore-
casts and produce the corresponding plots directly from the LC model object. The former
creates plots only of the predicted (period) life expectancy at any age with the chosen predic-
tion interval (PI), whereas the latter produces the plots of both the predicted trend parameter
and the predicted life expectancy at any age alongside the estimated PIs. For example, Figure 7
illustrates the plotting output of the following command:

> flc.plot(mod6, at=60, h=30, level=90)

with the same parameter settings as in the previous examples.

2) Estimate the APC model (with Poisson errors)

In this application we make use of the CMI data using a restricted age range (e.g. to avoid data
correction) and ’deviance’ residuals. It is possible to choose a reduced convergence precision
to achieve faster processing, although for proper fit it is recommended to use the default value

10Further details about the application of this command are available in the demography package help files –

e.g. by typing at the R console > ?life.expectancy .
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Figure 7: Illustration of LC forecast over a 20 years prediction horizon with
90 % CI for CMI male pensioners (lives)
a) trend parameter κt and b) future life expectancy at age 60.

(it can lead to a slower convergence cycle for this model):

> mod1 <− lca.rh(dd.cmi.pens, age=60:95, res=’dev’, dec=3, verb=F)

Original sample: Mortality data for CMI

Series: male

Years: 1983 - 2003

Ages: 50 - 108

Applied sample: Mortality data for CMI

Series: male

Years: 1983 - 2003

Ages: 60 - 95

Fitting model: [ M = a(x)+b0(x)*i(t-x)+b1(x)*k(t) ]

- with Poisson error structure and with deaths as weights -

Iterations finished in: 445 steps

Warning messages:

1: In lca.set(dat, year, age, series, max.age, interpolate) :

There are 1 cells with 0/NA mu, which are ignored in the current analysis.

Try reducing the maximum age or setting interpolate=TRUE.
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2: In lca.rh(dd.cmi.pens, age = 60:95, int = F, res = ”dev”, dec = 3, :

The cohorts outside [1891, 1940] were zero weighted (clipped).

The corresponding model summary can be printed out by writing:

> mod1

—————————————————————————

Iterative Lee-Carter Family Regression:

Fitted Model: M = a(x)+b0(x)*i(t-x)+b1(x)*k(t)

—————————————————————————

Call: lca.rh(dat = dd.cmi.pens, age = 60:95, dec.conv = 3, restype = ”dev”,

interpolate = F, verbose = F)

Error Structure: poisson

Data Source: CMI [male] over

calendar years: (1983 - 2003) and ages: (60 - 95)

Deviance convergence in: 445 iterations

dev dev.c df df.c

1 Mean deviance base 1.386 df base 597

2 Mean deviance total 1.648 df tot 684

Similarly, in the case of the APC fitted model, we can repeat the above procedures to
investigate the regression, that gives the following outputs:

> coef(mod1)

itx itx.c ax ax.c bx0.c bx1.c kt kt.c

1 1888 0.000 60 -3.923 -0.049 0.051 1983 0

2 1889 0.000 61 -4.15 -0.021 0.03 1984 -1.267

3 1890 0.000 62 -4.307 0.04 0.039 1985 -1.001

4 1891 3.381 63 -4.394 0.027 0.018 1986 -2.901

5 1892 3.649 64 -4.117 0.06 0.027 1987 -2.357
...

where we can note that both trend parameters (κt, ιt−x) are re-scaled during fitting to start
from 0 (see section 3.2). The regression plot in Figure 8 reveals a strong cohort effect for the
pensioners born between 1910–1920:

> plot(mod1)

The other 4 model constructs can be estimated in a similar way by entering the correspond-
ing model argument value in the main function call. Usually, in the case of large data sets, the
fitting cycle is fast and produces stable parameter estimates. We have not yet implemented
any object oriented methods in the ilc package to produce forecasts for the models that allow
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Figure 8: APC regression parameters for CMI male pensioners (lives) for age range
60 – 95 over the observation period of 1983 – 2003.

for the cohort effect. This feature is going to be developed in future versions of the software.

4.3.2 Analysis of the Stratified LC Model

The ilc package provides the purpose-built elca.rh program to fit the extended (i.e. stratified)
LC model structure using the iterative fitting method (see sections 2.4 and 3.3). This function
follows closely the structure of the lca.rh regression routine and offers the same choice of argu-
ment settings. In addition, fixed base age effect (αx) can be imputed through the optional ax.fix

argument, which are then not modified during the fitting process. The function is specified in
the following way:11

> args(elca.rh)

function(dat, year=dat$year, age=dat$age, dec.conv = 6, error = c(”poisson”, ”gaussian”),

restype = c(”logrates”, ”rates”, ”deaths”, ”deviance”), scale = F, interpolate = F,

verbose = T, spar=NULL, ax.fix = NULL)

11Observe that the max.age feature is not implemented in the current version of the elca.rh function.
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where the arguments listed below have an updated functionality from the previous description:

dat : source data object of rhdata class with only one additional grouping factor (i.e. covariate
other than age and time);

ax.fix : vector of predetermined parameter estimates of the main (base) age effect, which must
be of the same length as the age argument.
Therefore, if it is not NULL the parameter (αx) is ignored during the updating cycle.

The only multidimensional data sets available to us, that were used to develop this part
of the program, are currently commercially sensitive and thus are restricted for publication.
Nevertheless, we can still demonstrate the use of the program on the randomly stratified CMI
mortality data set (rfp.cmi) presented in section 4.2, as follows:

> mod6e <− elca.rh(rfp.cmi, age=50:100, interp=T, dec=3, verb=F)

Original sample: Multidimensional Mortality data for: CMI [male]

Across covariates:

years: 1983 - 2003

ages: 50 - 108

X: base, a, b, c, d

Applied sample: Multidimensional Mortality data for: CMI [male]

Across covariates:

years: 1983 - 2003

ages: 50 - 100

X: base, a, b, c, d

Fitting model: [ LC(g) = a(x)+a(g)+b(x)*k(t) ]

- with Poisson error structure and with deaths as weights -

Iterations finished in: 38 steps

Warning messages:

1: A total of 1160 0/NA central mortality rates are re-estimated by the ”interpolate” method.

2: In elca.rh(rfp.cmi, age = 50:100, int = T, dec = 3, verb = F) :

There are 152 cells with 0/NA exposures, which are ignored in the current analysis.

Try reducing the fitted age range.

Alternatively, fit ELC model with error= ”gaussian” .

The corresponding model summary output is provided by writing:

> mod6e

———————————————————————

Extended Lee-Carter Regression:

Fitted Model: LC(g) = a(x)+a(g)+b(x)*k(t)

——————————————————————–
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Call: elca.rh(dat = rfp.cmi, age = 50:100, dec.conv = 3, interpolate = T,

verbose = F)

Error Structure: poisson

Data Source: CMI : male over

calendar years: (1983 - 2003) , ages: (50 - 100)

and groups: base a b c d

Deviance convergence in: 38 iterations

dev dev.c df df.c

1 Mean deviance base 264.316 df base 3648

2 Mean deviance total 202.249 df tot 4845
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Figure 9: SPC regression parameters for artificially stratified CMI male pensioners
(lives) for age range 50 – 100 over the observation period of 1983 – 2003.

Also, we can print out the fitted parameter values of the additive effect as:

> coef(mod6e)

ax ax.c bx.c kt kt.c ag ag.c

1 50 -4.033 0.164 1983 16.162 base 0

2 51 -4.319 0.044 1984 11.457 a 0.496

3 52 -4.801 0.022 1985 13.075 b 1.17
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4 53 -4.896 0.030 1986 10.106 c -0.735

5 54 -4.874 0.015 1987 8.772 d 2.518
...

We note that the fitting algorithm converges fairly quickly, in just 38 iterations, when using
the precision of dec.conv=3 and estimates the parameters of the additional effect (see values
in column ag.c) close to the simulated Poisson means (i.e. rfp=c(0.5, 1.2, -0.7, 2.5)). Also,
considering the extent of noise imposed on the base CMI data (see Figure 2), the remaining
parameter estimates are overall similar to the coefficients of the standard LC (lca.rh) fit with
Poisson error structure (mod6), as it can be seen in the corresponding interaction and period
effects shown in the plots of Figures 3 and 9. Based on empirical trials carried out on actual
mortality data, we can report that the parameters of the bilinear term, practically, remain the
same after adding an observed additional effect (αg) to the model.
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Figure 10: Illustration of forecast result over a 20 years period in the SLC modelling
framework:
a) future trend parameter and b) future life expectancy at age 60.

Once we allow for the stratification of the main effect parameter, forecasting in the SLC
modelling framework can proceed along the same method applied in the traditional LC ap-
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proach (see section 2.5). In the current ilc package, there are no specialized methods to produce
predictions directly, but we can still make use of the demography package forecast.lca functions
to produce forecasted trend parameter (κt). Then, we can make use of an adapted version of
the fle.plot method to illustrate the corresponding future life expectancy differentiated by the
additional effect using the following commands:

> mod6ef <− forecast.lca(mod6e, h=20, level=90, jump=’fit’, shift=F)

> plot(mod6ef$kt, ylab=’kt’, xlab=’Year’)

> matfle.plot(mod6e$lca, mod6, at=60, label=’RFP CMI’, h=20)

Thus, Figure 10 illustrates the resulting plots of predicted trend parameter (panel a)) and the
future life expectancy at age 60 over a 20 year period (panel b)).
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