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Abstract

The relationship between the prices of crude oil and its refined products is at the heart of

the oil industry. Crude oil and refined products volatilities and correlations have been mod-

elled extensively using short-memory multivariate GARCH models. This paper investigates the

potential benefits from using fractionally integrated multivariate GARCH models from a fore-

casting and a risk management perspective. Several models for the spot returns on three major

oil-related markets are compared. In-sample results show significant evidence of long-memory

decay and leverage effects in volatilities and of time-varying autocorrelations. The forecasting

performance of the models is assessed by means of three approaches: the Superior Predictive

Ability test, the Model Confidence Set and the Value-at-Risk. The results indicate that the

multivariate models incorporating long-memory outperform the short-memory benchmarks in

forecasting the conditional covariance matrix and associated risk magnitudes. The paper makes

an innovative contribution to the analysis of the relationship between crude oil and its refined

products providing refiners, physical oil traders, non-commercial oil traders and other energy

markets agents with significant insights for hedging and risk management operations.
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1. Introduction

Oil prices, especially that of crude oil, are central to global economic activity, be it the

physical handling and trading of the commodity and its products, or the effect of these prices

on current and future economic prosperity. Crude oil, as a commodity, is of limited direct

usage as a fuel. It is the range of products yielded by refining which are consumed either

directly (e.g., gasoline and diesel for motor vehicles) or indirectly (e.g., fuel oil to generate

electricity, or naphtha as petrochemical feedstock). Because of the need to transform crude oil

into refined products, the interaction between upstream producers and downstream consumers

is not direct. Prices for refined products can be linked back to those of crude oil through

the netback mechanism. Refined product prices should theoretically be linked to the cost of

acquiring crude oil (of various qualities and provenances), transporting it (via pipelines or

tankers, often from abroad) to the transformation point, storing it, refining it, storing the

refined products and distributing these products to a myriad of consumption points, which may

be located abroad as well.

Such calculations might be feasible if all the relevant information were publicly available and

easily accessible. As this is not usually the case, researchers investigate the relationship using

data for the most commonly traded crude oils and refined products. In fact, the volatility and

correlations of oil and refined products prices are key inputs to anything from macroeconomic

models, option pricing models, investment portfolio construction, hedging and risk management

operations. The latter is of particular significance to the refining industry, which forms the

nexus between crude oil production and final consumption and which is exposed to risks from

the supply and demand sides. Several authors have studied the relationship between crude oil

and refined products. Among them, Borenstein et al. (1997) look at the asymmetrical response

of gasoline to crude oil prices; Kaufmann and Laskowski (2005) do a similar study for crude

oil, gasoline and heating oil; Lee and Zyren (2007) look at the volatility, rather than the price,

of crude oil and products; Ji and Fan (2012) employ several GARCH-type models to devise

a dynamic hedging strategy for an oil market portfolio; Suenaga and Smith (2011) study the

volatility dynamics and seasonality of crude oil, gasoline and heating oil futures contacts traded

on NYMEX; Vacha and Barunik (2012) use wavelet coherence analysis to test the co-movements

of crude oil, gasoline and heating oil; Tong et al. (2013) perform a similar analysis but with

the use of copulas. Block et al. (2015) investigate the dynamic conditional correlation among

crude oil, refined products and natural gas and the role of structural breaks with a Copula

multivariate GARCH model.

There is a strong consensus in the current literature on the effectiveness of multivariate

GARCH (MGARCH) models in exploring and forecasting volatility spillovers and co-movements

between crude oil and refined products (Wang and Wu, 2012, Chang et al., 2010, 2011). How-

ever, all the MGARCH models used in the literature implicitly impose a short-memory decay

rate on crude oil and refined products volatilities. Such assumption is, in fact, over-restrictive:

a large number of empirical studies suggest that crude oil and refined products price volatilities

display a strong degree of persistence, consistent with the notion of long memory rather than

with the exponential decay rate implied by the short-memory assumption. Several univariate

long-memory models, including the fractionally integrated auto-regressive (ARFIMA) and the

2



fractionally integrated GARCH (FI-GARCH) model, have been successfully used to forecast

crude oil and refined products price series individually (Brunetti and Gilbert, 2000, Tabak and

Cajueiro, 2007, Kang et al., 2009, Chang et al., 2010) but, to the best of our knowledge, no

attempt to include such feature in multivariate models has yet been made. In practice, failure

to account for this decay rate in the volatility of crude oil and refined products prices will result

in model misspecification and potentially incorrect conclusions about the response of refined

products volatility to crude oil price shocks, and, further, to incorrect volatility forecasts and

unreliable risk management evaluations. This paper addresses such lack in the literature by

assessing whether, in the investigation of co-movements between crude oil and refined products,

the use of multivariate long-memory GARCH models with asymmetries and dynamic correla-

tions significantly improves the models’ in-sample and forecasting performance as well as their

attractiveness in terms of risk monitoring.

The purpose of the paper is three-fold. First, we analyze the co-movements between crude

oil (West Texas Intermediate-Cushing) and two refined products price series, conventional gaso-

line (New York Harbor) and heating oil (New York Harbor), by means of different MGARCH

models, including the fractionally integrated DCC models, and assess the gains from using

long-memory specifications by comparing the models’ in-sample performance. The choice of

US, where all three commodities are traded, is justified not only by the depth and breadth of

spot, forward and futures markets for these energy commodities, but also by the position of US

as the world’s largest producer of crude oil, largest consumer of crude oil and refined products,

second largest importer of crude oil, largest refiner (and refining capacity holder) and largest

exporter of refined products. The empirical analysis is carried out for 30 different specifications

of MGARCH models deriving from the combination of several univariate volatility processes

with different multivariate structures under different distributional assumptions (Amendola and

Candila, 2016).

Second, we evaluate the forecasting accuracy gains by means of two statistical approaches:

the Superior Predictive Ability (SPA) test of Hansen (2005) and the Model Confidence Set

(MCS) method of Hansen et al. (2011). The SPA test focuses on the predictive ability of

a predefined benchmark model with respect to several alternatives: we employ it to assess

if specific assumptions for the multivariate structure, such as constant correlations, and for

the dynamics of individual volatilities, such as short memory, can be rejected. With the MCS

method, we identify from the initial set of competing models those which display equal predictive

ability and outperform the others at a given confidence level. Both tests are executed using

several symmetric and asymmetric matrix loss functions, which are robust to the choice of the

volatility proxy (Laurent et al., 2012, 2013, Patton, 2011). Thus, we further contribute to

the energy literature by extending the existing oil prices forecasting framework and providing

a comprehensive conditional variance matrix forecasts’ comparison assessing simultaneously

volatility and correlation forecasting. We explore the sensitivity of the models’ forecasting

accuracy with respect to different forecasting horizons (1, 5 and 20 days ahead) and forecasting

sample periods. We consider three different periods with homogeneous volatility dynamics

(calm, turbulent and fairly volatile markets) and find that, while during calm periods symmetry

and constant correlations cannot be rejected, during turbulent periods the set of superior models
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includes only specifications with long memory and dynamic correlations.

Finally, when comparing different competing models, the evaluation of the best performance

in an economically meaningful way is very relevant. Managing and assessing risk in oil markets is

a key issue for practitioners and the Value-at-Risk (VaR) is a widespread method of quantifying

it (Agnolucci, 2009). The benefits of univariate GARCH models with long memory in forecasting

VaR have been investigated by several authors (Chkili et al., 2014, Aloui and Mabrouk, 2010).

Recent findings in financial econometrics (Giot and Laurent, 2003) suggest that MGARCH

models outrun their univariate counterparts on an out-of-sample basis in VaR prediction. Our

last application in the forecasting exercise explores the efficiency gains from using the fractionally

integrated DCC models in one-step ahead VaR prediction for short and long positions.

The remainder of the paper is organized as follows. Section 2 provides a brief outline of the

multivariate volatility models considered in the paper. Section 3 describes the data and analyzes

the in-sample performance of the models. Section 4 presents the forecasting exercise. Section 5

offers some robustness checks. Concluding remarks and directions for future research are given

in Section 6. Overall, the results demonstrate the benefits from using MGARCH models with

long memory, from both an in-sample and an out-of-sample perspective.

2. Multivariate conditional volatility models

This section presents the models which we estimate and compare in Sections 3 and 4, namely

the Baba–Engle–Kraft–Kroner (BEKK) model of Engle and Kroner (1995), its asymmetric ex-

tension (ABEKK) by Grier et al. (2004), the vector asymmetric GARCH (AGARCH) model of

McAleer et al. (2009), the Constant Conditional Correlation (CCC) model of Bollerslev (1990),

the Dynamic Conditional Correlation (DCC) model of Engle (2002), and its long-memory ex-

tensions, namely the fractionally integrated symmetric and asymmetric DCC (FIGARC-DCC

and FIEGARCH-DCC) models.

Let rt be the vector of log-returns of n oil prices and θ a finite vector of parameters. The

general form of a multivariate GARCH model is

rt = µt (θ) + εt, (1)

εt = H
1/2
t (θ) zt, (2)

where zt is a zero-mean i.i.d. random vector with Var(zt) = In, the vector µt is the conditional

mean of the process, and the positive definite matrix Ht is its conditional variance. In what

follows, we specify, without loss of generality, the conditional mean equation as a vector au-

toregressive process. Different MGARCH specifications in the literature are based on different

parameterizations of Ht (comprehensive reviews of MGARCH models can be found in Bauwens

et al., 2006 and Silvennoinen and Teräsvirta, 2009). Popular in the econometric analysis of

energy markets is the BEKK(k, p, q) model of Engle and Kroner (1995). In practice, empirical

studies fix k = q = p = 1 and estimate the BEKK(1, 1, 1) model with conditional variance

matrix

Ht = C ′0C0 +A′11εt−1ε
′
t−1A11 +G′11Ht−1G11, (3)

where C0, A11 and G11 are n× n parameter matrices with C0 upper triangular. Identification
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of the BEKK(1, 1, 1) is achieved under simple and straightforward conditions, which can be

imposed during the estimation relatively easily (Engle and Kroner, 1995). The model has

2n2 +n(n+1)/2 parameters to be estimated. To reduce the computational burden, we consider

also a diagonal BEKK(1, 1, 1) imposing diagonality of A1k and G1k. Model (3) does not allow

for asymmetric impact of positive and negative shocks on the conditional variance. Grier et al.

(2004) propose the asymmetric extension

Ht = C ′C +A
′
11εt−1ε

′
t−1A11 +G

′
11Ht−1G11 +D′11ξt−1ξ

′
t−1D11, (4)

where the vector ξt has elements given by min(0, εit) and D11 is a n × n parameter matrix.

This specification nests the full and diagonal BEKK models and, if the elements of D11 are

significantly different from zero, it detects asymmetries; if they are negative, it detects leverage.

The CCC and DCC models are based on the attractive decomposition of the conditional

variance matrix into conditional standard deviations and conditional correlations matrices

Ht = DtRtDt, (5)

where Dt is the diagonal matrix of conditional standard deviations and Rt is a symmetric,

positive definite correlation matrix. In the CCC model, Rt is assumed to be constant over

time, i.e., Rt = R, and the overall stationarity is ensured by the stationarity of the individual

GARCH series. In the DCC model,

Rt = (I �Qt)
− 1

2Qt(I�Qt)
− 1

2 , (6)

Qt = (1− λ1 − λ2) Q̄+ λ1ete
′
t + λ2Qt−1, (7)

with λ1 and λ2 nonnegative scalar parameters satisfying λ1 + λ2 < 1, et = diag(Qt)
1/2εt and

Q̄ set equal to the unconditional correlation matrix of the standardized residuals. In both the

CCC and DCC multivariate specifications, the diagonal elements ofHt, i.e., the individual series

volatilities, can evolve according to different univariate GARCH processes. In our application,

we consider 6 different univariate specifications in the CCC and DCC framework respectively, in-

cluding the short-memory GARCH(1, 1), EGARCH(1, 1), IGARCH(1, 1, 1), GJR-GARCH(1, 1),

and the long-memory FI-GARCH(1, d, 1) and FI-EGARCH(1, d, 1). The functional forms of the

competing univariate models are reported in Table 1. Among the long-memory specifications,

the fractionally integrated exponential GARCH models log-volatilities rather than volatilities:

log σit = ωi +
ai (L)

bi (L)
(1− L)−d gi (zit−1) , (8)

where zt is a vector of zero-mean i.i.d. shocks with variance Σz, ai (L) and bi (L) are univari-

ate polynomials in the lag operator of known degree with no common zeros, (1− L)−d is the
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univariate fractional operator1, and

gi (zit−1) = θi + δi
(
|zit| − µ|zi|

)
. (9)

Depending on the significance and the sign of θi, volatilities may display leverage and asymme-

tries, and exhibit hyperbolic decay if the memory parameter di is found significantly different

from zero. For benchmarking purposes, we estimate a restricted version of this model, that is,

the FI-GARCH(1, d, 1) process:

hit = ω + β1hit−1 + [1− (1− β1L)−1(1− φ1L) (1− L)d]ε2it. (10)

A limitation of the CCC/DCC class is its inability to capture spillover effects. To overcome

this limitation, Ling and McAleer (2003) and McAleer et al. (2009) propose the AGARCH model

which includes cross-volatility and cross-innovation spillovers. The model assumes equation (5)

with constant conditional correlation matrix R and sets

ht = diag(hit, . . . , hnt) = w +
r∑
i=1

Aiεt−i +

s∑
j=1

Bjht−j +

q∑
l=1

ClIt−lεt−i, (11)

where εt = (ε21t, . . . , ε
2
nt), Ai, Cl and Bj are n× n parameter matrices, w is a n× 1 vector, and

It = diag(I1t, . . . , Int) is the matrix indicator function taking value 1 if εit ≤ 0 and 0 otherwise.

Sufficient conditions for stationarity and ergodicity of the AGARCH models are derived in

McAleer et al. (2009). We follow Chang et al. (2010) and fit the AGARCH(1, 1, 1) model to our

data. As with the CCC model, the main limitation of the AGARCH model is that it imposes

constant correlations across time, which might be a stringent assumption for most returns in

energy markets (Rahman and Serletis, 2012, Chevallier, 2012, Chang et al., 2010, 2011).

We consider 15 different model specifications and, for each model, two different distributions

for the innovations: the normal and the skewed-t distribution. The latter is motivated by the

need to account for potential heavy tails and large skewness in the distribution of oil returns

consistently with empirical evidence (Vo, 2011, Gronwald, 2012). In total, we have 30 different

model specifications. For convenience, we summarize in Table 2 the MGARCH models estimated

in the paper together with their main characteristics.

3. Data

We estimate the models of Section 2 for three series of spot price returns: crude oil (CO),

conventional gasoline (CG) and heating oil (HO). We use daily observations from 1 June 1993

to 1 June 2018 from the Energy Information Administration (EIA) of the US Department of

Energy; we have 6,421 valid observations.

1The operator has binomial expansion

(1 − L)−d =

∞∑
k=0

Γ (k − d) Γ (k + 1)−1 Γ (−d)−1 Lk, d < 1/2,

where Γ is the gamma function. For the estimation, we truncate at k = 1, 000.
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We define the return rt as the first-order difference of the logarithmic closing price. Table

3 reports descriptive statistics for the three returns series. The average daily returns are very

small compared to their sample standard deviation. The returns display some evidence of

skewness and excess kurtosis: the p-values of the Jarque–Bera test statistic suggest rejection of

the hypothesis of normality. The Ljung–Box Q statistic for serial correlation shows that the null

hypothesis of no autocorrelation up to lag 10 is rejected at the 10% level of significance, implying

that some autocorrelation might exist in the conditional mean of the returns. On the other hand,

the correlogram and the Ljung–Box Q statistic for serial correlation of the squared returns

suggests an extremely strong degree of persistence in all volatility series, consistently with a

long-memory decay rate. To assess the memory properties of the returns, we estimate semi-

parametrically for each series the long-memory parameter d using the local Whittle estimator

of Robinson (1995) with bandwidth m = 100 and no trimming. The asymptotic standard

error is equal to
(
2m1/2

)−1
= 0.050. We find significant persistence in the CO and CG series

with estimated memory parameters d of 0.35 and 0.33, respectively. All models are estimated

via quasi-maximum likelihood methods in one step to ensure comparability of the in-sample

information criteria. Estimation and forecasting are conducted on Matlab 2019a using Kevin

Sheppard’s Oxford Matlab MFE Toolbox.

3.1. In-sample results

To account for serial correlation in the data, we fit a VAR(p) model to the returns vector.

Lag selection criteria and the LR test, reported in Table A.1, suggest that a VAR(1) parameter-

ization accounts well for the conditional mean dynamics of the series. The model, the estimated

parameters and their robust t-statistics are reported in Table A.2 along with the diagnostic

tests. Only 3 out of the 12 estimated parameters are significant at the 10% level. Only CG dis-

plays time-dependence in the mean equation which might be arising from the seasonal patterns

related to the driving season in the US. There is no evidence of spillover effects between the

means series. Post-estimation diagnostic tests for the residuals of the estimated VAR(1) model,

reported in Table A.3, confirm the presence of strong GARCH effects, non-normality and no

serial correlation.

We fit the MGARCH specifications discussed in the previous section to the residuals. Es-

timation results are reported in the appendix. Tables A.4–A.6 report, respectively, estimation

results for the diagonal, full and asymmetric BEKK(1, 1, 1) models. In all specifications, the

main diagonal parameters of A and G are highly significant confirming the presence of strong

ARCH and GARCH effects which capture own past shocks and volatility effects in the residual

series: the highest ARCH estimate is 0.105 and the GARCH estimates range from 0.818 to

0.902. In the full and asymmetric BEKK, α21, α23, g21, and g23 are significant at the 10%

level implying existence of volatility spillovers between CO and CG, CO and HO. All the series

display leverage effects, with d11 and d22 significant at the 5% level and d33 significant at the

10% and negative. The degree of long-run persistence, αii + gii, is very close to 1 for the CO

and CG series insinuating long-range dependence, which however cannot be modelled explicitly

in the BEKK framework.

Estimation results for the AGARCH(1, 1, 1) model, reported in Table A.7, confirm the pres-

ence of significant ARCH and GARCH effects. The ARCH estimates are generally small, while

7



the GARCH are high and close to 1. Estimated persistence for the CO and CG volatilities

is, respectively, at 0.998 and 0.999, and for the HO series at 0.850 suggesting a short-memory

decay rate. Volatility spillovers between the series are significant: we find cross-innovation and

cross-volatility spillovers from CO to CG and HO significant at the 5% level, implying that the

volatility of CG and HO are affected by the previous long-run shocks in the CO market. The

constant conditional correlation estimates between the series are all significant, with highest

correlation of 0.683 between CO and HO returns insinuating their positive co-movement. There

are significant and negative asymmetry effects for CO and CG. The off-diagonal elements of

the asymmetry parameters matrix are not significant, confirming the absence of cross-leverage

effects.

Results from the CCC models, shown in Table A.8, are consistent with the empirical evidence

from the previous specifications. The estimated conditional correlations are significant at the

1% level and of higher magnitude than in the AGARCH model, ranging from 0.794 to 0.901.

This discrepancy, however, might be due to the inability of the CCC model to account explicitly

for spillover effects as the AGARCH.

Tables A.9–A.11 report the DCC models’ estimates. All estimates are significant at the 5%

level. The strong significance of λ1 and λ2 confirms that the hypothesis of constant conditional

correlations is inadequate in the analysis of the co-movements between crude oil and refined

products markets. The long-run persistence of shocks to the conditional correlations is quite

high, estimated at 0.891 (= 0.328 + 0.563). The estimates for the fractionally integrated DCC,

based on univariate FI-GARCH(1, 1) or FI-EGARCH(1, 1) processes, are significant at the 1%

level for the first two series, suggesting the adequateness of a hyperbolic date rate for the

volatilities of CO and CG. The estimated value of θ in the FI-EGARCH models and in the

GJR model are significant and negative for all the series, corroborating the existence of leverage

effects.

Post-estimation diagnostic tests, available upon request, confirm that all MGARCH specifi-

cations successfully capture the volatility clustering, skewness and excess kurtosis found in the

residuals of the VAR(1) model. Table 4 reports the maximized log-likelihood and information

criteria for all the fitted models. Boldface values correspond to the best-performing models

according to the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC). Under either criterion, constant conditional correlation specifications are surpassed by

their dynamic counterparts and symmetric specifications by those including leverage effects.

This suggests that the correlation between crude oil and refined products evolves dynamically.

The strong evidence of, respectively, long and short-memory decay in CO and CG and in HO

implies that convergence to the long-run equilibrium after shocks is slower in the CO and CG

than in the HO spot returns.

4. The forecasting exercise

Comparison of MGARCH models in terms of variance matrix forecasting accuracy has only

recently been addressed in the literature. Volatility forecasting is particularly challenging as

volatility itself is latent and thus unobservable even ex-post. In general, to compare model-

based forecasts with ex-post realizations, the researcher must choose either a statistical or an
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economic loss function, as well as a proxy for the true unobservable conditional variance matrix.

As pointed out by Andersen et al. (2005) and Laurent et al. (2012), the use of a proxy

might lead to a different ordering of competing models which would be obtained if the true

volatility were observed. This issue is particularly relevant when only noisy proxies, such as

daily or weekly data, are available. To avoid a distorted outcome, the choice of an appropriate

loss function is crucial. It turns out that a number of popular loss functions (MAE, SD-MAE,

HMSE) are not robust to noisy volatility proxies and, for this reason, their use has frequently

led to conflicting rankings of volatility forecasts (Nomikos and Pouliasis, 2011). Laurent et al.

(2012) derive conditions for the functional form of the loss function ensuring consistency of the

proxy-based ranking, providing a parametric expression for the entire class of consistent loss

functions. We follow Bauwens et al. (2016) and use several loss functions which are robust to

noisy proxies, i.e., are expected to provide the same forecast ranking using the true conditional

covariance or a conditionally unbiased proxy; we define these in Table 5. As a proxy at day

t, we use the matrix of the outer products of the daily mean forecast errors, eT+1e
′
T+1, which

is a conditionally unbiased proxy (Patton and Sheppard, 2009 and Becker et al., 2015). The

Frobenius, Euclidean and Mean Squared Forecasting Error (MSFE) functions are quadratic

functions based on the forecast error and symmetric with respect to over/under-predictions.

The Euclidean distance considers the unique elements of the covariance matrix, the Frobenius

double-counts the loss associated with the conditional covariances. The Stein loss function

is based on the standardized forecast error and is asymmetric with respect to over/under-

prediction, heavily penalizing under-predictions. The von Neumann divergence (VDN), on the

other hand, penalizes over-predictions.

The forecasting ability of the set of proposed models is evaluated over a series of 630 out-of-

sample predictions. We compare the one-day ahead conditional variance matrix forecasts based

on the models estimated in Section 3. To carry out the forecasting exercise, we divide the full

data set into two periods:

� Period I is the in-sample period from 1 June 1993 to 24 December 2015 (i.e., 5,791 obser-

vations) and is reserved for the models’ initial estimation

� Period II is the out-of-sample set comprising the remaining 630 observations from 28

December 2015 to the end of the sample period, and is used for forecasting evaluation.

Forecasts are constructed using a fixed rolling window scheme: the estimation period is

rolled forward by adding one new daily observation and dropping the most distant observation.

Model parameters are re-estimated each day to obtain tomorrow’s volatility forecasts and the

sample size used for the estimation is fixed. Any dependence on the mean dynamics has been

accounted for by fitting a VAR(1), so the mean forecasts do not depend on the models. This

scheme satisfies the assumptions required by the MCS method of Hansen et al. (2011) and the

SPA test of Hansen (2005) and allows a unified treatment of nested and unnested models. For

each statistical loss function, we evaluate the significance of the differences by means of the SPA

test and the MCS methodology.
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4.1. Assessing the benchmarks: the SPA test

In this section, we study the forecasting performance of a pre-specified benchmark model

with respect to alternative models using the SPA test. As benchmarks, we choose the most

parsimonious models taking into account the different assumptions for the multivariate struc-

ture and the individual volatility dynamics. We use the CCC specification with GARCH(1, 1)

volatilities to test the hypotheses of constant correlation, short memory and symmetry; we use

the DCC specification with GARCH(1, 1) volatilities as a flexible and parsimonious benchmark

to assess whether relaxing the constant-correlation assumption improves the predictive abil-

ity. The CCC-FIGARCH(1, d, 1), CCC-FIEGARCH(1, d, 1), DCC-FIGARCH(1, 1) and DCC-

FIEGARCH(1, 1) allow us to test whether including long memory and asymmetries in the

individual dynamics improves the forecasting accuracy.

For a given loss function, the test is based on the loss differential between the benchmark

model, indexed by 0, and an alternative model k = 1, . . . ,m. Each alternative leads to a

sequence of losses during the evaluation period, t = 1, . . . , T , and for each period and each

model we compute

dj,k,t = Lj,0,t − Lj,k,t, k = 1, 2, . . .m and t = 1, 2, . . . , T,

where Lj,0,t denotes the jth loss function at time t for the benchmark model and Lj,k,t the

corresponding value of the loss function for the competitor k. The null hypothesis of the test is

that the benchmark model is as good as any of the competitors in terms of expected loss:

H0: λj,k = E(dj,k,t) ≤ 0 for all k = 1, . . . ,m.

Note that λj,k > 0 corresponds to the case of the competitor k outperforming the benchmark

model. For the jth loss function the test statistic is

TSPA = max

(√
T max
k=1,...,m

d̄j,k
ω̂k

, 0

)
,

where d̄j,k = 1
T

∑T
t=1 dj,k,t is the sample loss differential between the benchmark and the com-

peting model k and ω̂2
k is a consistent estimator of ωk = limT→∞(

√
Tvariance(d̄j,k)). Under

α-mixing conditions, a central limit theorem holds and
√
T (d̄j − λj)

d→ Nm(0,Ω), where d̄j is

the vector of the sample differentials for the jth loss function. To compute the test statistic, only

the diagonal elements of Ω are required. While this greatly simplifies the estimation when m is

large, it also implies that some elements of the covariance matrix are unknown under the null

hypothesis and the asymptotic distribution of the test statistic depends on nuisance parameters.

To avoid this, we follow Laurent et al. (2012) and obtain the p-values of the test by bootstrap.

There is an extensive literature on the use of bootstrap methods for weakly dependent, i.e.,

short-memory processes. For example, Politis and Romano (1994) propose an automatic block

length selection procedure and Patton et al. (2009) establish a data-dependent method which

successfully provides the optimal block length in the case of short-memory data. It is unclear,

however, whether such methods are still valid in the case of long-range dependence processes.

Lahiri (1999) shows that the block bootstrap is in general not valid even when large block
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lengths are used and the residual-based bootstrap, known as sieve bootstrap, is asymptotically

valid for stationary fractionally integrated processes. We implement the sieve bootstrap for

long-memory processes of Kapetanios et al. (2019) with 10,000 bootstrap samples, pre-filtering

with the local Whittle estimator.

Results for the different benchmarks are reported in Table 6 where pC , pL and pU are,

respectively, the consistent p-values and their lower and upper bounds. Boldface consistent

p-values indicate non-rejection of the null at the 10% significance level. We find that the hy-

pothesis of constant correlation (benchmarks 1–4) is always rejected, as well as the hypothesis

of short memory. The hypothesis of symmetry in the volatility dynamics is rejected for most

benchmarks. Allowing for dynamic correlations significantly improves the models’ forecast-

ing accuracy. Overall, it appears that the most valid specification in this application is the

fractionally integrated exponential DCC model (benchmark 8). For this benchmark, the null

hypothesis is rejected under the Euclidean and Frobenius loss functions but not under the Stein

loss function, indicating that FI-EDCC possibly tends to overestimate the variance-covariance

matrix.

4.2. The MCS

The Model Confidence Set (MCS) identifies a set of models with equivalent predictive ability

which outperform all the other competing models at a given confidence level with respect to

a loss function. This method does not require pre-specifying a preferred benchmark model; in

fact, it is a statistical test of equivalence with respect to a particular loss function. Let M0 be

the initial set of models for which we compute the series of one-step ahead conditional covariance

forecasts for period t, denoted by Hit, where i denotes the ith model. The initial assumption

is that all the models in M0 have equal forecasting performance according to the loss function

L. By sequentially trimming M0, the MCS removes those models which are found statistically

inferior and determines the set of models M∗ which have the best forecasting performance for

a given confidence level. The trimming is achieved via a sequence of equal predictive ability

(EPA) tests. At each step, the hypothesis

H0: E(dij,t) = 0 for all i, j ∈M

is tested for a set of models M ∈ M0, with dij,t = Li,t − Lj,t denoting the sequence of loss

function differentials between forecast i and j. If H0 is rejected, the worst performing model

is eliminated from M and the trimming ends when the first non-rejection occurs. The test

statistic is computed as

TM = max
i∈M

ti,

where

ti =
d̄i√
V̂ (d̄i)

,

d̄i = M−1
∑M

j=1 d̄ij is the relative sample loss statistic of forecast i with respect to all the other

forecasts, d̄ij = T−1
∑T

t=1 dij,t is the sample loss statistic between forecasts i and j, and V̂ is a

consistent estimator for the variance of d̄i. Under regularity conditions on dij,t, the asymptotic
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distribution of TM depends on the asymptotic correlation matrix of the vector
(
d̄1, . . . , d̄m

)′
(Hansen et al., 2011). For a large number of competing models, to avoid estimation of the high-

dimensional correlation matrix, the quantiles of the asymptotic distribution of the test statistic

can be obtained by bootstrap method consistently. To this end, we implement a the sieve

bootstrap for long-memory processes of Kapetanios et al. (2019) with 10,000 bootstrap samples

and pre-filtering by local Whittle estimator. If the null hypothesis is rejected, an elimination rule

is needed. We adopt the rule emax,M = arg maxi∈M ti, which removes the model contributing

more to the test statistic. We repeat this process until non-rejection of the null occurs and

a (1− α) confidence set containing the set of models with the best forecasting performance is

obtained.

Tables 7–8 report the MCS results at, respectively, the 90% and 75% confidence levels. The

last column of each table displays a measure of model performance given by the percentage of

inclusions in the MCS across the six loss functions. At the 90% level, the highest number of

models (eight) is included for the Euclidean and Frobenious loss functions. At the 75% level,

no benchmark model is included in the MCS for any loss function. The asymmetric BEKK

and the DCC-FIEGARCH are included in the MCS resulting from the Euclidean, Frobenius,

MSFE, and VDN loss functions, whereas the DCC-FIGARCH is included in the MCS from the

Euclidean, Frobenius and MSFE loss functions only. The most striking result is the inclusion of

the DCC-FIEGARCH model in the MCS of four loss functions, supporting the hypothesis that

the inclusion of long memory, asymmetries and time-varying correlations significantly improve

the forecasting accuracy of crude oil and refined products volatilities and correlations.

4.3. Portfolio VaR forecasting

This section shifts the focus from a statistical to a decision-theoretical framework for model

evaluation. More specifically, we examine the possible efficiency gains from using long-memory

asymmetric MGARCH models over short-memory benchmarks for one-step ahead VaR fore-

casting. To this end, we focus on the models’ ability to predict the tail behavior of the returns

rather than obtaining the ‘best’ volatility model. We forecast the one-day ahead VaR for each

of the models compared at the 5%, 2.5% and 1% levels, and assess their accuracy using statis-

tical back-testing. We are concerned with both the long and short positions’ VaR. In the first

case, the risk originates from a price drop, whereas in the second from a price increase. So, we

focus, respectively, on the left and right tail of the forecasted distribution of returns and assess

the models’ joint ability to deliver accurate VaR forecasts for both tails. For each model, the

portfolio VaR at level α on day t, conditional on the information available at time t − 1 and

assuming no misspecification, is computed as

VaRt(α) = zα
√
w′Htw,

where w is a 3×1 vector of weights, Ht the forecasted conditional covariance matrix for model k,

k = 1, . . . ,m, and zα the right or left quantile of the standard normal distribution. For simplicity,

we consider only equally weighted portfolios. To carry on with our analysis, we initially estimate

the models using the 5,791 observations of the in-sample period. We then compare the predicted

one-day ahead VaR for both the long and short positions with the observed returns and record
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the results. In the second iteration, the models are re-estimated by adding one more day to

the estimation sample and the VaRs are forecasted again and compared with the observed

returns. We repeat until the in-sample period comprises all the observations minus one. For

each model, we then compute the failure rates and VaR exceptions by comparing the long

and short forecasted VaRt+1 with the observed returns over the whole forecasting period. The

percentage of negative (positive) returns which are smaller (larger) than the forecasted one-

step ahead VaRt+1 for long (short) positions is denoted as π̂L (π̂S). To assess the accuracy

of the VaRs corresponding to the different models, we test whether the failure rate implied by

each model is statistically equal to the expected one. A popular back-testing procedure in the

literature is based on the unconditional coverage Kupiec test (e.g., see Giot and Laurent, 2003).

The test is a likelihood ratio test built on the assumption that VaR violations are independent.

In particular, we rely on the conditional coverage test of Christoffersen (1998) which jointly

tests if the total number of failures is equal to the expected number and if the failure process is

independently distributed across time. The test statistic is

LRCC = −2 log
[
(1− α)T−EαE

]
+ 2 log

[
(1− π̂i)T−E π̂Ei

]
,

where T is the number of observations in the forecasting period, E the total number of exceptions

in the forecasting period, and i = S or L indicates testing for short or long positions. Under

the null, the test statistic is distributed as a χ2 distribution with two degrees of freedom.

The p-values for Christoffersen’s test are reported in Table 9. Boldface p-values correspond

to rejection of the null hypothesis at the 5% significance level. Results for the short-memory

constant-correlation models are homogenous for short and long VaRs leading in all the cases to

rejection of the null hypothesis, independently of the model structure. Models with dynamic

conditional correlations do better, passing all the tests with occasional rejection in the most

extreme quantiles. Models with dynamic conditional correlations and long memory adequately

forecast VaR at all levels. In summary, for equally weighted portfolios, reliable VaR forecasts can

be obtained under the assumption of conditionally normally standardized portfolio returns using

DCC-type models with long-range dependence and asymmetries in the individual volatilities.

5. Robustness checks

In this section, we investigate the sensitivity of the models’ forecasting performance with

respect to the choice of the forecasting sample and the forecasting horizon.

5.1. Robustness to sub-samples

The overall sample period considered is quite long and characterized by dramatic changes

in the volatility dynamics. As pointed out by Hansen et al. (2003), the MCS is specific to

the set of candidate models and the sample period. Here, we investigate the sensitivity of the

models’ forecasting performance with respect to the forecast evaluation sample based on three

sub-samples which are homogeneous in their volatility dynamics. The choice of periods reflects

the dynamics of crude oil prices.
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The first sub-sample, from June 1993 to December 1997, corresponds to a relatively calm

period for the market as opposed to later periods in our sample. Crude oil price oscillated

around $20 as the world came to terms with the collapse of the Soviet Union.

Our second sub-sample, from January 1998 to December 2010, represents probably the most

turbulent period in the history of the oil industry. The period starts at the beginning of 1998

with the collapse of the oil price to almost $10 in the aftermath of the SE Asian financial crisis.

From Q1 1999 the market started recovering and climbed all the way to $35, only to retreat

to $20 after the DotCom bubble burst. The price started climbing again from Q1 2002 which

coincided with the beginning of the Chinese economic rally of the early 2000s. In Q2 2004,

the oil price crossed the $40 mark, an important psychological barrier which was only reached

during the first Gulf War in the summer of 1990. Between Q3 2004 and Q3 2007, the oil price

rallied almost continuously, boosted by Asian economic growth as well as haphazard events,

such as the aftermath of hurricane Katrina in the US refined products market in 2005. The

only exception was the second half of 2006 when prices retreated, only to bounce back and cross

the new psychological barrier of $80 in Q4 2007. At this point this sub-sample includes the

most tempestuous period in oil price history to date, with the price climbing to $145 in July

2008, only to collapse to $30 in December of the same year. The price bounced again above $60

and stayed between $60-80 for most of the time until the end of 2010.

The third sub-sample covers the period from 2011 to 2018. This is a fairly volatile period, but

not to the extent witnessed in the previous ones. Between 2011 and 2014, the main characteristic

was the oscillation of prices between $80-110, with only a few drops to $75 and an average price

of around $100. From early 2011, the US market started receiving substantial amounts of shale

oil (following the shale gas boom of 2005), which at the time could not be exported to the

international market. As the world adjusted to the rapid increase of US shale oil supply, it

became evident that conventional oil producers, such as OPEC members, had to cope with

fresh competition to their supply. After 2014, the price crossed $80 downwards and moved

rapidly below $60. That was when Saudi Arabia signaled its determination to fight for market

share in the hope that shale oil producers would find it difficult to survive. Prices dived to near

$25 in Q1 2016, before recovering again above $40 and remaining between $40-60 until Q1 2018.

The remaining of this sub-sample saw prices trying to find an equilibrium between $60-70.

Clearly, the volatility dynamics and its scale vary widely between sub-periods. As expected,

there are differences with the MCS obtained for the full sample, however our findings support

the benefits of the long-memory DCC specifications. The results for the three sub-samples are

reported respectively in Tables 10–12. In periods of relatively calm markets, the data show

weaker evidence of dynamics in the correlation process and asymmetry. These periods are char-

acterized by a relatively smaller and slow-moving volatility, therefore the result is not surprising

and, as expected, most of the MGARCH models exhibit a good fit. Looking at the composition

of the MCS, we can draw the following conclusions. First, the AGARCH and IGARCH speci-

fications are excluded from the MCS under all loss functions. Second, the MCS contains CCC

and DCC specifications, with GARCH conditional variances, confirming that the hypotheses of

constant conditional correlation and symmetry cannot be rejected in calm markets. Finally, all

the long-memory specifications are still included in the MCS which also includes two asymmet-
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ric specifications, i.e., DCC-GJR(1, 1) and DCC-EGARCH(1, 1), both characterized by weaker

sample performance within the MCS. In periods of high turbulence, modelling directly the con-

ditional correlation and accounting for the leverage effect in the conditional variances becomes

more important than in the full sample. Table 11 shows that DCC-type models with FI-

EGARCH conditional variances dominate the MCS and have the smallest losses. Among these,

we find one CCC specification, with FI-EGARCH dynamics for the conditional variances, which

suggests that adequately modelling long memory and asymmetry in the conditional variances

can in some cases compensate for the restrictive assumption of no dynamics in the conditional

correlation over a shorter period of time. Furthermore, the exclusion of other specifications

which account for asymmetry in the variance, e.g., DCC with GJR dynamics, underlines the

importance of the EGARCH parameterization of volatilities. Results for the last sub-sample,

reported in Table 12, are in line with those obtained for the full sample. The MCS is domi-

nated by specifications in the DCC family and only those including long memory are included

under all loss functions. In this sub-sample, the non-rejection of the full BEKK specification is

somehow surprising and may be suggesting that modelling spillover effects can in some cases,

over short horizons, compensate the loss of accuracy induced by the restrictive short-memory

assumption.

5.2. Robustness to the forecasts horizon

As a second robustness check, we test our findings with respect to longer forecast horizons.

The MCS for the multi-step (5 and 20-day) forecast evaluation over the full sample are reported

in Tables 12 and 13. As expected, the average loss increases with the forecast horizon, irre-

spectively of the evaluation period or the choice of the loss function. For longer horizons, the

performance of models with similar properties and structure tend to cluster since they converge

to the same long-run variance matrix, but differences between clusters increase since different

specifications can imply different levels for the long-run variance. The composition of the MCS

is in line with the one-step ahead case. For longer horizons, the MCS reduces in size making

it easier to separate between superior and inferior models. For both horizons, the MCS in-

cludes only models with dynamic correlations and long memory supporting strongly the need

to account for fractional integration in the volatility decay rates.

6. Concluding discussion and remarks

Several multivariate GARCH models have been used in the energy literature to explore

the volatilities and correlations of oil and oil-related product prices. However, no specification

including long memory has been tested yet at multivariate level. In practice, such investigation

is important to avoid misspecification of volatilities decay rate which may lead to inaccurate

forecasting and unreliable risk assessments.

This paper advances research on the co-movements of crude oil and refined products by

looking into the forecasting accuracy gains from using multivariate GARCH models with long

memory over the short-memory benchmarks commonly used in the energy literature. The

empirical analysis considers spot price returns for three major oil-related markets. We compare

30 multivariate GARCH models with different characteristics. All models are estimated in one
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step using pseudo-maximum likelihood methods to simplify the computation of robust standard

errors and to avoid discrepancies in the forecasting performance arising from different estimation

methods. In-sample results, based on asymptotic standard errors, show strong evidence of

GARCH-type dynamics, long-range dependence and leverage effects in the individual volatilities.

In terms of the multivariate structure, the data strongly support the hypothesis of dynamic

conditional correlations.

Using a fixed rolling window scheme, we assess the one, five and twenty-day ahead forecasting

accuracy of the models with two statistical approaches: the MCS method and the SPA test.

We employ several matrix loss functions, which are robust to the choice of the volatility proxy.

We then study the models’ forecasting performances in an economically meaningful way by

predicting the Value-at-Risk for short and long positions. Our results suggest that models with

long-memory decay rate surpass the short-memory counterparts from a statistical as well as

an economic perspective and their use can significantly improve oil markets risk assessments.

The sensitivity of the results with respect to the forecasting sample is tested by considering,

in addition to the full sample, three sub-samples with homogenous volatility dynamics. Our

findings indicate that over calm markets, constant conditional correlation specifications cannot

be rejected. However, in the full sample and turbulent market periods, the short-memory

constant-correlation models are always rejected in favour of long-memory dynamic-correlation

models. Finally, for longer forecasting horizons, we find that the set of superior models includes

only long-memory specifications suggesting that such feature is indeed essential for successful

prediction of risk in oil markets.

Our results are important for agents trading in any of the three commodities and particularly

so to those who trade in crack spreads. Such agents include refiners, who are by nature exposed

to both crude oil and refined products, as well as oil trading companies who tend to have

risk exposures to both the crude and refined sides of the market. Risk managers in such

companies seek better ways to improve their VaR forecasts and we find strong evidence of

superior performance of models with fractional integration, dynamic correlations and EGARCH-

type asymmetries.

This paper considers only forecasts based on MGARCH models. It would be interesting to

investigate the forecasting performance of other types of multivariate volatility models with long

memory and asymmetries, such as the factor multivariate stochastic volatility model with long

memory of Asai and McAleer (2015) and the long-memory regime switching model in Diebold

and Inoue (2001), and Bayesian network (e.g., see Cuestas and Ordóñez, 2018, Li et al., 2016,

Peraza and Halliday, 2010).
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Model Equation Parameters

GARCH(1, 1) ht = ω + α1ε
2
t−1 + β1ht−j {ω, α1, β1}

IGARCH(1, 1) ht = ω + αε2t−1 + (1− α)ht−j {ω, α}

EGARCH(1, 1) log ht = ω + α

∣∣∣∣ εt−1√
ht−1

∣∣∣∣+ γ εt−1√
ht−1

+ β log ht−1 {ω, α, γ, β}

GJR-GARCH(1, 1) ht = ω + α1ε
2
t−1 + α2ε

2
t−1Iεt−1<0 + β1ht−j {ω, α1, α2, β1}

FIGARCH(1, d, 1) hit = ω + β1hit−1 + [1− (1− β1L)−1(1− φ1L) (1− L)d]ε2it {ω, φ1, β1, d}
FIEGARCH(1, d, 1) log ht = ω + a(L)

b(L) (1− L)−d g (εt−1) {ω, a, b, d, θ, δ}

Table 1: Univariate volatility processes for the CCC/DCC class

Model Dynamic Asymmetries Volatility long Spillover
correlation memory decay effects

DBEKK (3) X
BEKK (3) X X
ABEKK (4) X X X
AGARCH (5), (11) X X
CCC-GARCH (5)
CCC-IGARCH (5)
CCC-EGARCH (5) X
CCC-GJR (5) X
CCC-FIGARCH (5) X
CCC-FIEGARCH (5) X X
DCC-GARCH (5)–(7) X
DCC-IGARCH (5)–(7) X
DCC-EGARCH (5)–(7) X X
DCC-GJR (5)–(7) X X
DCC-FIGARCH (5)–(7), (10) X X
DCC-FIEGARCH (5), (6)–(8) X X X

Table 2: MGARCH models and characteristics. Notes: For univariate specifications for the CCC/DCC class,
refer to Table 1.

Mean Max Min Standard Skewness Kurtosis JB Q(10) Q2(10)
deviation coefficient

CO 0.0004 0.159 -0.181 0.025 -0.057 5.75 370.6 58.12 352.1
CG 0.0003 0.137 -0.145 0.027 -0.074 6.08 432.2 52.70 654.3
HO 0.0003 0.164 -0.205 0.025 -0.055 6.56 521.3 57.34 743.3

Table 3: Descriptive statistics of energy price returns. Notes: JB is the Jarque–Bera test statistic; Q(10) and
Q2(10) are the Ljung–Box statistics, respectively, for the returns and the squared returns for correlation up to
lag 10. Boldface entries are significant at the 10% significance level.

21



Model Np LLk AIC BIC

DBEKK 12 -18321 36666 36737
BEKK 24 -18218 36484 36615
ABEKK 33 -17989 36044 36240
AGARCH 33 -18011 36088 36284
CCC-GARCH 12 -18202 36428 36499
CCC-IGARCH 9 -18301 36428 36499
CCC-EGARCH 15 -18065 36428 36499
CCC-GJR 15 -18063 36428 36499
CCC-FIGARCH 16 -18011 36428 36499
CCC-FIEGARCH 22 -18002 36428 36499
DCC-GARCH 11 -17695 35414 35515
DCC-IGARCH 8 -17832 35976 35665
DCC-EGARCH 14 -17611 35391 35509
DCC-GJR 14 -17607 35402 35517
DCC-FIGARCH 17 -17684 35402 35503
DCC-FIEGARCH 23 -17661 35368 35501

Table 4: Information criteria. Notes: Np is the number of estimated parameters of each model. LLk is the
log-likelihood of the models: these values are not directly comparable across models due to the varying number
of parameters. The AIC and BIC information criteria are computed respectively as −2LLk + 2Np and −2LLk +
Np lnn, where n is the total number of observations in the sample. Boldface values correspond to the best-
performing models.

Loss function Type

Frobenius tr

[(
Σ̂t −Hit

)′ (
Σ̂t −Hit

)]
Symmetric

Euclidean vech
(

Σ̂t −Hit

)′
vech

(
Σ̂t −Hit

)
Symmetric

MSFE 1
T vec

(
Σ̂t −Hit

)′
vec
(

Σ̂t −Hit

)′
Symmetric

QLIKE log |Ht|+ vec
(
H−1it Σ̂t

)′
ι Symmetric

Stein tr
(
H−1it Σ̂t

)
− log

∣∣∣H−1it Σ̂t

∣∣∣− n Asymmetric

VDN tr(Σ̂t log Σ̂t − Σ̂t logHit − Σ̂t +Hit) Asymmetric

Table 5: Loss functions. Notes: Hit denotes the predicted covariance matrix for day t, Σ̂t the conditional
covariance matrix proxy, ι a vector of ones, T the out-of-sample length, and n the sample size. Operators vec
and vech stack, respectively, the columns and the lower triangular portion of a matrix into a vector; tr denotes
the trace of a matrix.

Benchmark LE LF LS
pL pC pU pL pC pU pL pC pU

CCC-GARCH(1, 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
CCC-EGARCH(1, 1) 0.01 0.02 0.02 0.00 0.00 0.00 0.02 0.03 0.03
CCC-FIGARCH(1, 1) 0.00 0.00 0.00 0.02 0.02 0.02 0.05 0.05 0.08
CCC-FIEGARCH(1, 1) 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.02
DCC-GARCH(1, 1) 0.05 0.04 0.04 0.09 0.10 0.14 0.02 0.02 0.02
DCC-EGARCH(1, 1) 0.10 0.11 0.10 0.08 0.08 0.09 0.08 0.09 0.13
DCC-FIGARCH(1, 1) 0.09 0.02 0.02 0.16 0.23 0.46 0.04 0.04 0.05
DCC-FIEGARCH(1, 1) 0.11 0.11 0.17 0.32 0.82 0.98 0.05 0.05 0.05

Table 6: The SPA test. Notes: LE , LF and LS denote, respectively, the Euclidean, Frobenius and Stein loss
functions; pC , pL, pU are, respectively, the consistent p-values, their lower and upper bounds. Boldface consistent
p-values indicate non-rejection of the null at the significance level 10% (see Hansen, 2005 for the details). The
number of sieve bootstrap samples used to obtain the distribution under the null is 10,000.
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Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK X X 33
DBEKK X X 33
ABEKK X X X X 67
AGARCH X X 33
CCC-GARCH X X 33
CCC-IGARCH X 17
CCC-EGARCH X X 33
CCC-GJR X X 33
CCC-FIGARCH X X 33
CCC-FIEGARCH X X 40
DCC-GARCH X X 50
DCC-IGARCH X 25
DCC-EGARCH X X 54
DCC-GJR X X 52
DCC-FIGARCH X X X 70
DCC-FIEGARCH X X X X 72

Table 7: Full Sample Model Confidence Set at the 90% level. Notes: Ec and Fr denote, respectively, the Euclidean
and Frobenius loss functions, MSFE is the Mean Squared Forecast Error, VDN the von Neumann distance. Perf
is the percentage of inclusion of each model in the MCS across the six loss functions.

Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK 0
DBEKK 0
ABEKK X X X 50
AGARCH 0
CCC-GARCH 0
CCC-IGARCH 0
CCC-EGARCH 0
CCC-GJR 0
CCC-FIGARCH 0
CCC-FIEGARCH X 16
DCC-GARCH X 17
DCC-IGARCH 0
DCC-EGARCH X X 20
DCC-GJR 0
DCC-FIGARCH X X X 55
DCC-FIEGARCH X X X X 69

Table 8: Full Sample Model Confidence Set at the 75% level.
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Model Long positions Short positions
5% 2.5% 1% 5% 2.5% 1%

DBEKK 0.00 0.00 0.00 0.01 0.01 0.02
BEKK 0.11 0.02 0.18 0.12 0.17 0.01
ABEKK 0.24 0.22 0.04 0.27 0.28 0.21
AGARCH 0.04 0.04 0.04 0.02 0.02 0.04
CCC-GARCH 0.00 0.02 0.04 0.03 0.03 0.03
CCC-IGARCG 0.00 0.02 0.04 0.03 0.03 0.03
CCC-EGARCH 0.00 0.02 0.04 0.03 0.03 0.03
CCC-GJR 0.00 0.02 0.04 0.03 0.03 0.03
CCC-FIGARCH 0.00 0.02 0.04 0.03 0.03 0.03
CCC-FIEGARCH 0.00 0.02 0.04 0.03 0.03 0.03
DCC-GARCH 0.14 0.12 0.12 0.11 0.06 0.04
DCC-IGARCH 0.14 0.12 0.12 0.11 0.06 0.04
DCC-EGARCH 0.14 0.12 0.12 0.11 0.06 0.04
DCC-GJR 0.14 0.12 0.12 0.11 0.06 0.04
DCC-FIGARCH 0.40 0.27 0.04 0.49 0.13 0.36
DCC-FIEGARCH 0.59 0.40 0.40 0.49 0.76 0.47

Table 9: Likelihood Ratio (LR) test results. Notes: p-values of the LR Conditional Coverage Test for short and
long positions for the equal weighted portfolios’ Value-at-Risk. Boldface p-values correspond to rejection of the
null hypothesis at the 5% significance level.

Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK X X X 55
DBEKK X 16
ABEKK X 17
AGARCH 0
CCC-GARCH X X 33
CCC-IGARCH 0
CCC-EGARCH X X X X 60
CCC-GJR X 17
CCC-FIGARCH X X X 55
CCC-FIEGARCH X X X 55
DCC-GARCH X X X 51
DCC-IGARCH 0
DCC-EGARCH X X 50
DCC-GJR X X 50
DCC-FIGARCH X X X 70
DCC-FIEGARCH X X X 70

Table 10: Calm market (sub-sample 1) Model Confidence Set at the 90% level.
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Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK X 17
DBEKK X X 0
ABEKK X X 33
AGARCH 0
CCC-GARCH X 17
CCC-IGARCH X X 33
CCC-EGARCH X X 17
CCC-GJR 0
CCC-FIGARCH X 17
CCC-FIEGARCH X X X 40
DCC-GARCH X X 17
DCC-IGARCH X X 33
DCC-EGARCH X X X 54
DCC-GJR X 33
DCC-FIGARCH X X X X 80
DCC-FIEGARCH X X X X X 85

Table 11: Turbulent market (sub-sample 2) Model Confidence Set at the 90% level.

Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK X 17
DBEKK 0
ABEKK X X 33
AGARCH 0
CCC-GARCH X 17
CCC-IGARCH X 17
CCC-EGARCH X X 33
CCC-GJR X X 33
CCC-FIGARCH X X X 50
CCC-FIEGARCH X X X 50
DCC-GARCH X X 33
DCC-IGARCH X X 33
DCC-EGARCH X X X 54
DCC-GJR X X 52
DCC-FIGARCH X X X X X 76
DCC-FIEGARCH X X X X 77

Table 12: Fairly volatile market (sub-sample 3) Model Confidence Set at the 90% level.
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Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK X 17
DBEKK 0
ABEKK X 17
AGARCH 0
CCC-GARCH 0
CCC-IGARCH X 17
CCC-EGARCH X 17
CCC-GJR 0
CCC-FIGARCH X X X 33
CCC-FIEGARCH X X 33
DCC-GARCH X 17
DCC-IGARCH X 17
DCC-EGARCH X X 45
DCC-GJR X X 33
DCC-FIGARCH X X X 75
DCC-FIEGARCH X X X X 78

Table 13: Five-day ahead Model Confidence Set at the 90% level.

Model Ec Fr MSFE QLIKE STEIN VDN Perf

BEKK 0
DBEKK 0
ABEKK 0
AGARCH 0
CCC-GARCH 0
CCC-IGARCH 0
CCC-EGARCH X 17
CCC-GJR X 33
CCC-FIGARCH X X 33
CCC-FIEGARCH X X 33
DCC-GARCH X X 33
DCC-IGARCH 0
DCC-EGARCH X X 47
DCC-GJR X 17
DCC-FIGARCH X X X 70
DCC-FIEGARCH X X X X 72

Table 14: Twenty-day ahead Model Confidence Set at the 90% level.
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Appendix A. In-sample estimates

XXXXXXXXXXXCriterion
Lag l

1 2 3 4 5 6 7

BIC(l) 11.1762 11.1231 11.1001 10.9761 10.8651 10.8322 10.7844
AIC(l) 11.3374 11.3342 11.3301 11.2201 11.2109 11.2051 11.2001
HQ(l) 11.2733 11.2721 11.2705 11.2001 11.1987 11.1562 11.1438

Table A.1: Selection criteria for optimal lag length determination. Notes: BIC(l) denotes the Bayesian informa-
tion criterion; AIC(l) the Akaike information criterion; HQ(l) the Hannan information criterion. Boldface reports
correspond to the optimal lag length for each criterion.

µ Φ

CO 0.0012
(0.008)

-0.20111
(-2.998)

0.00312
(0.132)

0.01612
(0.072)

CG 0.0004
(0.032)

0.00134
(0.00145)

-0.10000
(-1.997)

0.00742
(0.0154)

HO 0.0012
(1.762)

0.00240
(0.0347)

0.00126
(0.141)

-0.18131
(-4.356)

Table A.2: Estimated coefficients of VAR mean equation. Notes: Estimation is carried out via maximum
likelihood methods with robust standard errors. All the eigenvalues of the companion matrix are smaller than 1
in absolute value. Boldface entries indicate significance at the 10% level. The log-likelihood is -18.364 and the
AIC is 36716.

Diagnostic Q(5) Q(10) JB ARCH10

tests

ε̂CO 112.11
(0.076)

96.14
(0.094)

424.71
(0.0011)

675.44
(0.000)

ε̂CG 132.11
(0.087)

102.01
(0.102)

122.11
(0.076)

522.03
(0.001)

ε̂HO 132.31
(0.076)

89.55
(0.108)

122.11
(0.076)

601.18
(0.000)

Table A.3: Post-estimation diagnostic tests. Notes: Diagnostic post-estimation tests are conducted on the
residuals of the series, ε̂. Q(l) denotes the Ljung–Box–Pierce portmanteau test statistic with maximal lag equal
to l for the residuals, JB is the Jarque–Bera test for normality, ARCH10 the ARCH tests for a maximal lag of
order 10. p-values are reported in parentheses.
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C A G

CO 0.017∗∗
(2.113)

0.043
(1.032)

0.021∗
(1.987)

0.103∗∗
(5.041)

0.887∗∗
(4.021)

CG 0.003∗∗
(2.042)

0.019
(0.879)

0.096∗∗
(4.276)

0.902∗∗
(5.321)

HO 0.014∗
(1.995)

0.062∗∗
(3.553)

0.874∗∗
(3.873)

Table A.4: Diagonal BEKK(1, 1, 1): model (3) with off-diagonal elements of A and G set equal to 0. Notes: The
two entries for each parameter are their respective estimated value and robust t-ratio. Boldface entries indicate
significance at the 10% level; asterisked boldface entries significance at the 5% level; double-asterisked boldface
entries significance at the 1% level.

C A G

CO 0.013∗∗
(3.538)

0.054
(1.785)

0.033∗
(2.033)

0.084∗∗
(2.984)

-0.014
(-1.223)

0.005
(0.098)

0.915
(7.675)

∗ - 0.037
(-0.238)

-0.032
(-1.378)

CG 0.018
(2.421)

∗ 0.026
(0.879)

-0.034
(-1.754)

0.100∗∗
(3.548)

0.042
(1.711)

0.041
(1.888)

0.897∗∗
(7.090)

0.153
(1.703)

HO 0.005
(2.067)

∗ 0.063
(1.688)

0.075
(1.501)

0.034∗∗
(3.774)

-0.061
(-1.811)

0.058
(1.685)

0.854∗∗
(8.113)

Table A.5: Full BEKK(1, 1, 1): model (4). Notes: The two entries for each parameter are their respective
estimated value and robust t-ratio. Boldface entries indicate significance at the 10% level; asterisked boldface
entries significance at the 5% level; double-asterisked boldface entries significance at the 1% level.

C A

CO 0.001∗
(2.081)

0.037
(1.785)

0.053
(1.703)

0.098∗
(2.561)

-0.028
(-1.183)

0.013
(1.792)

CG 0.004∗∗
(4.982)

0.032
(0.003)

-0.188
(-5.627)

0.102∗∗
(3.548)

0.048
(1.651)

HO 0.007∗∗
(3.981)

0.012
(1.682)

0.073
(1.986)

0.054∗∗
(7.381)

G D

CO 0.900∗∗
(5.441)

- 0.028
(-1.011)

-0.023
(-1.386)

-0.327∗
(-2.031)

0.041
(0.056)

0.012
(1.061)

CG 0.022
(1.663)

0.896∗∗
(4.936)

0.147
(1.865)

0.016
(0.037)

-0.545∗∗
(-4.561)

0.025
(0.012)

HO -0.063
(-1.777)

0.027
(1.030)

0.818∗∗
(6.463)

0.033
(0.065)

0.018
(0.197)

-0.009
(-1.765)

Table A.6: Asymmetric BEKK(1, 1, 1): model (5). Notes: The two entries for each parameter are their respective
estimated value and robust t-ratio. Boldface entries indicate significance at the 10% level; asterisked boldface
entries significance at the 5% level; double-asterisked boldface entries significance at the 1% level.

w A B

CO 0.005∗
(2.531)

0.101
(3.652)

∗∗ -0.016
(-1.178)

0.011
(0.096)

0.897∗∗
(4.356)

-0.014
(1.002)

-0.008
(-1.765)

CG 0.003∗∗
(3.456)

-0.072
(-1.753)

0.098∗∗
(7.324)

0.011
(1.012)

0.012
(0.189)

0.901∗∗
(3.882)

0.017
(1.673)

HO 0.008∗
(1.999)

0.021
(1.674)

0.015
(0.037)

0.061
(2.891)

∗∗ -0.037
(-1.765)

0.013
(1.001)

0.793∗∗
(5.683)

C R

CO -0.356∗
(-0.198)

0.002
(0.073)

0.035
(1.002)

1 0.576∗
(2.061)

0.683∗∗
(3.875)

CG 0.018
(0.045)

-0.312∗
(-2.031)

0.101
(0.389)

0.576∗
(2.061)

1 0.451∗∗
(4.564)

HO 0.029
(0.851)

0.017
(0.101)

-0.057
(1.688)

0.683∗∗
(3.875)

0.451∗∗
(4.564)

1

Table A.7: AGARCH(1, 1, 1): model (11). Notes: The two entries for each parameter are their respective
estimated value and robust t-ratio. Boldface entries indicate significance at the 10% level; asterisked boldface
entries significance at the 5% level; double-asterisked boldface entries significance at the 1% level.
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ω α1 β1 R

CO 0.001∗
(2.031)

0.098∗∗
(5.456)

0.901∗∗
(4.229)

1 0.458∗∗
(4.136)

0.591∗∗
(5.432)

CG 0.012∗
(2.157)

0.021∗∗
(4.374)

0.977∗∗
(4.108)

0.458
(4.136)

∗∗ 1 0.653∗∗
(3.882)

HO 0.006∗
(1.999)

0.033
(2.987)

∗∗ 0.744
(3.554)

∗∗ 0.591∗∗
(5.432)

0.653∗∗
(3.882)

1

Table A.8: CCC model. Notes: The individual volatilities follow GARCH(1, 1) processes as in equation (6)
with p = q = 1. The two entries for each parameter are their respective estimated value and robust t-ratio.
Boldface entries indicate significance at the 10% level; asterisked boldface entries significance at the 5% level;
double-asterisked boldface entries significance at the 1% level.

ω α1 β1 λ1 λ2
CO 0.014

(2.051)

∗ 0.084
(5.456)

∗∗ 0.912∗∗
(3.514)

0.338∗∗
(5.987)

0.593∗∗
(8.378)

CG 0.023∗
(2.103)

0.062∗∗
(7.881)

0.935∗∗
(2.873)

HO 0.018∗
(2.010)

0.049∗∗
(6.987)

0.751∗∗
(5.467)

Table A.9: DCC model with the conditional covariance matrix evolving according to (7) and (8). Notes: The
individual volatilities follow GARCH(1, 1) processes as in equation (6) with p = q = 1. The two entries for each
parameter are their respective estimated value and robust t-ratio. Boldface entries indicate significance at the
10% level; asterisked boldface entries significance at the 5% level; double-asterisked boldface entries significance
at the 1% level.

ω β1 φ1 d λ1 λ2
CO 0.021

(1.691)
0.054∗∗
(5.456)

0.932∗∗
(3.514)

0.43∗∗
(3.588)

0.354∗∗
(6.238)

0.601∗∗
(4.982)

CG 0.023
(1.700)

0.042∗∗
(7.881)

0.911∗∗
(2.873)

0.33∗∗
(4.716)

HO 0.018∗
(2.010)

0.049∗∗
(6.987)

0.921∗∗
(5.467)

0.011
(1.352)

Table A.10: DCC-FIGARCH model with Rt evolving according to (7) and (8). Notes: The individual volatilities
follow FI-GARCH(1, d, 1) processes. The two entries for each parameter are their respective estimated value and
robust t-ratio. Boldface entries indicate significance at the 10% level; asterisked boldface entries significance at
the 5% level; double-asterisked boldface entries significance at the 1% level.

ω a b δ θ d λ1 λ2
CO 0.021

(1.691)
0.354∗∗
(5.456)

0.932∗∗
(3.514)

0.071∗∗
(4.110)

-0.044
(2.031)

∗ 0.40∗∗
(7.451)

0.386∗∗
(5.882)

0.623∗∗
(4.023)

CG 0.023
(1.700)

0.362∗∗
(7.881)

0.934∗∗
(2.873)

1.034∗∗
(6.187)

-0.076∗
(2.011)

0.38∗∗
(6.291)

HO 0.018
(2.010)

0.349∗∗
(6.987)

0.916∗∗
(5.467)

1.001∗∗
(5.151)

-0.008∗
(1.1998)

0.003
(1.971)

Table A.11: DCC-FIEGARCH model with Dt as in (10) and Rt evolving according to (7) and (8). Notes: The
individual volatilities follow FI-EGARCH(1, d, 1) processes as in equations (8) and (9). The two entries for each
parameter are their respective estimated value and robust t-ratio. Boldface entries indicate significance at the
10% level; asterisked boldface entries significance at the 5% level; double-asterisked boldface entries significance
at the 1% level.
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