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ALEŠ ČERNÝ1 and JOHANNES RUF2

1Business School (formerly Cass)
City, University of London, UK
E-mail: ales.cerny.1@city.ac.uk

2Department of Mathematics
London School of Economics and Political Science, UK
E-mail: j.ruf@lse.ac.uk

A new integral with respect to an integer-valued random measure is introduced. In contrast to the
finite variation integral ubiquitous in semimartingale theory (Jacod and Shiryaev [6, II.1.5]), the
new integral is closed under stochastic integration, composition, and smooth transformations. The
new integral gives rise to a previously unstudied class of pure-jump processes — the sigma-locally
finite variation pure-jump processes. As an application, it is shown that every semimartingale X
has a unique decomposition

X = X0 + Xqc + Xdp,

where Xqc is quasi-left-continuous and Xdp is a sigma-locally finite variation pure-jump process
that jumps only at predictable times, both starting at zero. The decomposition mirrors the classical
result for local martingales (Yoeurp [12, Theoreme 1.4]) and gives a rigorous meaning to the notions
of continuous-time and discrete-time components of a semimartingale. Against this backdrop, the
paper investigates a wider class of processes that are equal to the sum of their jumps in the
semimartingale topology and constructs a taxonomic hierarchy of pure-jump semimartingales.

MSC 2010 subject classifications: Primary 60H05, 60G07, 60G48, 60G51, 60H05.
Keywords: jump measure, Lévy process, predictable compensator, semimartingale topology, stochas-
tic calculus.

1. Introduction

Denote by V d the set of finite variation pure-jump semimartingales, i.e., those X that are
equal to their initial value plus the absolutely convergent sum of their jumps. Equivalently,
X ∈ V d if

X = X0 + x ∗ µX ,

where µX is the jump measure of X and x ∗ µX represents the standard jump measure
integral (Jacod and Shiryaev [6, II.1.5]). It is known (see [6, II.1.28]) that the predictable
compensator of X ∈ V d equals x ∗ νX whenever such compensator exists. Here νX denotes
the predictable compensator of the jump measure µX .

Consider now the R–valued stochastic process X defined by the following properties:

X0 = 0;

X has independent increments;

jumps of X occur only at fixed times τn = 2− 1/n, for each n ∈ N;

the process jumps by ±1/n with equal probability, for each n ∈ N;

X remains constant outside the fixed jump times.


(1.1)
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This process is a well-defined semimartingale, in fact a square-integrable martingale, on the
whole time line [0,∞]. Yet X is not equal to the sum of its jumps in the conventional sense
because the jumps of X are not absolutely summable. In particular, the standard integral
x ∗ µX diverges. Furthermore, the integral x ∗ νX also diverges even though the predictable
compensator (drift) of X exists and is equal to zero.

The seminal work of Kallsen [7] offers two important clues how to perform symbolic drift
calculation for the process in (1.1). The first key idea, [7, Definition 4.1], is to consider each
jump time separately and ask only that the expectation E[|∆Xτn |] is finite (for each n ∈ N).
One may then be able to legitimately sum up the individual contributions E[∆Xτn ] over
n ∈ N even if the sum of E[|∆Xτn |] does not converge, which is precisely the case for (1.1).
The second key idea, [7, Lemma 4.1], is non-trivial mathematically: it identifies the natural
procedure above with the sigma-localization of the absolutely convergent integral x ∗ νX to
obtain a better integral that we shall denote x ? νX . It is important to add that Kallsen [7]
makes everything work in a general continuous-time setting that goes well beyond (1.1).

Acting on these clues, we propose to view the process (1.1) in two novel, complementary
ways, both of which involve an approximation by elements in V d. The first approach re-
gards X in (1.1) as an element of V d

σ , i.e., as a process that belongs sigma-locally to V d.
Proposition 3.12 shows that each X ∈ V d

σ satisfies the convenient formula

X = X0 + x ? µX ,

where ? is the sigma-localized version of the standard jump measure integral ∗. Furthermore,
the drift of X, provided it exists, is given by x ? νX (Corollary 3.13).

The new jump integral ?, unlike ∗, is associative so that for a predictable process ζ and
a predictable function η one has

ζ · (η ? µX) = (ζη) ? µX

if the left-hand side is well defined (Proposition 3.9). The associativity of the stochastic
integral is in fact a special case of a stronger composition property

ψ ? (η ? µX) = ψ(η) ? µX ,

which holds as soon as one of the two expressions is meaningful (Proposition 3.8). The
associativity of integral then follows by taking for ψ the linear function ψ(x) = ζx. Together
with closedness under C2 transformations (Proposition 3.10) these properties give rise to
a very pleasant stochastic calculus for processes in V d

σ . For further developments in this
direction, see Černý and Ruf [1].

The second approach views X as a sum of its jumps at a sequence of stopping times
with convergence in the Émery semimartingale topology. Here it is in principle possible to
encounter two different processes that share the same jump measure (by choosing different
exhausting sequence of stopping times in each case). However, we show that such a situation
cannot occur in V d

σ (Theorem 4.3). This offers a wider sense in which all processes in V d
σ are

uniquely determined by their jump measure. In contrast, the family of quadratic pure-jump
processes (Protter [11, p. 63]; see also Definition 4.1) lacks such uniqueness property as
adding a continuous deterministic finite variation process to X yields a different quadratic
pure-jump process with the same jump measure. Thus the terminology “quadratic pure-
jump” is unfortunate — in the context of this paper, most of these processes are not pure-
jump processes at all. In fact, it is shown that a special quadratic pure-jump semimartingale
is in V d

σ if and only if its drift is given by x ? νX (Corollary 4.4).
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The process (1.1) has one property that not all processes in V d
σ share: its jumps are

exhausted by a sequence of predictable (in fact fixed) times. Such processes enjoy further
regularity in that any sequence of predictable times exhausting their jumps delivers conver-
gence of the sum in the Émery topology (Proposition 4.6). As an application, it is shown
that every semimartingale X has a unique decomposition

X = X0 +Xqc +Xdp,

where Xqc is quasi-left-continuous and Xdp is an element of V d
σ that jumps only at pre-

dictable times, both starting at zero (Proposition 3.15). The decomposition mirrors the
classical result for local martingales (Yoeurp [12, Theoreme 1.4]) and gives a rigorous mean-
ing to the notions of continuous-time and discrete-time components of a semimartingale. The
decomposition is helpful when computing drifts in various applications; for further details
we refer the reader to Černý and Ruf [1, Section 6].

Here now the outline of this paper. After notation (Section 2), we develop the new integral
(Section 3) and then proceed with the classification of the pure-jump processes (Section 4).
Section 5 has proofs pertaining to Section 4. Appendix A contains facts about the Émery
topology and Appendix B discusses the consequences of weakening the topology to the one
given by uniform convergence in probability.

2. Notation and setup

We fix a probability space (Ω,F ,P) with a right-continuous filtration F = (Ft)t≥0. Recall
from [6, II.1.4] that a function η : Ω× [0,∞)×R→ R is called predictable if it is P ×B(R)–
measurable, where P denotes the predictable sigma field and B(R) the Borel sigma field on
R. If ψ : Ω× [0,∞)× R→ R denotes another (predictable) function we shall write ψ(η) to
denote the (predictable) function (ω, t, x) 7→ ψ(ω, t, η(ω, t, x)).

We shall consider an integer-valued random measure µ on [0,∞) × R with predictable
compensator ν. A predictable function η with η(0) = 0 is integrable with respect to µ, i.e.,
η ∗µ exists if |η| ∗µ <∞. Recall from [6, II.2.9] that ν can be written in disintegrated form
as

ν(dt,dx) = Ft(dx)dAt, t ≥ 0, x ∈ R, (2.1)

where A is a nondecreasing predictable process, and F is a transition kernel from (Ω ×
[0,∞),P) into (R,B(R)). If we want to emphasize the probability measure under which ν
is the predictable compensator of µ we shall write ν(P).

We let S denote the space of R–valued semimartingales. For a semimartingale X ∈ S ,
we let X− denote its left-limit process with the convention X0− = X0 and we let ∆X =
X − X− denote its jump process. Next, we let µX denote the jump measure of X and
νX its predictable compensator. For a predictable function η with η(0) = 0 we then have
η ∗ µX =

∑
0<t≤· η(∆Xt) if |η| ∗ µX < ∞. The corresponding quantities in (2.1) shall be

written with a superscript X. If X is special, we write BX for its drift, i.e., BX is the
predictable finite variation process with BX0 = 0 such that X −BX is a local martingale. If
Y denotes another semimartingale then [X,Y ] denotes the quadratic covariation of X and
Y . Moreover, we write X[1] = X − x1|x|>1 ∗ µX and note that X[1] is special. Next, L(X)
denotes the family of X–integrable predictable processes.

If J ⊂ S is a family of semimartingales, we say that a semimartingale Y belongs to Jσ,
the sigma–localized class of J , if there is a sequence (Dn)n∈N of predictable sets increasing
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to Ω × [0,∞) such that 1Dn · Y ∈ J for each n ∈ N. We say that J is stable under
sigma-stopping (see Kallsen [7, Definition 2.1]) if for every X ∈ J and every predictable
set D the process 1D ·X belongs to J . Finally, we shall say that Q is a probability measure
that is locally absolutely continuous with respect to P if Q is absolutely continuous with
respect to P on Ft for each t ≥ 0.

Remark 2.1. Throughout this paper, we only consider the scalar case, which helps in
reducing notation. The careful reader can convince themselves that quite a few results (in
particular those of Section 3) generalize to the higher-dimensional case, for example when X
takes values in Rd and the predictable functions below map into Rn, etc., for some d, n ∈ N.
A notable exception is statement (ii) in Theorem 4.3, where we do not know whether the
one-dimensional situation generalizes. Indeed, we do not know whether J 2 is a vector space
— the lack of such structure would seem to imply that such a result does not hold in higher
dimensions.

3. Extended integral with respect to a random measure

We start by extending the standard definition of integral with respect to a random measure
and derive some basic properties in Subsection 3.1. Then, in Subsection 3.2, we prove some
associativity properties of this integral. In Subsection 3.3 we connect the integral to the
representation of sigma-locally finite variation pure-jump processes. In particular, this will
enable us to write the process X of the introduction as X = x ? µX and its drift under any
locally absolutely continuous measure Q that makes X special as BX(Q) = x ? νX(Q).

3.1. Definition and basic properties of the extended integral

Definition 3.1 (Extended integral with respect to random measure).

(i) Denote by L(µ) the set of predictable functions that are absolutely integrable with
respect to µ. We say that a predictable function η belongs to Lσ(µ), the sigma–localized
class of L(µ), if there is a sequence (Dn)n∈N of predictable sets increasing to Ω×[0,∞)
and a semimartingale Y such that 1Dnη ∈ L(µ) for each n ∈ N and

(1Dnη) ∗ µ = 1Dn · Y, n ∈ N.

In such case the semimartingale Y is denoted by η ? µ.
(ii) L(ν), Lσ(ν), and η ? ν are defined analogously; see Definition 4.1 and Lemma 4.1 in

Kallsen [7].

Note that if µ = ν is a predictable random measure then the two definitions above agree;
hence Lσ(µ) and Lσ(ν) are well-defined and we have Lσ(µ) = Lσ(ν). Note also that η ? µ
(resp., η ? ν) is uniquely defined provided that η ∈ Lσ(µ) (resp., η ∈ Lσ(ν)).

Remark 3.2. Let Q denote a probability measure locally absolutely continuous with re-
spect to P. With the obvious notation, we then have LP

σ(µ) ⊂ LQ
σ (µ). For LP

σ(ν(P)) and
LQ
σ (ν(Q)), no such inclusions hold in general. However, refer also to the positive statement

in Remark 3.5.
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The following characterization of Lσ(ν) appears in the literature.

Lemma 3.3 (Kallsen [7, Definition 4.1 and Lemma 4.1]). For a predictable function η the
following statements are equivalent.

(i) η ∈ Lσ(ν).
(ii) The following two conditions hold.

(a)
∫
|ηt(x)|Ft(dx) <∞ (P× dA)–a.e.

(b)
∫ ∣∣∫ ηt(x)Ft(dx)

∣∣ dAt <∞.

Moreover, for η ∈ Lσ(ν) one has

η ? ν =

∫ ·
0

(∫
ηt(x)Ft(dx)

)
dAt.

To the best of our knowledge, the class Lσ(µ) has not been studied previously. The
following characterization therefore seems to be new.

Proposition 3.4. For a predictable function η the following statements are equivalent.

(i) η ∈ Lσ(µ).
(ii) The following two conditions hold.

(a) η2 ∗ µ <∞.

(b) η1{|η|≤1} ∈ Lσ(ν).

Furthermore, for η ∈ Lσ(µ) one has

η ? µ = η1{|η|>1} ∗ µ+ η1{|η|≤1} ∗ (µ− ν) + η1{|η|≤1} ? ν, (3.1)

where the integral with respect to the compensated measure µ−ν is defined in [6, II.1.27(b)].

Remark 3.5. In the setup of Remark 3.2, choose a predictable function η with |η|2∗µ <∞.
Proposition 3.4 now yields that if η1{|η|≤1} ∈ LP

σ(ν(P)) then also η1{|η|≤1} ∈ LQ
σ (ν(Q)).

Proof of Proposition 3.4. In the following we argue both inclusions and (3.1).
(i)⇒(ii): Let (Dn)n∈N be as in Definition 3.1(i). Then 1Dn |η|2 ∗µ = 1Dn · [η ? µ, η ? µ] for

all n ∈ N, and a monotone convergence argument yields |η|2 ∗ µ = [η ? µ, η ? µ] <∞. Let us
now set η = η1{|η|≤1}. Then η ∈ Lσ(µ) and we directly get∫ ·

0

1Dn(t)

(∫
|ηt(x)|Ft(dx)

)
dAt = 1Dn |η| ∗ ν <∞.

Thanks to Lemma 3.3 we now only need to argue that
∫ ∣∣∫ ηt(x)Ft(dx)

∣∣dAt <∞. We note

that |∆(η ? µ)| ≤ 1, hence η ? µ is special, say with predictable finite variation drift B. By
monotone convergence, we now get∫ ·

0

∣∣∣∣∫ ηt(x)Ft(dx)

∣∣∣∣dAt = lim
n↑∞

∫ ·
0

1Dn(t)

∣∣∣∣∫ ηt(x)Ft(dx)

∣∣∣∣dAt = lim
n↑∞

∫ ·
0

1Dn(t)|dBt|

=

∫ ·
0

|dBt| <∞.
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This yields η ∈ Lσ(ν), hence the implication (i)⇒(ii) is shown.
(ii)⇒(i) and (3.1): Let (Dn)n∈N be as in Definition 3.1(ii). Note that all terms on the right-

hand side of (3.1) are well defined and yield a semimartingale Y provided that (ii) holds.
Thanks to the uniqueness of η ? µ we only need to observe that 1Dn · Y = (1Dnη) ∗ µ for all
n ∈ N. However, this is straightforward, which concludes the proof of the proposition.

Remark 3.6. Note that Lloc(µ) = L(µ), that is L(µ) is closed under standard localization.
However, we have Lσ(µ) ) L(µ) on sufficiently large probability spaces; see Example 3.7.

Example 3.7. Let µ denote a jump measure with ν(dt, dx) = 1/21|x|≤1dx(
∑∞
i=1 δ1/i(dt)),

where δ1/i denotes the Dirac measure at 1/i. Then for the decomposition in (2.1) we may
choose A =

∑∞
i=1

1/i21[[1/i,∞[[ and Ft(dx) = 1/(2t2)1|x|≤1dx for all t > 0 and x ∈ R.
Consider next the predictable function η given by ηt(x) = tx for all t ≥ 0 and x ∈ R.

Then η ∈ Lσ(ν) by Lemma 3.3 and η2 ∗µ∞ ≤
∑∞
i=1

1/i2 <∞. Hence by Proposition 3.4, we
have η ∈ Lσ(µ). Indeed, η ?µ is a semimartingale that jumps at times 1/i and is constant on
the intervals [1/(i+ 1), 1/i), for each i ∈ N. Moreover, ∆(η ? µ)1/i = Ui/i, where (Ui)i∈N is a
sequence of independent [−1, 1]-uniforms. Since |η| ∗µ1 =

∑∞
i=1
|Ui|/i =∞ (by Kolmogorov’s

convergence criteria), we have η ∈ Lσ(µ) \ L(µ).
Consider now the predictable function η̄t(x) = x for all t ≥ 0 and x ∈ R. Then again

η̄ ∈ Lσ(ν), but now η̄2 ∗ µ1 = ∞. This yields an example for a predictable function η̄ ∈
Lσ(ν) \ Lσ(µ).

3.2. Associativity properties of the extended integral

We remind the reader that µ without a superscript refers to a given integer-valued random
measure, while µX refers to the jump measure of a semimartingale X; see Section 2.

Proposition 3.8. Let η ∈ Lσ(µ) and ψ : Ω × [0,∞) × R → R be a predictable function.
Then the following statements are equivalent.

(i) ψ ∈ Lσ(µη?µ).
(ii) ψ(η) ∈ Lσ(µ).

Furthermore, if either condition holds then ψ ? (η ? µ) = ψ(η) ? µ. Moreover, the same
assertions hold with µ replaced by ν.

Proof. Let us first prove the statement with µ replaced by ν. To this end, note that

νη?ν(dt, dx) = F t(dx)dAt, t ≥ 0, x ∈ R,

where F t is the image of measure Ft under ηt. Then the equivalence follows from Lemma 3.3.
The statement for µ follows exactly in the same manner, now using Proposition 3.4.

Next, we prove a composition property for stochastic integrals. Recall that L(η?µ) denotes
the set of predictable processes that are integrable with respect to the semimartingale η ?µ.

Proposition 3.9. Let η ∈ Lσ(µ) and ζ : Ω × [0,∞) → R be a predictable process. Then
the following statements are equivalent.

(i) ζ ∈ L(η ? µ).



7

(ii) ζη ∈ Lσ(µ).

Furthermore, if either condition holds then ζ ·(η?µ) = (ζη)?µ. Moreover, the same assertions
hold with µ replaced by ν.

Proof. We shall prove the statement only for µ as the same argument works if µ is replaced
by ν. Note that there is a sigma–localizing sequence (Dn)n∈N such that

Dn ⊂ {(ω, t) ∈ Ω× [0,∞) : |ζ(ω, t)| ≤ n}

and 1Dnη ∈ L(µ) with 1Dn · (η ? µ) = (1Dnη) ∗ µ. Note that for each n ∈ N we have
ζ1Dn ∈ L(η ? µ) and ζ1Dnη ∈ L(µ). Then if (i) holds we have

1Dn · (ζ · (η ? µ)) = (ζ1Dn) · (1Dn · (η ? µ)) = (ζ1Dn) · (1Dnη ∗ µ) = (ζ1Dnη) ∗ µ,

for each n ∈ N. This yields (ii) and ζ · (η ? µ) = (ζη) ? µ.
Assume now that (ii) holds. We then have

1Dn · ((ζη) ? µ) = (1Dnζη) ∗ µ = (ζ1Dn) · (1Dnη ∗ µ)

= (ζ1Dn) · (1Dn · (η ? µ)) = (ζ1Dn) · (η ? µ)

for each n ∈ N. An application of [7, Lemma 2.2] then yields that (i) holds.

Proposition 3.10. Let η ∈ Lσ(µ) and f : R → R be a twice continuously differentiable
function. Then for Y = Y0 + η ? µ we have ξ = f(Y− + η) − f(Y−) ∈ Lσ(µ) and f(Y ) =
f(Y0) + ξ ? µ.

Proof. For each n ∈ N let τn denote the first time that |Y | is greater than or equal
to n. Recall that f(Y ) is a semimartingale and that there exists a sequence (Dn)n∈N of
predictable sets increasing to Ω× [0,∞) such that 1Dnη ∈ L(µ). Without loss of generality
we may assume that Dn ⊂ [[0, τn]] for each n ∈ N.

It suffices now to argue that 1Dnξ ∈ L(µ) and that 1Dn · f(Y ) = (1Dnξ) ∗ µ for each
n ∈ N. To argue these two claims, fix n ∈ N. Observe now that

1Dn |ξ| ≤ 1Dn1{|η|>1}|ξ|+ Ln+11Dn1{|η|≤1}|η|,

where Ln+1 is the Lipschitz constant of f restricted to the domain [−n − 1, n + 1]. The
first term on the right-hand side of the last display is in L(µ) as it only contributes finitely
many terms and so is the second term as it is bounded by a constant times 1Dn |η|. Hence
we have argued the first claim, namely that 1Dnξ ∈ L(µ). Next, note that Itô’s formula and
Proposition 3.8 yield

1Dn · f(Y ) = 1Dn · (f ′(Y−) · Y + (ξ − f ′(Y−)η) ∗ µ)

= f ′(Y−) · (1Dn · Y ) + (1Dnξ − 1Dnf
′(Y−)η) ∗ µ = (1Dnξ) ∗ µ.

This is the second claim, and the assertion follows.

Example 3.11. As a counterpoint to Proposition 3.9, we will now exhibit an integer-valued
random measure µ with the following properties.

(1) x ∈ Lσ(µ).
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(2) x ? µ is quasi-left-continuous with bounded jumps.
(3) there is a predictable process ζ ∈ L(x ∗ (µ− ν)) such that ζ /∈ L(x ? µ).

To this end, let N denote a standard Poisson process. That is, N jumps up by one with
standard exponentially distributed waiting times and BNt = t for all t ≥ 0. Let now ϕt = 1/k
for all t ∈ [k − 1, k) and all k ∈ N, and fix n ∈ {1, 2}. Then ϕn ∈ L(N) ∩ L(BN ) and
ϕn ·N = ϕn · (N − BN ) + ϕn · BN is the sum of a uniformly integrable martingale and an
increasing process (of bounded variation in the case n = 2). Indeed, Kolmogorov’s two-series
theorem, applied to the sequence (ϕn · (N −BN )k)k∈N, and an application of the Borel-
Cantelli lemma, or Larsson and Ruf [9, Corollary 4.4], yield the existence of the random
variable ϕn · (N −BN )∞ = limt↑∞ ϕn · (N −BN )t. The Burkholder-Davis-Gundy inequality
yields that ϕn · (N −BN ) is a uniformly integrable martingale as claimed.

In particular, it follows that the process Yt = ϕ2 ·Ntan(t∧π/2) is a special semimartingale
on the whole time line with

BYt =

∫ tan(t∧π/2)

0

ϕ2
udu, t ≥ 0.

Statements (1)–(3) now follow by taking µ = µY , ζt = 1/ϕtan(t)1t<π/2 and observing that
x ? µ = Y and

ζ · (x ∗ (µ− ν))t = ζ · (Y −BY )t = ϕ · (N −BN )tan(t∧π/2), t ≥ 0.

From limt↑∞ ϕ ·BNt =∞ we obtain ζ /∈ L(BY ), whereby ζ ∈ L(Y −BY ) yields ζ /∈ L(Y ) =
L(x ? µ).

3.3. Sigma-locally finite variation pure-jump processes and the
extended integral

The statements in the previous subsections can also be expressed in terms of the class V d
σ .

Proposition 3.12. If η ∈ Lσ(µ) then η?µ ∈ V d
σ . Conversely, if X ∈ V d

σ then x ∈ Lσ(µX)
and

X = X0 + x ? µX

= X0 + x1|x|>1 ∗ µX + x1|x|≤1 ∗ (µX − νX) + x1|x|≤1 ? ν
X .

(3.2)

Proof. The first part of the assertion follows directly from the definitions of Lσ(µX) and
V d
σ . The second equality in (3.2) is the consequence of Proposition 3.4.

Corollary 3.13. Let X ∈ V d
σ . Then the following statements are equivalent.

(i) X is special.
(ii) x ∈ Lσ(ν).

Furthermore, if either condition holds then BX = x ? νX .

Proof. By [6, Lemma I.4.24], the semimartingale X is special if and only if x1|x|>1 ∗ µX is
special. By [6, II.1.28], the finite variation pure-jump semimartingale x1|x|>1 ∗µX is special
if and only if x1|x|>1 ∈ L(νX), in which case the drift of x1|x|>1 ∗ µX equals x1|x|>1 ∗ νX .
The claim now follows from Proposition 3.12 and [6, Definition II.1.27].
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Corollary 3.14. Let X ∈ V d
σ , ζ ∈ L(X), and f be a twice continuously differentiable

function. Then ζ ·X, f(X) ∈ V d
σ with

ζ ·X = (ζx) ? µX ;

f(X) = f(X0) + (f(X− + x)− f(X−)) ? µX .

Proof. This follows from Proposition 3.12 in conjunction with Propositions 3.9 and 3.10.

Recall that semimartingale X is said to be quasi-left-continuous if ∆Xτ = 0 almost
surely on {τ < ∞} for each predictable time τ . Yoeurp [12] has shown that every local
martingale can be uniquely decomposed into two components, one quasi-left-continuous
and the other with jumps only at predictable times, such that the quadratic covariation of
the two components is zero. This motivates the following result.

Proposition 3.15. Every semimartingale X has the unique decomposition

X = X0 +Xqc +Xdp, (3.3)

where Xqc
0 = Xdp

0 = 0, Xqc is a quasi-left-continuous semimartingale, Xdp jumps only at
predictable times, and Xdp ∈ V d

σ . We then have [Xqc, Xdp] = 0.

Proof. Let τ denote any predictable time. Note that ∆Xτ = ∆Xdp
τ for any decomposition

of X by the quasi-left-continuity of Xqc. This proves the uniqueness of the decomposition.
Consider now the predictable process (x2 ∧ 1) ∗ νX . Applying [6, I.2.24] yields a family
(τk)k∈N of predictable times that exhausts its jumps. Define next the bounded predictable
process

ζ = 1{νX({·})>0} =

∞∑
k=1

1[[τk]].

Setting Xqc = (1− ζ) ·X and Xdp = ζ ·X then yields the decomposition in (3.3), the quasi-
left-continuity of Xqc, and [Xqc, Xdp] = 0. Finally, setting Dn = (Ω× [0,∞)) \

⋃∞
k=n[[τk]] in

Definition 3.1(i) for each n ∈ N yields Xdp ∈ V d
σ .

4. Classification of pure-jump processes

The following definition and theorem provide a precise formulation of the relationships
among the various families of pure-jump processes. For notation and setup, see Section 2. For
a review of the semimartingale topology on the space of semimartingales S , see Appendix A.

Definition 4.1. Consider the following subsets of S .

� J 1: the class of quadratic pure-jump processes, i.e., those semimartingales X that
satisfy [X,X]c = [X,X]− x2 ∗ µX = 0 (see Protter [11, p. 63]).

� J 2: the class of pure-jump processes, i.e., those semimartingales X that satisfy

X = X0 +

∞∑
k=1

∆Xτk1[[τk,∞[[ (4.1)

in the semimartingale topology for a family (τk)k∈N of stopping times.
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� J 3: the class of strong pure-jump processes, i.e., those semimartingales X ∈J 2 that
satisfy X = Y for all Y ∈J 2 with µY = µX and Y0 = X0.

� J 4 = V d
σ : the sigma-localized class of finite variation pure-jump processes.

� J 5 = V d: the class of finite variation pure-jump processes, i.e., those semimartingales
X that satisfy X = X0 + x ∗ µX .

� J 6: the class of piecewise constant processes with finitely many jumps on each finite
time interval.

Remark 4.2. Let us explain (4.1) along with the qualifier “in the semimartingale topol-
ogy.” To this end, for each n ∈ N, consider the process X(n) = X0 +

∑n
k=1 ∆Xτk1[[τk,∞[[.

Then (4.1) should be read as X = limn↑∞X(n) in the semimartingale topology, meaning
that

lim
n↑∞

(
sup
ζ:|ζ|≤1

E
[∣∣∣ζ ·X(k)

t − ζ ·Xt

∣∣∣ ∧ 1
])

= 0

for all t ≥ 0, where the supremum is taken over all predictable processes ζ with |ζ| ≤ 1. See,
in particular, Definition A.1. One might consider other topologies than the semimartingale
topology, for example the one induced by uniform convergence on compacts in probability.
However, such a choice turns out to be impractical as illustrated in Appendix B.

Theorem 4.3. We always have

J 1 ) J 2 ⊃J 3 ⊃J 4 ⊃J 5 ) J 6. (4.2)

In general, these set inclusions are strict. More precisely, there exists a filtered probability
space such that simultaneously we have

J 2 ) J 3 ) J 4 ) J 5. (4.3)

Moreover, the following statements hold.

(i) For all i ∈ {1, 2, 3, 4}, the families J i equal their sigma-localized class J i
σ; that is,

J i = J i
σ. Furthermore, by definition, J 4 = J 5

σ .
(ii) For all i ∈ {1, 2, 3, 4, 6}, the families J i are closed under stochastic integration.

(iii) For all i ∈ {1, . . . , 6}, the families J i are invariant under equivalent measure changes.
More precisely, with the obvious notation, if Q is locally absolutely continuous with
respect to P we have J i(P) ⊂J i(Q) for all i ∈ {1, . . . , 6}.

Theorem 4.3 is proved in Section 5. The strictness of the inclusion J 4 ( J 3 is of inter-
est. It says that there exist strong pure-jump processes, i.e., pure-jump processes uniquely
determined by their jump measure, that are not sigma-locally of finite variation. To prove
the strictness of this inclusion, Subsection 5.6 contains a specific example of such a process
X (Example 5.17). This example relies on a jump measure µX with predictable compensator
νX that supports a countable set of jump sizes.

To gain insight, consider the disintegrated form νX(dt,dx) = FXt (dx)dAXt , where FX is
a transition kernel (see Section 2 for more details). The jump measure µX in Example 5.17
relies on a kernel FX that has large atoms in a neighbourhood of zero. As it turns out, this
example is canonical. Indeed, Corollary 4.4 below states if X is a strong pure-jump process
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whose associated jump size kernel does not allow for too many large atoms, then X must
be sigma-locally of finite variation.

We have already observed that a process X ∈ J 4 ⊂ J 3 is uniquely described by
its jump measure. The following corollary of the proof of Theorem 4.3 provides explicit
characterizations of the processes in J 4 in relation to the bigger classes J 1,J 2, and J 3.
A further analytic representation for such processes has been provided in Proposition 3.12.

Corollary 4.4. Let X denote a process. Then the following statements are equivalent.

(i) X ∈J 4 = V d
σ .

(ii) X ∈J 3 and(
lim sup
x↓0

xFX({x})

)
∧

(
lim sup
x↑0

|x|FX({x})

)
= 0, (P× dAX)–a.e. (4.4)

(iii) X ∈J 2 and ∫
|x|1|x|≤1F

X(dx) <∞, (P× dAX)–a.e. (4.5)

(iv) X ∈J 1, (4.5) holds,
∫ ·

0
|
∫
x1|x|≤1F

X
t (dx)|dAXt <∞, and

BX[1] =

∫ ·
0

(∫
x1|x|≤1F

X
t (dx)

)
dAXt = x1|x|≤1 ? ν

X .

Here BX[1] denotes the drift of X − x1|x|>1 ∗ µX ; see also Section 2.

Corollary 4.4 is proved in Subsection 5.5. Note that the condition in (4.4) is satisfied, for
example, if FX is atomless (P× dAX)–a.e.

The following is a corollary of the inclusion J 2 ⊂J 1, stated in Theorem 4.3. If X ∈J 1

is predictable then it is well known that X is a finite-variation process. The next assertion
illustrates that restricting oneself to J 2 yields a finite-variation pure-jump process.

Corollary 4.5. If X ∈J 2 is predictable then X ∈J 5 = V d.

Proof. Since X ∈ J 2 ⊂ J 1 is predictable we have that X is a finite-variation process.
But then the convergence in (4.1) is actually in finite-variation and X is the sum of its
jumps, concluding the proof.

We conclude this section with a remark on the process Xdp ∈ V d
σ of the semimartingale

decomposition in Proposition 3.15. Observe that the family of predictable times T = (τk)k∈N
from the proof of Proposition 3.15 exhausts the jumps of Xdp. Simultaneously, Theorem 4.3
yields Xdp ∈J 2. A priori, it is not clear that T is good enough to approximate Xdp in J 2

because the membership of J 2 only ever guarantees one exhausting sequence of stopping
times (with the desired convergence property) and that sequence is not even predictable in
principle. The next result therefore appears to be rather strong.

Proposition 4.6. Let X satisfy X = Xdp in the notation of Proposition 3.15. Let (τk)k∈N
be any sequence of predictable times that exhausts the jumps of X. Then (τk)k∈N also ap-
proximates X in J 2, i.e., we have X =

∑∞
k=1 ∆Xτk1[[τk,∞[[ in the semimartingale topology.



12

Proof. Apply Lemma A.3(iii) below with the same sequence (Dn)n∈N as in the proof of
Proposition 3.15.

For a related statement about the summability of jumps of a semimartingale X = Xdp

at predictable times, see Galtchouk [5]. There it is shown that for any sequence (τk)k∈N of
predictable times that exhausts the jumps of X the limit limn↑∞

∑n
k=1 ∆Xτk1{τk≤t} exists

almost surely for each t ≥ 0. (Only the case when X is a local martingale is considered,
however the extension to the general case is straightforward.)

5. Proof of Theorem 4.3 (and of Corollary 4.4)

This section contains the proof of this paper’s main theorem. It is split up in six subsections.
Subsections 5.1, 5.2, and 5.3 provide the proofs of Theorem 4.3(i), (ii), and (iii), respectively.
Subsection 5.4 yields the set inclusions in (4.2). Then Subsection 5.5 focuses on the proof
of Corollary 4.4, while Subsection 5.6 concludes with a proof of (4.3), namely the strictness
of the inclusions.

5.1. Proof of Theorem 4.3(i)

In this subsection we argue that J i = J i
σ for all i ∈ {1, 2, 3, 4}. Indeed, fix X ∈J 1

σ and
the corresponding sigma-localizing sequence (Dk)k∈N of predictable sets. Then

[X,X]c =

(
lim
k↑∞

1Dk

)
· [X,X]c = lim

k↑∞
(1Dk · [X,X]c) = lim

k↑∞
[1Dk ·X,1Dk ·X]

c
= 0,

which yields X ∈ J 1. As J 5 = V d is stable under sigma-stopping, [7, Proposition 2.1]
yields the statement for i = 4.

The cases i = 2 and i = 3 follow from Lemmata 5.3 and 5.4. Before stating and proving
them, we first present a useful tool for pure-jump processes in the next lemma.

Lemma 5.1. Let (X(k))k∈N ⊂J 2 be a sequence of pure-jump processes such that X
(k)
0 = 0

and [X(k), X(l)] = 0 for all k, l ∈ N with k 6= l. Then the following two statements are
equivalent.

(I)
∑∞
k=1[X(k), X(k)] < ∞ and

∑∞
k=1B

X(k)[1] converges in the S –topology to a process
B.

(II)
∑∞
k=1X

(k) converges in the S –topology to a process X.

If one (hence both) of these conditions hold then BX[1] = B,
∑∞
k=1 ∆X(k) = ∆X, and X is

a pure-jump process.

Proof. Thanks to Lemma A.4(iii) it suffices to argue thatX is a pure-jump process provided

the two statements hold. For each k ∈ N we have a sequence (τ
(k)
n )n∈N of stopping times (by

possibly setting τ
(k)
n =∞ for n large enough if X(k) has only finitely many jumps) such that

X(k) =
∑∞
n=1 ∆X

(k)

τ
(k)
n

1
[[τ

(k)
n ,∞[[

in the S –topology and ∆X
(k)

τ
(k)
n

6= 0 on {τ (k)
n < ∞}. Thanks

to Lemma A.4(iii) we have ∆X
τ
(k)
n

= ∆X
(k)

τ
(k)
n

on {τ (k)
n <∞} for all k, n ∈ N. Furthermore,

(τ
(k)
n )k,n∈N exhausts the jumps of X.
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Next, for each m ∈ N, let Km and Nm be the smallest integers such that

dS

(
X,

Km∑
k=1

X(k)

)
≤ 1

2m

and

dS

(
X(k),

Nm∑
n=1

∆X
(k)

τ
(k)
n

1
[[τ

(k)
n ,∞[[

)
≤ 1

2mKm
for all k ∈ {1, · · · ,Km}.

By a standard diagonalization argument we can now construct a sequence of stopping times
(τi)i∈N such that

lim
m↑∞

dS

(
X,

m∑
i=1

∆Xτi1[[τi,∞[[

)
= 0,

yielding the statement.

Corollary 5.2. The sum of two pure-jump processes whose quadratic covariation is zero
is again a pure-jump process.

The next two lemmata exploit the fact that J 2 is stable under sigma-stopping thanks
to Lemma A.3(ii).

Lemma 5.3. If X ∈ S is sigma–locally a pure-jump process then it is a pure-jump process.

Proof. By assumption there exists a nondecreasing sequence (Dk)k∈N of predictable sets
such that

⋃
k∈NDk = Ω× [0,∞) and 1Dk ·X is a pure-jump process. With D0 = ∅, define

Dk = Dk \Dk−1 for all k ∈ N and note that X(k) = 1Dk ·X is also a pure-jump process as

J 2 is stable under sigma-stopping. Moreover, we have [X(k), X(l)] = 0 for all k, l ∈ N with
k 6= l and

n∑
k=1

X(k) =

n∑
k=1

(
1Dk ·X

)
= 1Dn ·X, n ∈ N,

which converges in the S –topology to X (as n ↑ ∞) thanks to Lemma A.3(iii). Hence by
Lemma 5.1, X is a pure-jump process.

Lemma 5.4. If X ∈ S is sigma–locally a strong pure-jump process then it is a strong
pure-jump process.

Proof. By assumption there exists a nondecreasing sequence (Dk)k∈N of predictable sets
such that

⋃
k∈NDk = Ω× [0,∞) and 1Dk ·X is a strong pure-jump process. Assume there

exists a pure-jump process Y with µY = µX and Y0 = X0 but Y 6= X. Since limk↑∞(1Dk ·
X) = X −X0 and limk↑∞(1Dk · Y ) = Y − Y0 in the S –topology thanks to Lemma A.3(iii),
there exists some k ∈ N such that 1Dk · X 6= 1Dk · Y . This, however, contradicts the
assumption since 1Dk ·Y ∈J 2 for each k ∈ N because J 2 is stable under sigma-stopping.
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5.2. Proof of Theorem 4.3(ii)

In this subsection we argue that J i is closed under stochastic integration for all i ∈
{1, 2, 3, 4, 6}. First, the cases i = 1 and i = 6 are clear. The case i = 4 follows from
Corollary 3.14.

For the case i = 2, assume that X ∈ J 2 and fix ζ ∈ L(X). We need to argue that
ζ · X ∈ J 2. Thanks to Theorem 4.3(i) (see also Lemma 5.3), we may assume that |ζ| is
bounded. The statement then follows directly from the definition of S –topology.

The remaining case i = 3 follows from the next lemma.

Lemma 5.5. Let X ∈ J 3 and ζ ∈ L(X). If Y ∈ J 2 is a pure-jump process with
µY = µζ·X then Y = ζ ·X.

Proof. Note that

Z =

(
1{ζ 6=0}

1

ζ

)
· Y + 1{ζ=0} ·X

satisfies µZ = µX . Moreover, Z is a pure-jump process thanks to Corollary 5.2 in conjunction
with the closedness of J 2 under stochastic integration. Since X ∈J 3 we get Z = X. This
again yields that

Y = 1{ζ=0} · Y + 1{ζ 6=0} · Y = 1{ζ=0} · Y + ζ · Z = 1{ζ=0} · Y + ζ ·X.

We conclude after observing that µ1{ζ=0}·Y = 0 and 1{ζ=0} · Y ∈J 2, hence 1{ζ=0} · Y = 0.
The last step relies on the fact that if X ∈J 2 and µX = 0 then X = 0; i.e., a pure-jump
process that has no jumps has to equal the zero process.

5.3. Proof of Theorem 4.3(iii)

In this subsection we argue that if Q is locally absolutely continuous with respect to P we
have J i(P) ⊂J i(Q) for all i ∈ {1, . . . , 6}. The cases i = 1, i = 5, and i = 6 are clear. The
case i = 2 follows from Lemma A.3(vi). The case i = 4 is a consequence of Proposition 3.12
and Remark 3.2.

The remaining case i = 3 follows from Lemma 5.7. It requires the following result regard-
ing the lift of a pure-jump process from J 2(Q) to J 2(P).

Lemma 5.6. Let Z denote a nonnegative P–martingale, Q a probability measure that
satisfies dQ/dP|Ft

= Zt for all t ≥ 0, and Y an element of J 2(Q). Assume that there
exists some stopping time σ such that Y = Y σ, P–almost surely, and Zσ does not hit zero
continuously, P–almost surely, Then there exists a P–semimartingale Y↑ ∈ J 2(P) with
Y↑ = Y , Q–almost surely, and Y↑ = Y σ↑ , P–almost surely.

Proof. Let (τk)k∈N denote a sequence of stopping times such that Y = Y0+
∑∞
k=1 ∆Yτk1[[τk,∞[[

in the S –topology under Q. We may now assume that Y0 = 0 and {τk <∞}∩{Zτk = 0} = ∅
for all k ∈ N. With these assumptions in place, we have [∆Yτk1[[τk,∞[[,∆Yτl1[[τl,∞[[] = 0 for
all k, l ∈ N with k 6= l and

∑∞
k=1[∆Yτk1[[τk,∞[[,∆Yτk1[[τk,∞[[] <∞, P–almost surely. Consider

next the sum B(n) =
∑n
k=1B

∆Yτk1[[τk,∞[[[1](P) for each n ∈ N. Suppose for the moment that
(B(n))n∈N converges in the S –topology under P. Then Lemma 5.1 yields a limiting process
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Y↑ ∈J 2(P) and Lemma A.3(vi) yields that Y↑ = Y , Q–almost surely. Clearly, we then also
have Y↑ = Y σ↑ , P–almost surely.

We still need to argue the convergence of the P–drifts (B(n))n∈N in the S –topology under
P. To this end, we will first argue hat limn↑∞B(n) = B in the S –topology under Q for some
predictable, Q–almost surely finite variation process B. To see this, note that Y ∈J 2(Q)
and Lemma A.4(i) in conjunction with Lemma A.3(vi) yield that(

n∑
k=1

∆Yτk1[[τk,∞[[[1]

)
n∈N

and

(
n∑
k=1

∆Yτk1[[τk,∞[[[1]−B(n)

)
n∈N

both converge in the S –topology under Q. This yields the convergence of (B(n))n∈N in the
S –topology under Q to some process B, which may be chosen predictable by Lemma A.3(v).
By Lemma A.3(iv), we have [B,B]c = 0, hence B is of finite variation under Q. We also also
have B = Bσ, Q–almost surely, and may assume that B = Bσ, P–almost surely. Similarly,
we may assume that B has right-continuous paths, P–almost surely.

Note that the first time σ′ that B is of infinite variation is predictable since the total-
variation process of B is predictable; hence EP

σ′−[∆Zσ′ ] = 0 on {σ′ <∞}. Since B is of finite
variation, Q–almost surely, we conclude that σ′ =∞, P–almost surely. Hence B is of finite
variation, P–almost surely, and has left limits. It suffices to argue now that the variations of
(B−B(n))n∈N converge to zero in probability under P. As they do under Q and as the first
time σ′′ that the variations of (B−B(n))n∈N do not converge to zero is predictable, we may
argue again that σ′′ =∞, P–almost surely. This yields limn↑∞B(n) = B in the S –topology
under P, concluding the proof.

Lemma 5.7. Let Q be a probability measure that is locally absolutely continuous with
respect to P and let X ∈ J 3(P). If Y ∈ J 2(Q) is a pure-jump process with µY = µX ,
Q–almost surely, then Y = X, Q–almost surely.

Proof. For eachm ∈ N, let σm be the first time that the nonnegative martingale (dQ/dP|Ft)t≥0

crosses the level 1/m. Then Xσm ∈J 3(P) for each m ∈ N by Lemma 5.5 and limm↑∞ σm =
∞, Q–almost surely. Hence, thanks to Lemma 5.4 applied under Q, we may and shall as-
sume from now on that X = Xσ, where σ = σm for some m ∈ N. Let Y ∈ J 2(Q) satisfy
µY = µX , Q–almost surely, and Y0 = X0. Then Y = Y σ and Lemma 5.6 yields Y↑ ∈J 2(P)
with Y↑ = Y , Q–almost surely, and Y↑ = Y σ↑ , P–almost surely.

Define now the P–semimartingale Y ′ = Y↑+(∆Xσ−∆Y↑σ)1[[σ,∞[[. Then we have µY
′

= µX

and Y ′ = Y , Q–almost surely. Since X ∈ J 3(P) we thus have Y ′ = X, P–almost surely,
yielding Y = Y ′ = X, Q–almost surely, as required.

5.4. Proof of the set inclusions in (4.2)

Lemma A.3(iv) yields the inclusion J 1 ⊃J 2. The strictness of this inclusion follows from
observing, for example, that Xt = t for all t ≥ 0 satisfies X ∈ J 1 \J 2. The inclusions
J 2 ⊃ J 3 and J 4 ⊃ J 5 ⊃ J 6 are clear. Since the deterministic semimartingale X =∑∞
k=1 k

−21[[1/k,∞[[ satisfies X ∈J 5 \J 6, we also have the strictness of the last inclusion.
To see J 3 ⊃ J 4, consider now X ∈ J 5. By definition of the S –topology every

exhausting sequence for X also yields an approximating sequence of stopping times for X in
J 2. This shows J 5 ⊂J 2, and in fact J 5 ⊂J 3. Hence Lemma 5.4 yields J 4 = J 5

σ ⊂
J 3
σ = J 3.



16

5.5. Proof of Corollary 4.4 and the strictness of the inclusion
J 2 ⊃ J 3

Let us outline here the proof.

� Assume that Corollary 4.4(i) holds. Then Proposition 3.12 yields that x ∈ Lσ(µX).
Thanks to Proposition 3.4 we moreover have x1|x|<1 ∈ Lσ(νX). Lemma 3.3, the set
inclusions of (4.2), proven in Subsection 5.4, and the representation in (3.2) yield that
Corollary 4.4(ii)–(iv) also hold.

� Assume that Corollary 4.4(iv) holds. Thanks to Proposition 3.4 and Lemma 3.3 we
then have x ∈ Lσ(µX) and

x ? µX = x1|x|>1 ∗ µX + x1|x|≤1 ∗ (µX − νX) + x1|x|≤1 ∗ νX .

However, the right hand side of the last display is exactly X − X0, thanks to the
representation in [6, II.2.34] for quadratic pure-jump processes X, namely

X = X0 + x1|x|>1 ∗ µX + x1|x|≤1 ∗ (µX − νX) +BX[1]. (5.1)

Hence X −X0 = x ? µX and Proposition 3.12 then yields the implication from (iv) to
(i) in Corollary 4.4.

� Assume that Corollary 4.4(iii) holds. Then Lemma 5.8(i) below yields that Corol-
lary 4.4(i) also holds.

� Assume that Corollary 4.4(ii) holds. Then Lemma 5.11 below yields that Corol-
lary 4.4(i) also holds.

� Finally, Lemma 5.12 shows that the inclusion J 2 ⊃J 3 is usually strict.

Lemma 5.8. Let X ∈J 2 be a pure-jump semimartingale and define the predictable set

D =

{
(ω, t) :

∫
|x|1|x|≤1F

X
t (dx) <∞

}
.

Then the following statements hold.

(i) We have 1D ·X ∈ V d
σ .

(ii) The following equalities hold.

D =

{
(ω, t) :

∫
x+1x+≤1F

X
t (dx) <∞

}
=

{
(ω, t) :

∫
x−1x−≤1F

X
t (dx) <∞

}
, (P× dAX)–a.e.

(iii) There exists a predictable process βX with |βX | ·AX <∞ such that BX[1] = βX ·AX .
Moreover, on D we have βX =

∫
x1|x|≤1F

X(dx), (P× dAX)–a.e.

Proof. For (i), thanks to Theorem 4.3(ii) (or the fact that J 2 is stable under sigma-
stopping), we may assume that X = 1D ·X. Define now the predictable sets

Dk =

{
(ω, t) :

∫
|x|1|x|≤1F

X
t (dx) ≤ k

}
, k ∈ N,
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and Dk = Dk \Dk−1 with D0 = ∅. Again X(k) = 1Dk ·X is a pure-jump process for each

k ∈ N. Moreover, by Proposition 3.4 and Lemma 3.3, x ∈ Lσ(µX
(k)

) for each k ∈ N. Since

by (4.2) x ? µX
(k) ∈ J 4 ⊂ J 3 we have X(k) = x ? µX

(k)

for each k ∈ N. Thanks to
Proposition 3.12 this yields

BX
(k)[1] =

∫ ·
0

1Dk(t)

(∫
x1|x|≤1F

X
t (dx)

)
dAXt , k ∈ N.

Hence by Lemmata A.3(iii) and 5.1 we have∫ ·
0

1Dn(t)

(∫
x1|x|≤1F

X
t (dx)

)
dAXt

converges in the S –topology (as n ↑ ∞) to a finite variation process, yielding the result.
To see (ii), fix κ > 0 and consider the predictable set

D′ =

{
(ω, t) :

∫
x−1x−≤1F

X
t (dx) < κ

}
.

By symmetry, it suffices now to argue that 1D′x
+1x+≤1ν

X <∞. As above, we may assume
that X = 1D′ ·X. Then x− ∗ µX < ∞ and (A.1) with ζ = 1 yield that also x+ ∗ µX < ∞;
hence x+1x+≤1 ∗ νX <∞ as required.

For (iii) Lebesgue’s decomposition of measures yields a predictable set D̃ and a predictable
process βX such that 1D̃ ·A

X = 0, |βX | ·AX <∞, and BX[1] = 1D̃ ·B
X[1] +βX ·AX . Next,

note that 1D̃ ·X is also a pure-jump process and x2 ∗ ν1D̃·X[1] = 1D̃x
2 ∗ νX[1] = 0, yielding

1D̃ ·X[1] = 0, hence 1D̃ · B
X[1] = 0. The second assertion of (iii) follows directly from (i)

and Proposition 3.12.

Lemma 5.9. Let µ be a jump measure with x2 ∗ µ < ∞. Moreover, let (f (k))k∈N and
(g(k))k∈N denote two nonincreasing sequences of strictly positive predictable processes. For
each k ∈ N, define

β(k) =

∫
x1{x∈[−1,−g(k)]∪[f(k),1]}F (dx).

If |β(k)| · A < ∞ for each k ∈ N and β(k) · A converges in the S –topology (as k ↑ ∞) to a
process B, then there exists a pure-jump process X with µX = µ and BX[1] = B.

Proof. Note that∫
|x|1{x∈[−1,−g(k)]∪[f(k),1]}F (dx) <∞, (P× dA)–a.e., k ∈ N,

by the strict positivity of g(k) and f (k). Hence by assumption and Propositions 3.4 and 3.12,
x1|x|=1, x1{x∈(−g(k−1),−g(k)]∪[f(k),f(k−1))} ∈ Lσ(µ), X(0) = x1|x|=1 ? µ ∈ V d

σ ⊂J 2, and

X(k) = x1{x∈(−g(k−1),−g(k)]∪[f(k),f(k−1))} ? µ ∈ V d
σ ⊂J 2, k ∈ N,

where g(0) = f (0) = 1. An application of Lemma 5.1 now concludes.
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The following lemma complements Lemma 5.8(ii)&(iii). Given a jump measure µ and a
predictable process β, both satisfying technical conditions, it constructs a pure-jump process
X with µX = µ and drift rate β on the predictable set where the jump sizes do not integrate.

Lemma 5.10. Let µ be a jump measure with x2 ∗ µ <∞ and(
lim sup
x↓0

xF ({x})

)
∧

(
lim sup
x↑0

|x|F ({x})

)
= 0, (P× dA)–a.e. (5.2)

Assume that the predictable set

D =

{
(ω, t) :

∫
|x|1|x|≤1Ft(dx) <∞

}
satisfies

D =

{
(ω, t) :

∫
x+1x+≤1Ft(dx) <∞

}
=

{
(ω, t) :

∫
x−1x−≤1Ft(dx) <∞

}
, (P× dA)–a.e.

(5.3)

and let β denote any nonnegative predictable process such that∫ ·
0

1Dc(t)|βt|dAt <∞.

Then there exists a pure-jump process X ∈J 2 such that µX = µ and

BX[1] =

∫ ·
0

(
1D(t)

∫
x1|x|≤1Ft(dx) + 1Dc(t)βt

)
dAt.

Proof. Consider the predictable sets

D′ = Dc ∩

{
(ω, t) : lim sup

x↓0
xFt({x}) = 0

}
; D′′ = Dc \D′.

By Corollary 5.2, symmetry, and Subsection 3.3 we may assume that D′′ = ∅, 1|x|>1 ∗µ = 0,
µ = 1D′µ, and β = 1D′β.

To make headway, consider the predictable process

c = inf {ε > 0 : εF ({ε}) > 1} ∧ 2

and note that c > 0 by assumption. Next, consider the process

d = 1D′c + 1D′ sup

{
ε > 0 : β +

∫
|x|1x∈[−1,−ε]F (dx) ≥

∫
x1{x∈[c,1]}F (dx)

}
.

Then by (5.3), d > 0 and since

{(ω, t) : dt ≥ ε} =

{
(ω, t) :

∫
|x|1x∈[−1,−ε]Ft(dx) ≥

∫
x1{x∈[c,1]}Ft(dx)− β

}
∈ P,
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for all ε ∈ (0, 1], it is easy to see that d is predictable. Next, define the processes

g(k) = d ∧ 1

k
, k ∈ N;

f (k) = 1D′c + 1D′ sup

{
ε > 0 :

∫
x1x∈[ε,1]F (dx) ≥ β +

∫
|x|1{x∈[−1,−g(k)]}F (dx)

}
, k ∈ N.

Similarly as for d we may argue that f (k) > 0 and f (k) is predictable for each k ∈ N. Again
by (5.3), we also have limk↑∞ f (k) = 0 on D′. Note that we also have f (k) < c for each
k ∈ N.

Next, define

β(k) =

∫
x1{x∈[−1,−g(k)]∪[f(k),1]}F (dx), k ∈ N.

Since
β(k) ∈

[
β, β + f (k)F

({
f (k)

})]
⊂ [β, β + 1], k ∈ N,

we have |β(k)| ·A <∞ and∫ ·
0

β(k)dAt ∈
[∫ ·

0

βtdAt,

∫ ·
0

(
βt + f

(k)
t Ft

({
f

(k)
t

}))
dAt

]
, k ∈ N.

Since limk↑∞ f (k) = 0 on D′ we also have

lim
k↑∞

f (k)F
({
f (k)

})
= 0

by assumption. Hence, dominated convergence yields limk↑∞ β(k) · A = β · A in the S –
topology. An application of Lemma 5.9 now concludes.

Lemma 5.11. Let X ∈J 3 denote a strong pure-jump process such that (4.4) holds. Then
X ∈J 4.

Proof. We only need to argue that (4.5) holds. Recall Lemma 5.8(ii) and apply Lemma 5.10

with µ = µX and β̃ = 1 and β = −1. If (4.5) did not hold then we would obtain two pure-

jump processes X̃ and X with X̃ 6= X but with the same jump measures, contradicting the
fact that X ∈J 3. This concludes the proof.

Lemma 5.12. Assume that the filtered probability space is large enough so that it supports
a probability measure µ that satisfies (5.2), (5.3), and

P

[∫ ·
0

1{
∫
|x|1|x|≤1Ft(dx)=∞}dAt > 0

]
> 0.

Then J 2 6= J 3.

Proof. As in the proof of Lemma 5.11, consider the two predictable processes β̃ = 1 and
β = −1 and conclude by applying Lemma 5.10 twice.
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As an illustration of Lemma 5.12 and a preparation for the next subsection, let us now
discuss the Lévy situation by means of the following example. When X is a Lévy process we
abuse the notation to treat FX as a deterministic measure over R rather than a stochastic
process.

Example 5.13. Let X be an α–stable Lévy process without Brownian component. Specif-
ically, take FX(dx) = 1x 6=0|x|−1−αdx for all x ∈ R with 0 < α < 2 and AXt = t for all
t ≥ 0. Observe that X ∈ J 4 is equivalent to X ∈ J 5 since X is Lévy. Let us now write

β = B
X[1]
t /t, where t > 0, for the drift rate of X.

� If 0 < α < 1 and β =
∫
x1|x|≤1F

X(dx) = 0 then X belongs to J 5 \J 6.
� If 0 < α < 1 and β 6=

∫
x1|x|≤1F

X(dx) then X belongs to J 1 \J 2.
� If 1 ≤ α < 2 then X belongs to J 2 \J 3 for any value of β.

5.6. Proof of (4.3)

On finite probability spaces we have J 2 = J 5. However, in general, this is not true.
Lemma 5.12 already asserts that J 2 6= J 3 as long as the probability space is large enough.
The process X of the introduction shows that usually we have J 4 6= J 5. Example 5.17
below illustrates that J 3 6= J 4 is also possible.

Theorem 4.3 asserts that all these inequalities may hold simultaneously for some probabil-
ity space. To see that such a probability space exists it suffices to piece together these three
examples. For example, take the product of a probability space that allows for a process as
in Example 5.17 and another probability space that satisfies the assumptions of Lemma 5.12
and additionally allows for a process as in the introduction. As filtration consider the one of
Example 5.17 between time 0 and 1 and afterwards allow the filtration to be large enough
to allow for the other examples.

Example 5.17 requires a few technical prerequisites that we introduce now. Through-
out this subsection, FX and FX+ shall denote the natural filtration of a process X and its
right-continuous modification. Additionally, for purely technical reasons, throughout this
subsection we also assume to be on the canonical space as in Dellacherie and Meyer [2,
Definition IV.95].

Lemma 5.14. Let g denote a {0, 1}–valued FX–predictable function and X ∈ S a semi-
martingale. Then g(∆X) is FX–optional. Moreover, if τ is an FX–stopping time then
[[τ,∞]] = {g(∆X) = 1} for some {0, 1}–valued FX–predictable function g.

Proof. First, g(∆X) is optional as a composition of appropriately measurable functions.
Let OX now denote the FX–optional sigma algebra. It suffices to prove that OX ⊂ O,
where O =

⋃
g{g(∆X) = 1} with the union is taken over all {0, 1}–valued FX–predictable

functions. First note that O is a sigma algebra since the maximum of countably many
{0, 1}–valued predictable functions is again predictable. Next, taking g = 1E , with a slight
misuse of notation, for E either an event in the FX–predictable sigma algebra or in the Borel
sigma algebra on R, shows that O contains the FX–predictable sigma algebra and the one
generated by ∆X. Since the FX–predictable sigma algebra together with the sigma algebra
generated by ∆X generates OX (see [2, Theorem IV.97a]), we have indeed the inclusion
OX ⊂ O and the statement follows.
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Lemma 5.15. Assume that X is a Lévy process. For an FX+ –stopping time τ we then have
[[τ ]] = {g(∆X) = 1} for some {0, 1}–valued FX–predictable function g.

Proof. Since X is Feller, FX+ can be obtained from FX by augmenting it with the null sets
of FX

∞ . Hence there exists an FX–stopping time τ with τ = τ , P–almost surely. Thus, an
application of Lemma 5.14 concludes.

Lemma 5.16. Assume that X is a Lévy process with |∆X| ≤ 1 and assume that Y is an
FX+ –pure-jump process with µY = µX . Then there exists a nondecreasing sequence (f (n))n∈N
of {0, 1}–valued FX–predictable functions such that∫ ·

0

(∫ (
|x|f (n)

t (x)
)
FX(dx)

)
dt <∞, n ∈ N; (5.4)

lim
n↑∞

∫ ·
0

(∫ (
xf

(n)
t (x)

)
FX(dx)

)
dt = BY in the S –topology. (5.5)

Proof. Let (τk)k∈N be an exhausting sequence of FX+ –stopping times for the jumps of Y
such that Y =

∑∞
k=1 ∆Xτk1[[τk,∞[[ in the S –topology. By Lemma 5.15, there exists an

FX–predictable {0, 1}–valued function g(k) such that

∆Xτk1[[τk,∞[[ = xg(k)(x) ∗ µX , k ∈ N.

Observe also that∫ ·
0

(∫ (
|x|g(k)

t (x)
)
FX(dx)

)
dt = B|∆Xτk |1[[τk,∞[[ <∞, k ∈ N.

Since the elements of (τk)k∈N have disjoint support we may assume that f (n) =
∑n
k=1 g

(k)

is also {0, 1}–valued for each n ∈ N. Then clearly (5.4) holds and Lemma 5.1 yields that

lim
n↑∞

(∫ ·
0

(∫
xf

(n)
t (x)FX(dx)

)
dt

)
= lim
n↑∞

n∑
k=1

B∆Xτk1[[τk,∞[[ = BY

in the S –topology, yielding (5.5).

Example 5.17. Let X be a Lévy process with Lévy measure

FX(dx) =

∞∑
k=1

k232kδ1/(k23k)(dx) +

∞∑
k=1

k232kδ−1/(k23k)(dx), x ∈ R,

and without a drift and Brownian motion component; in particular, BX[1] = 0. Note that∫
(x2 ∧ |x|)FX(dx) = 2

∞∑
k=1

k232k 1

k432k
= 2

∞∑
k=1

1

k2
<∞.

Moreover, X is a pure-jump process by Lemma 5.1 with X(k) = x1|x|∈(1/(k+1),1/k] ∗ µX for
each k ∈ N.

Since
∫
|x|FX(dx) = ∞ it is clear that X /∈ V dσ . However, we claim that X is a strong

pure-jump process, i.e., X ∈J 3. Indeed, let Y denote any pure-jump process with µY = µX .
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Thanks to the canonical representation of quadratic pure-jump processes in (5.1) it suffices
to show that BY = 0.

To this end, thanks to Lemma 5.16, there exists a nondecreasing sequence (f (n))n∈N of
{0, 1}–valued FX–predictable functions such that (5.4) and (5.5) hold. Assume that BY 6= 0.
By Lemma 5.8(iii) there exist some κ ∈ N and a predictable set D such that

∫ ·
0
1D(t)|dBYt | >

0 and

1D sup
n∈N

∣∣∣∣∫ (xf (n)(x)
)
FX(dx)

∣∣∣∣ < 3κ

2
, (P× dt)–a.e. (5.6)

Consider now the predictable sets

A(n),+
t =

{
k ∈ N : f

(n)
t

(
1

k23k

)
= 1

}
, t ≥ 0, n ∈ N;

A(n),−
t =

{
k ∈ N : f

(n)
t

(
− 1

k23k

)
= 1

}
, t ≥ 0, n ∈ N,

along with their symmetric differences

A(n)
t =

(
A(n),+
t \ A(n),−

t

)
∪
(
A(n),−
t \ A(n),+

t

)
, t ≥ 0, n ∈ N.

Thanks to (5.4), k
(n)
t = maxA(n)

t < ∞ (with max ∅ = 0), (P × dt)–a.e., for each n ∈ N. If

k
(n)
t = 0 then

∫
(xf

(n)
t (x))FX(dx) = 0 for all t ≥ 0 and n ∈ N. If k

(n)
t ∈ N then∣∣∣∣∫ (xf (n)

t (x)
)
FX(dx)

∣∣∣∣ ≥ 3k
(n)
t −

k
(n)
t −1∑
k=1

3k ≥ 3k
(n)
t − 3k

(n)
t

2
=

3k
(n)
t

2
, t ≥ 0, n ∈ N.

Hence by (5.6), on D, we have maxA(n) < κ for all n ∈ N. We have just argued that

1D

∫ (
1|x|≤1/(κ23κ)xf

(n)(x)
)
FX(dx) = 0, (P× dt)–a.e., n ∈ N.

Thus

1D ·BY = lim
n↑∞

∫ ·
0

(
1D(t)

∫ (
1|x|>1/(κ23κ)xf

(n)
t (x)

)
FX(dx)

)
dt = 0

in the S –topology since 1D1|x|>1/(κ23κ)x∗µX ∈ V d, hence a strong pure-jump process. This

is a contradiction to the assumption that
∫ ·

0
1D(t)|dBYt | > 0. This shows that X is a strong

pure-jump process.

Appendix A: Émery’s semimartingale topology

Here we briefly review the definition and basic facts of the semimartingale topology (in
short, S –topology), introduced by Émery [4].

Definition A.1. Let (X(k))k∈N ⊂ S denote a sequence of semimartingales. We say that
this sequence converges to X ∈ S in the semimartingale topology (in short, S –topology) if

lim
k↑∞

(
sup
ζ:|ζ|≤1

E
[∣∣∣ζ0X(k)

0 + ζ ·X(k)
t − ζ0X0 − ζ ·Xt

∣∣∣ ∧ 1
])

= 0 (A.1)

for all t ≥ 0, where the supremum is taken over all predictable processes ζ with |ζ| ≤ 1.
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The space S equipped with this topology is a complete metric space [4, Theoreme 1],
say with distance dS . Note that if a sequence (X(k))k∈N ⊂ S converges in the S –topology
it also converges in the sense of uniform convergence on compacts in probability.

Remark A.2. In contrast to Émery [4], we have not assumed (nor excluded) that the
underlying filtration F be augmented by the P–null sets. Nevertheless, the cited results of
[4] below can be applied by choosing appropriate process modifications. For example, S
equipped with the S –topology is a complete metric space as any limit (in the augmented
filtration) can be identified with an F–semimartingale by taking appropriate modifications.
See, for example, Perkowski and Ruf [10, Appendix A] for a summary of these techniques.

We now collect some well known facts concerning the S –topology.

Lemma A.3. Let (X(k))k∈N ⊂ S denote a sequence of semimartingales with X
(k)
0 = 0.

Then the following statements hold.

(i) If the sequence (X(k))k∈N converges locally in the S –topology then it also converges
in the S –topology.

(ii) If limk↑∞X(k) = X in the S –topology for some semimartingale X ∈ S and if D is
a predictable set then limk↑∞(1D ·X(k)) = 1D ·X in the S –topology.

(iii) If (Dk)k∈N is a nondecreasing sequence of predictable sets such that
⋃
k∈NDk = Ω ×

[0,∞) and X is a semimartingale with X0 = 0 then limk↑∞(1Dk · X) = X in the
S –topology.

(iv) If limk↑∞X(k) = X in the S –topology for some semimartingale X ∈ S we have

lim
k↑∞

[X(k), X(k)] = [X,X] and lim
k↑∞

[X(k), X(k)]c = [X,X]c

in the S –topology.
(v) If limk↑∞X(k) = X in the S –topology for some semimartingale X ∈ S and if X(k)

is predictable for each k ∈ N then X has a predictable version.
(vi) Assume that the probability measure Q is locally absolutely continuous with respect to

P. If limk↑∞X(k) = X in the S –topology for some semimartingale X ∈ S under P
then also limk↑∞X(k) = X in the S –topology under Q.

Proof. First, (i) and (ii) follow from the definition of S –topology and (iii) and (iv) are ar-
gued in [4, Proposition 3 and Remarque 1 on p. 276]. To see (v), recall that also limk↑∞X(k) =
X (in the sense of uniform convergence on compacts); hence also almost surely along a sub-
sequence. In conjunction with Remark A.2 this yields the claim. Finally, (vi) is proved by
applying [4, Proposition 6] in conjunction with (i).

Next, we consider sums of semimartingales and their convergence in the S –topology.

Lemma A.4. Let (X(k))k∈N ⊂ S denote a sequence of semimartingales with X
(k)
0 = 0.

Then the following statements hold.

(i) If there exists C > 0 such that |∆X(k)| ≤ C for each k ∈ N, and if
∑∞
k=1[X(k), X(k)] <

∞, then
∑∞
k=1(X(k) −BX(k)

) converges in the S –topology to a local martingale.
(ii) If X(k) has finite variation on compacts for each k ∈ N and if

∑∞
k=1

∫ ·
0
|dX(k)| < ∞,

then
∑∞
k=1X

(k) converges in the S –topology to a finite variation process.
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(iii) Assume that
∑∞
k,l=1[X(k), X(l)]− < ∞. Then the following two statements are equiv-

alent.

(I)
∑∞
k=1[X(k), X(k)] <∞ and

∑∞
k=1B

X(k)[1] converges in the S –topology to a pro-
cess B.

(II)
∑∞
k=1X

(k) converges in the S –topology to a process X.

If one (hence both) of these conditions hold then BX[1] = B. If additionally [X(k), X(l)] =
0 for all k, l ∈ N with k 6= l then we also have

∑∞
k=1 ∆X(k) = ∆X.

Proof. We first argue (i). By localization and by Lemma A.3(i) we may assume that there
is a constant κ ≥ 0 such that

∑∞
k=1[X(k), X(k)] ≤ κ. Next, fix for the moment k ∈ N and

define the local martingale M (k) = X(k)−BX(k)

. Let (τm)m∈N be a nondecreasing sequence

of stopping times such that [M (k), BX
(k)

]τm is a uniformly integrable martingale for each
m ∈ N. Then we have

E
[[
M (k),M (k)

]
∞

]
= lim
m↑∞

E

[[
M (k),M (k)

]
τm

]
≤ lim
m↑∞

E

[[
X(k), X(k)

]
τm

]
= E

[[
X(k), X(k)

]
∞

]
.

The Burkholder-Davis-Gundy inequality now yields a constant κ′ > 0 such that

∞∑
k=1

E

[(
M (k)
∞

)2
]
≤ κ′

∞∑
k=1

E
[[
M (k),M (k)

]
∞

]
≤ κ′

∞∑
k=1

E
[[
X(k), X(k)

]
∞

]
≤ κ′κ.

Hence, Doob’s inequality yields that
∑∞
k=1M

(k) converges locally in H2 to a martingale;
see, for example, Kunita and Watanabe [8, Proposition 4.1] or Doléans-Dade and Meyer [3,
Lemme 1]. Hence by [4, Theoreme 2], (i) follows.

Let us now argue (ii). First,
∑∞
k=1X

(k) converges to a finite variation process X in the
sense of uniform convergence on compacts in probability. Next, note that

ζ ·
n∑
k=1

X(k) − ζ ·X ≤
∞∑

k=n+1

∫ ·
0

∣∣∣dX(k)
∣∣∣

for all predictable processes ζ with |ζ| ≤ 1. Hence, (ii) follows.
To see the implication from (I) to (II) in (iii), apply (i) to the sequence (X(k)[1])k∈N and

(ii) to (x1|x|>1 ∗ µX
(k)

)k∈N. For the reverse direction (II) to (I) note that since X is a semi-

martingale, the assumption and Lemma A.3(iv) yield directly that
∑∞
k=1[X(k), X(k)] <∞.

Moreover, as above, the sums corresponding to (X(k)[1] − BX
(k)[1])k∈N and (x1|x|>1 ∗

µX
(k)

)k∈N converge in the S –topology; hence so must the sums corresponding to (BX
(k)[1])k∈N.

Finally, if (I) and (II) hold then

X[1] =

∞∑
k=1

(
X(k)[1]−BX

(k)[1]
)

+B

in the S –topology, where the first term is a local martingale by (i) and B may be assumed
to be predictable and of finite variation thanks to Lemma A.3(v)&(iv).
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Let us additionally assume that [X(k), X(l)] = 0 for all k, l ∈ N with k 6= l. Then the
sum

∑∞
k=1 ∆X(k) is well defined since at most one summand is nonzero, (P×dAX)–a.e. By

Lemma A.3(iv) and the fact that
∑∞
k=1X

(k) converges to X also in the sense of uniform
convergence on compacts in probability we may conclude.

Appendix B: Replacing the S –topology by UCP
convergence

Here we briefly discuss the choice of the S –topology in the definition of J 2. Indeed, one may
define an alternative class J 2† ⊂ S , where the convergence in the S –topology is replaced
by uniform convergence on compacts in probability (ucp). That is, a semimartingale X ∈ S
is in J 2† if for a family (τk)k∈N of stopping times we have

lim
n↑∞

E

[
sup
s≤t

∣∣∣∣∣Xs −X0 −
n∑
k=1

∆Xτk1[[τk,∞[[(s)

∣∣∣∣∣ ∧ 1

]
= 0

for all t ≥ 0.
Note that the equivalence of (I) and (II) in Lemma 5.1 holds with convergence in S –

topology replaced by convergence in the sense of ucp in its statement. However, J 2† is not
stable under σ–stopping, i.e., if X ∈ J 2† and D is a predictable set then not necessarily
1D ·X ∈J 2†.

The new class J 2† contains all elements of J 2 because the semimartingale topology is
stronger than ucp convergence. Proposition B.1 below shows J 2† is in fact too large for
practical purposes or for representing ‘pure-jump’ processes.

Proposition B.1. Let X denote a Lévy process with |∆X| ≤ 1,
∫
x+FX(dx) = ∞, and

symmetric and atomless Lévy measure. Moreover, let W denote an independent Brownian
motion stopped when its absolute value hits 1. Then X + W ∈ J 2†; hence, in particular
J 2† \J 1 6= ∅ for sufficiently rich probability spaces.

Proof. Fix for the moment n ∈ N and let W (n) denote a piecewise constant approximation

of W with W
(n)
k/n+t = Wk/n for all k ∈ N and t ∈ [0, 1/n). Next, let B(n) =

∫ ·
0
b
(n)
t dt denote

the trailing continuous piecewise linear predictable approximation of W (n). By this we mean

the process B(n) such that B
(n)
0 = B

(n)
1/n = 0, B

(n)
2/n = W

(n)
1/n, B

(n)
3/n = W

(n)
2/n, · · · and b(n) is

constant on each interval [k/n, (k+ 1)/n) for k ∈ N. Then it is clear that limn↑∞B(n) = W
in the sense of ucp.

We now claim that there exist two nonincreasing sequences (c(n))n∈N and (d(n))n∈N of
piecewise constant predictable processes with c(n), d(n) ∈ (0, 1/n] such that∫

|x|1{x/∈(−g(n),f(n))}F
X(dx) <∞ and x1{x/∈(−g(n),f(n))} ∗ νX = B(n).

Then the statement follows by using the appropriate modification of Lemma 5.1.
To see the claim assume one has constructed g(n) and f (n) for some n ∈ N as required.

Consider now the intermediate predictable processes g = g(n) ∧ 1/(n + 1) and f = f (n) ∧
1/(n+ 1) and the intermediate piecewise constant predictable process

b = b(n+1) −
∫
x1{x/∈(−g,f)}F

X(dx).
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Whenever b > 0, one now sets g(n+1) = g and sets f (n+1) so that
∫
x1{x∈(f(n+1),f)}F

X(dx) =

b. When b < 0 one sets g(n+1) and f (n+1) in the opposite way. This construction satisfies
the requirements, hence concluding the proof.
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