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Abstract

We propose a new methodology for identifying and estimating demand in di�erentiated

products models when demand and cost data are available. The method deals with the

endogeneity of prices to demand shocks and the endogeneity of outputs to cost shocks by

using cost data rather than instruments. Further, we allow for unobserved market size. Using

Monte Carlo experiments, we show that our method works well in contexts where commonly

used instruments are invalid. We also apply our method to the estimation of deposit demand

in the US banking industry.
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1 Introduction

In this paper, we develop a new methodology for identifying and estimating models of di�eren-

tiated products markets. Our approach requires commonly used demand-side data on products'

prices, market shares and observed characteristics, and �rm-level cost data. The novelty of our

method is that it does not use instrumental variables (IV) to deal with the endogeneity of prices

to demand shocks in estimating demand. Instead, we use cost data for identi�cation and esti-

mation of demand parameters. Market-level demand and cost data tend to be available for large

industries that are subject to regulatory oversight. Examples include banking, telecommunica-

tions, and nursing home care. Such major sectors of the economy represent natural settings for

the application of our estimator.

The frameworks of interest for this paper are the logit and the random coe�cient logit models

of Berry (1994) and Berry et al. (1995) (hereafter, BLP), which have had a substantial impact

on empirical research in IO and various other areas of economics.1 These models of demand

incorporate unobserved heterogeneity in product quality, which may lead to price endogeneity

issues. Researchers predominantly use instruments to deal with such issues. As Berry and Haile

(2014), and others, point out, as long as there are valid instruments available, demand functions

can be identi�ed using market-level data.2

However, these models of demand have become more complex over time in order to incorpo-

rate the rich heterogeneities of agents, thus, requiring more instruments, and their interactions,

for identifying and estimating the parameters of interest. It is, in general, a challenge to con-

vincingly argue that all these instruments are valid. Through our Monte Carlo exercises as well

as an empirical application, we show how a small subset of invalid instruments can greatly bias

parameter estimates in unanticipated directions in nonlinear demand models. In contrast, our

approach based on the cost data tends to deliver consistent and reasonable parameter estimates.

Our main theoretical �nding is that by combining the demand and cost data, and by using

the equilibrium condition that marginal revenue equals marginal cost, one can jointly identify

1Leading examples from IO include measuring market power (Nevo (2001)), quantifying welfare gains from
new products (Petrin (2002)), and merger evaluation (Houde (2012) and Nevo (2000)). Applications of these
methods to other �elds include measuring media slant (Gentzkow and Shapiro (2010)), evaluating trade policy
(Berry et al. (1999)), and identifying sorting across neighborhoods (Bayer et al. (2007)). For a dynamic extension
of the model, see Gowrisankaran and Rysman (2012)

2Fox et al. (2012) establish identi�cation of discrete choice models with exogenous regressors. Berry and Haile
(2014) prove nonparametric identi�cation of a general market share function when the regressors are endogenous
but instruments are available. There has been some research assessing numerical di�culties with the BLP al-
gorithm (Dube et al. (2012) and Knittel and Metaxoglou (2014)), and the use of optimal instruments to help
alleviate these di�culties (Reynaert and Verboven (2014)). .
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the price coe�cients and a nonparametric cost function, without using any instruments. Our

methodology uses the inversion procedure developed in Berry (1994), and BLP, not only for the

demand side, as they do, but also for the cost side. They use this procedure to express marginal

revenue as a function of only observables and parameters. We show that when cost data is

available, both marginal revenue and marginal cost can be expressed in this way. This is because

we can use the observable cost (or expected cost conditional on other observables) to control

for the cost shock. Then, the �market structure� variables, such as the observed characteristics,

prices and market shares of rival �rms in the market, and market size, which enter in the marginal

revenue function, can be used as sources of variation for the identi�cation of price parameters,

subject to the exclusion restriction that they do not enter in the cost function. However, these

variables do not have to be instruments, that is, they do not need to be orthogonal to the

unobserved demand and cost shocks.3 Further, we show that we do not need any variation in

market size to identify and estimate the BLP-demand model but for logit, we do because of the

speci�c nature of the marginal revenue function it implies.

We show that our methodology works even if the true market size is unobservable and possibly

correlated with other observed and unobserved variables of the model. We follow Bresnahan and

Reiss (1991) partly in that we assume that the variables determining market size do not enter the

cost function. However, we do not exclude these variables from the demand function as they do.

We believe that our exclusion restriction is more reasonable because typically, the determinants

of market size are demographics, which are likely to a�ect demand but do not a�ect cost directly.

Our methodology requires relatively weak assumptions. The main requirement we have on

the nonparametric cost function is that it is strictly increasing in output and the cost shock. In

addition, marginal cost is strictly increasing in the cost shock. We also allow for measurement

errors in total cost and �xed cost, as well as, systematic over/under reporting of cost by �rms.

Further, our identi�cation strategy does not require information on the joint distribution of the

demand and cost shocks, as in MacKaye and Miller (2018).

It is important to note that we do not need data on marginal cost or markups. Also, knowl-

edge of the cost function is not necessary. If such information were available, it would be

straightforward to use the �rst order condition to identify the price parameters without any

3Petrin and Seo (2019) propose an identi�cation and estimation scheme that allows for observed and unobserved
characteristics in their demand equation to be endogenously determined. They skillfully exploit the optimal choice
of observed characteristics to create additional moments. However, in the BLP model of demand, the number
of �rst order conditions is less than the number of parameters. Therefore, additional moment restrictions are
required.
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instruments.4

The type of cost data we have in mind comes from �rms' income statements and balance

sheets, among other sources. Such data has been used extensively in a large parallel literature

on estimation of cost functions in empirical IO.5 Recently, some researchers have also started

incorporating cost data as an additional source of variation for identi�cation.6 However, most of

these researchers use instrumental variables (IVs) to identify demand.

For estimation, we propose a two-step Sieve Nonlinear Least Squares (SNLLS) estimator,

which avoids having to calculate expected cost conditional on observables, a procedure that is

subject to the Curse of Dimensionality. In this estimator, we use marginal revenue, which is a

parametric function, to control for the cost shock, rather than the conditional expected cost. We

prove that this estimator identi�es the true parameters, is consistent and asymptotically normal.

This estimator is semiparametric in that it assumes the parametric logit or the BLP demand and

a nonparametric cost function. We also show how this estimator can be adapted to accommodate

various data and speci�cation issues that arise in practice. These include endogenous product

characteristics, imposing restrictions on cost functions such as homogeneity of degree one in input

prices, dealing with the di�erence between accounting cost and economic cost, missing cost data

for some products or �rms, and multi-product �rms.

Through a set of Monte Carlo experiments for the BLP demand model, we illustrate how

our estimator delivers consistent parameter estimates even when the demand shock is not only

correlated with the equilibrium price and output, but also with the cost shock, input prices,

market size and observed characteristics of rival products. Further, we allow the cost shock to be

correlated with market size as well. In such a setting, there are no valid instruments to account

for price endogeneity. In particular, market size cannot work as an exogenous variation for the

supply side, and the orthogonality between the demand and cost shocks cannot be used as a

moment restriction for consistent estimation of price parameters. Hence, the IV estimates are

shown to be biased. Our numerical exercises also show that variation in market size is needed

4See Genesove and Mullin (1998), Wolfram (1999), Clay and Troesken (2003), Kim and Knittel (2003) and
Smith (2004), for examples of related research.

5Numerous studies (Aigner et al. (1977), Christensen and Greene (1976), Gollop and Roberts (1983) and
others) have used such data for various purposes such as to identify ine�ciency in production and economies of
scale or scope, to measure marginal costs, and to quantify markups for a variety of industries. For identi�cation,
researchers either use instruments for output or argue that output is e�ectively exogenous from �rms' point of
view in the market they study.

6Note that BLP also propose using cost data, if available, for a variety of purposes, including improving their
parameter estimates as well as understanding the relationship between prices and marginal costs. Crawford and
Yurukoglu (2012) use such data to estimate parameters of a bargaining model. Some researchers have also used
demand and cost data to test assumptions regarding conduct in oligopoly models. See, for instance, Byrne (2015).
Kutlu and Sickles (2012) use cost data to estimate market power while allowing for ine�ciency in production.
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for identifying the price parameters of the logit demand but not for the BLP demand model.

We then apply our methodology to the estimation of deposit demand in the US banking

industry. We �nd that our method works well. The magnitude of the estimated deposit interest

rate coe�cient is similar to the estimates obtained in the existing literature such as Dick (2008)

and Ho and Ishii (2012). Further, we �nd that the IV-based method yields a negative coe�cient

on the deposit interest rate whereas ours is positive which is what one would expect. These

results demonstrate that by comparing the IV-based parameter estimates and those based on

our approach, researchers can check the validity of their instruments.

The paper is organized as follows. In Section 2, we specify the standard di�erentiated prod-

ucts model and review the IV-based estimation approach used in the literature. In Section 3,

we explain our identi�cation strategy when demand and cost data are available. In Section 4,

we present the two-step SNLLS estimator and analyze its large sample properties. Section 5

contains our main Monte Carlo exercises. In Section 6, we apply our methodology to the esti-

mation of deposit demand in the banking industry. In Section 7, we conclude. The appendix

contains several proofs, additional Monte Carlo results and further details of the deposit demand

estimation exercise.7

2 Di�erentiated products models and IV estimation

In this section, we describe the standard di�erentiated products model that we adopt and provide

an overview of the IV estimation method. For more details, see Berry (1994), BLP, Nevo (2001)

and others. Most features of the model we discuss here are carried over to the next section where

we explain our cost data-based identi�cation strategy.

2.1 Di�erentiated products discrete choice demand models

In the standard model, consumer i in market m gets the following utility from consuming one

unit of product j:

uijm = xjmβ + pjmα+ ξjm + εijm,

where xjm is a 1×K vector of observed product characteristics, pjm is price, ξjm is the unobserved

product quality (or demand shock) that is known to both consumers and �rms but unknown to

researchers, and εijm is an idiosyncratic taste shock. The demand parameter vector is denoted

by θ =
[
α,β′

]′
, where β is a K × 1 vector.

7The data and code that support the �ndings of this study are available on request from Susumu Imai.
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It is assumed that there are M > 1 isolated markets.8 Market m has Jm + 1 > 2 products

whose aggregate demand across individuals is,

qjm = sjmQm,

where qjm denotes output, Qm denotes market size and sjm denotes market share. In the case

of the Berry (1994) logit demand model, εijm is assumed to have a logit distribution. Then, the

aggregate market share for product j in market m is,

sjm(θ) ≡ sj (pm,Xm, ξm;θ) =
exp (xjmβ + pjmα+ ξjm)∑Jm
k=0 exp (xkmβ + pkmα+ ξkm)

=
exp (δjm)∑Jm
k=0 exp (δkm)

, (1)

where pm = [p0m, p1m, ..., pJmm]′ is a (Jm + 1)× 1 vector,

Xm =


x0m

x1m

...

xJmm


is a (Jm + 1)×K matrix, ξm = [ξ0m, ξ1m, ..., ξJmm]′ is a (Jm + 1)× 1 vector, and

δjm ≡ xjmβ + pjmα+ ξjm (2)

is the �mean utility� of product j in market m. Using this de�nition, we can express the market

share in Equation (1) as sj (δ(θ)) ≡ sj (pm,Xm, ξm;θ) where δ(θ) = [δ0m(θ), δ1m(θ), . . . , δJmm(θ)]′.

Good j = 0 is labeled the �outside good� or �no-purchase option� that corresponds to not

buying any of the j = 1, . . . , Jm goods. This good's product characteristics, price, and demand

shock are normalized to zero (i.e., x0m = 0, p0m = 0, and ξ0m = 0 for all m), which implies

δ0m(θ) = 0. (3)

This normalization, together with the logit assumption for the distribution of εijm, identi�es the

level and scale of utility.

In BLP, or equivalently, the random coe�cient logit model, one allows the price coe�cient and

coe�cients on the observed characteristics to be di�erent for di�erent consumers. Speci�cally, α

8With panel data, the m index corresponds to a market-period.
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has a distribution function Fα (.;θα), where θα is the parameter vector of the distribution, and

similarly, β has a distribution function Fβ (.;θβ) with parameter vector θβ. The probability with

which a consumer with coe�cients α and β purchases product j is identical to that provided by

the market share formula in Equation (1). The aggregate market share of product j is obtained

by integrating over the distributions of α and β:

sj (pm,Xm, ξm;θ) =

ˆ
α

ˆ
β

exp (xjmβ + pjmα+ ξjm)∑Jm
k=0 exp (xkmβ + pkmα+ ξkm)

dFβ (β;θβ) dFα (α;θα) , (4)

where θ =
[
θ′α,θ

′
β

]′
. Letting µα to be the mean of α and µβ the mean of β, the mean utility is

de�ned to be

δjm ≡ xjmµβ + pjmµα + ξjm, (5)

with δ0m = 0 for the outside good.

2.1.1 Recovering demand shocks

For each market m = 1, . . .M , researchers are assumed to have data on prices pm, market

shares sm = [s0m, s1m, ..., sJmm]′ and observed product characteristics Xm for all the �rms in the

market. Given θ and this data, one can solve for the vector δm through market share inversion.

That is, if we denote sj (δm (θ) ;θ) to be the market share of �rm j predicted by the model,

market share inversion involves obtaining δm by solving the following set of Jm equations,

sj (δm (θ) , j;θ)− sjm = 0, for j = 0, . . . , Jm, (6)

and therefore,

δm (θ) = s−1 (sm;θ) . (7)

The vector of mean utilities that solves these equations perfectly aligns the model's predicted

market shares to those observed in the data.

IIn the logit model, Berry (1994) shows that we can easily recover mean utilities for product

j using its market share and the share of the outside good as δjm (θ) = log (sjm) − log (s0m),

j = 1, . . . , Jm. In the random coe�cient model, there is no such closed-form formula for mar-

ket share inversion. Instead, BLP propose a contraction mapping algorithm that recovers the

unique δjm (θ) that solves Equation (7) under some regularity conditions. In both cases, δ0m is

normalized to 0.
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With the mean utilities and parameters in hand, one can recover the structural demand

shocks straightforwardly from Equation (2) for the logit demand and Equation (5) for the BLP

demand.

2.1.2 IV estimation of demand

A simple regression of Equation (2) or (5) with δjm (θ) being the dependent variable and xjm

and pjm being the regressors would yield a biased estimate of the price coe�cient. This is

because �rms likely set higher prices for products with higher unobserved quality, which creates

a correlation between pjm and ξjm, violating the OLS orthogonality condition E[ξjmpjm] = 0.

Researchers use a variety of demand instruments to overcome this issue. In particular, they

construct a GMM estimator for θ by assuming that the following population moment conditions

are satis�ed at the true value of the demand parameters, denoted by θ0:

E[ξjm (θ0) zjm] = 0,

where zjm is an L × 1 vector of instruments that is correlated with xjm. Also, instruments are

required to satisfy the exclusion restriction that at least one variable in zjm is not contained in

xjm.

2.2 Cost function and supply

For each product j in market m, in addition to the data related to demand explained above,

researchers observe output qjm (hence, market size as well), an L × 1 vector of input prices

wjm and cost Cjm. The observed cost Cjm is assumed to be a function of output, input prices,

observed product characteristics and a cost shock υjm. That is,

Cjm = C (qjm,wjm,xjm, υjm; τ ) ,

where τ is a parameter vector. C () is assumed to be strictly increasing and continuously di�er-

entiable in output and the cost shock.

Assuming that there is one �rm for each product, �rm j's pro�t function is as follows:

πjm = pjm × qjm − C (qjm,wjm,xjm, υjm; τ ) .

Let MRjm be the marginal revenue of �rm j in market m. BLP assume that �rms act as
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di�erentiated products Bertrand price competitors. Therefore, the optimal price and quantity

of product j in market m are determined by the �rst order condition (F.O.C.) that equates

marginal revenue and marginal cost:

MRjm =
∂pjmqjm
∂qjm

= pjm + sjm

[
∂sj (pm,Xm, ξm;θ)

∂pjm

]−1

︸ ︷︷ ︸
MRjm

= MCjm =
∂C (qjm,wjm,xjm, υjm; τ )

∂qjm︸ ︷︷ ︸
MCjm

.

(8)

Note that given the market share inversion in Equation (6), and the speci�cation of mean

utility δm, ξm is a function of (pm, sm,Xm) and θ. Therefore, MRjm in Equation (8) can be

written as a function of observables and parameters as follows:

MRjm ≡MRj (pm, sm,Xm;θ) , (9)

whereMRj (pm, sm,Xm;θ) is the jth element of the vector of marginal revenue functions in mar-

ket m, denoted by MR (pm, sm,Xm;θ). Equations (8) and (9) imply that demand parameters

can potentially be identi�ed if there is data on marginal cost or even without such data, if the

cost function is known or can be estimated and its derivative with respect to output can be taken.

BLP assume that marginal cost is log-linear in output and observed product characteristics, i.e.,

MCjm = exp (wjmγw + qjmγq + υjm) (see their Equation 3.1). They then use instruments to

deal with the endogeneity of output to cost shocks and of prices to demand shocks. As long as

the parametric speci�cation of the supply side is accurate and there are enough instruments for

identi�cation, the demand side and the F.O.C.-based orthogonality conditions are su�cient for

identifying the demand parameters. We, in contrast, assume cost to be a nonparametric function

and use the observed cost to control for the cost shock. This point is further explained in Section

3.

2.2.1 Cost function estimation

As with demand estimation, one can recover unobserved cost shocks through inversion:

Cjm = C (qjm,wjm,xjm, υjm; τ )⇒ υjm = υ (qjm,wjm,xjm, Cjm; τ ) . (10)

Like demand estimation, there are important endogeneity concerns with standard approaches

to estimating cost functions. Speci�cally, output qjm is endogenously determined by pro�t-

maximizing �rms as in Equation (8), and is potentially negatively correlated with the cost shock
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υjm. That is, all else equal, less e�cient �rms tend to produce less. In dealing with this issue,

researchers have traditionally focused on selected industries where endogeneity can be ignored,

or used instruments for output.

The IV approach to cost function estimation typically uses excluded demand shifters as

instruments. Denoting this vector of cost instruments by z̃jm, one can estimate τ assuming

that the following population moments are satis�ed at the true value of the cost parameters τ 0:

E [υjm (qjm,wjm,xjm, Cjm; τ 0) z̃jm] = 0.

3 Identi�cation using cost data

In this section, we present our methodology for dealing with the endogeneity issues in identi�ca-

tion mentioned above. We propose using cost data in addition to demand data to identify price

parameters. We do so by using the control function approach. That is, given output, input prices

and observed product characteristics, we use the observed cost to control for the cost shock. We

focus primarily on the BLP model but also use logit demand in a simple example to illustrate

our identi�cation strategy. Instead of Equation (10), we use a nonparametric cost function. We

elaborate on our demand and cost structure further below.

To begin with, we assume that market size is observable. In Subsection 3.3, we demonstrate

how our methodology can be modi�ed to the case where market size is not observed, and thus

needs to be estimated.

3.1 Main assumptions

We �rst state all the main assumptions for our methodology. Most of these are standard as dis-

cussed in the previous section or simply describe the environment our methodology is applicable

to. From now on, we let the subscript 0 on parameters or variables indicate that they are at the

true values. For each market in the population, we attach a unique positive real number m as

an identi�er. Then, we assume m ∈ M, whereM is the set of all market identi�ers, and is an

uncountable subset of R+.

Assumption 1 Data Requirements: Researchers have data on outputs, product prices, market

shares, input prices, observed product characteristics, and total costs of �rms.

Note that market size can be derived from data on outputs and market shares. Thus, we

need to assume observability of only two of these three variables. In contrast to BLP, we require

10



data on total costs of �rms. But we do not need data on marginal cost.

Assumption 2 Isolated Markets: Outputs, market shares, prices and costs in market m are

functions of variables in market m.

Assumption 3 Common Input Prices within Markets: Input price wjm = wm for all j,m.

We make this assumption to show that we do not need within-market variation in input

prices. That is, relaxing it makes it easier for our methodology to work. The assumption is

reasonable as usually there is little within-market variation in input prices in the data.

Assumption 4 BLP demand: Market share sjm is speci�ed as in Equation (4). The distribu-

tions of α and each element of β are assumed to be independently normal, i.e., α ∼ N
(
µα, σ

2
α

)
,

βk ∼ N
(
µβk, σ

2
βk

)
, k = 1, . . . ,K. Further, µβk = 0, k = 1, . . . ,K; µα < 0.

Assumption 5 Equilibrium Concept: Bertrand-Nash equilibrium holds in each market. That

is, for any j = 1, . . . , Jm, m = 1, . . . , M , �rm j in market m chooses its price pjm to equalize

marginal revenue and marginal cost, given market size Qm and prices of other �rms in the same

market p−j,m.
9

The next assumption describes the support of variables that determine the equilibrium

outcomes in market m. Let the set of these variables be denoted by Vm. Then Vm ≡

(Qm,wm,Xm, ξm,υm), and let V ≡ {Vm}m∈M. Let V \ wlm be the set V without the ele-

ment wlm for any l = 1, 2, . . . , L. For other elements of V, the set V without the element is

similarly de�ned. The assumption below imposes substantially weaker restrictions on the sup-

port of the variables in V than is typical in the literature. In particular, it imposes minimal

restrictions on the joint distribution of these variables.

Assumption 6 Support of V: The support of Qm conditional on V \Qm can be any nonempty

subset of R+ for all m. The support of wljm conditional on V \ wljm is R+ for all l, j, m; the

support of xkjm conditional on V \ xkjm is either R or R+ for all k, j, m; and the support of

ξjm conditional on V \ ξjm is R. Finally, the support of υjm conditional on V \ υjm is R+.

9Note that we have assumed this for expositional purposes only. It is not required for identi�cation. As long
as MR is a one-to-one function of MC in equilibrium, and not necessarily equal to MC, we can still identify
the price parameters. This makes our framework applicable to �rms that are under government regulation or
organizational incentives or behavioral aspects that prevent them from setting MR =MC.
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Assumption 6 ensures that the variables in V are not subject to any orthogonality conditions,

which typically restrict the moments of a subset of the unobserved variables (ξm,υm) conditional

on the other variables to be zero. In other words, we do not require them to be econometrically

exogenous, and thus, Assumption 6 removes the validity of any conventional instruments.

Note that we do not impose any assumptions on the support of market size other than that

it is nonempty and positive. For logit, we require the conditional support to be R+ since as we

show later, market size variation is needed for the identi�cation of the price parameters of logit

but not for BLP.

The next two assumptions are about our nonparametric cost function.10

Assumption 7 Properties of the Cost Function: Let C∗jm denote true cost. Then,

C∗jm ≡ Cv (qjm,wm,xjm, υjm) + ef (wm,xjm, υjm) + ςjm, (11)

where Cv () is the variable cost component, which is a continuous function of q, w, x and υ,

strictly increasing, and continuously di�erentiable in q and v, and marginal cost is strictly in-

creasing in υ; ef () is the deterministic component of �xed cost, a continuous function of w, x

and υ and increasing in υ. The �xed cost shock ς is i.i.d., with mean zero and independent of

Vm. Further, for any q > 0, wl > 0, l = 1, . . . , L and x ∈ X , where X is the support of x,

limυ↘0
∂Cv (q,w,x, υ)

∂q
= 0, limυ↗∞

∂Cv (q,w,x, υ)

∂q
=∞.

Assumption 8 Measurement Error in Cost: Let Cjm be the observed cost. Then,

Cjm = C∗jm + eme (qjm,wm,xjm) + νjm, (12)

where eme () is a continuous function and νjm is i.i.d. with mean 0 and independent of Vm and

the �xed cost shock ςm.
11

The assumption implies that the measurement error in cost is eme (qjm,wm,xjm) + νjm,

where eme () is the deterministic component.12

10Note that we assume that market share sjm does not enter in the cost function. This restriction rules out
situations in which �rms with high market shares have buying power in the input market.

11We can also include xme,jm, a vector of additional variables that determine the deterministic component of
the measurement error as well as �xed cost. However, we omit these for the sake of expositional simplicity.

12We can include systematic misreporting of true costs. For example, if ν (C∗) is the systematic component of
the reported true cost, then, if �rms report costs truthfully but with an error, then ν (C∗) = C∗. Alternatively, if
�rms systematically under-report their true costs, then we could consider a speci�cation like ν (C∗) = νC∗ where
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Using Equations (11) and (12), we obtain

Cjm = Cv (qjm,wm,xjm, υjm) + ef (wjm,xjm, υ) + eme (qjm,wjm,x) + νjm + ςjm.

From now on, we call Cv (qjm,wm,xjm, υjm) + ef (wjm,xjm, υjm) + eme (qjm,wjm,x), i.e.,

the cost data minus the random components of the �xed cost and the measurement error to be

the deterministic component of cost or the cost function.

In the next subsection, we show that cost data together with other data and our assumptions

enables us to identify the parameters of the distribution of the random coe�cients on price

(µα, σα), as well as σβk , k = 1, . . . ,K. Note that we can only identify (µα0, σα0,σβ0) and ξ0jm +

xjmµβ0 in the absence of further restrictions imposed on the model. However, this information

is su�cient to identify marginal revenue, and thus, markup, which is of primary interest in most

empirical exercises in IO. The additional orthogonality assumption, E (xjmξjm) = 0, identi�es

µβ0. For the logit model of demand, we identify the price coe�cient α0 and ξ0jm + xjmβ0.

From now on, except when noted otherwise, we will denote the vector of true demand pa-

rameters we identify to be θ0. In particular, θ0 = α0 for the logit demand speci�cation and

θ0 =
(
µα0, σα0,σ

′
β0

)
for the BLP speci�cation.

3.2 The main result

In this subsection, we derive our main theoretical result, namely, that given our assumptions,

the parameters θc0 =
(
µα0, σα0,σ

′
β0

)
of the BLP model are identi�ed.

Since we allow for measurement error in the cost data and a random component in the

�xed cost, the �rst step in proving our results is to show that the expected cost conditional

on observables contains only the deterministic components of the cost function, which is done

in Lemma 1. We then provide an intuitive explanation of our identi�cation strategy using the

logit demand example and then develop two equivalent de�nitions of identi�cation using the cost

data. The �rst de�nition (De�nition 1) is based on the �rst order condition (Equation (8)) and

highlights the sources of variation for identi�cation as well as the exclusion restrictions. However,

since the control function approach leads to marginal cost becoming an unspeci�ed function of

output, input prices, observed product characteristics and the deterministic component of cost, it

is di�cult to use in proving identi�cation and thus, we develop a second de�nition of identi�cation

(De�nition 2) based on pairing of �rms that have the same output, input prices and observed

0 < ν < 1. Over-reporting could be captured by the same speci�cation with ν > 1. We omit these for the sake of
expositional simplicity.
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characteristics. We show that the two de�nitions are equivalent and then specify a condition on

marginal revenue that together with our assumptions ensures identi�cation in the BLP model.

Lemma 1 Let Assumptions 1-3, 5 and 7-8 be satis�ed, and let the marginal revenue function be

speci�ed as in Equation (9). Further, let R = {p, s,X, q,w, Q, j}, and let C̃ be the deterministic

component of cost. Then, for any �rm j in the population

E
[
C
∣∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

)]
= Cv (q,w,x, υ)+ef (w,x, υ)+eme (q,w,x) ≡ C̃.

Proof. From Assumption 7, marginal cost is strictly increasing in υ, and given any (q,w,x)

in the population, the support of marginal cost is R+. Therefore, given Assumption 5, for any

observation R = {p, s,X, q,w, Q, j} in the population, there exists a unique υ such that

MRj (p, s,X;θc0) = MC (q,w,x, υ) . (13)

Because Equation (13) determines a unique υ given (q,w,x), υ is a function of (q,w,x,MRj (p, s,X;θc0)).

Thus, Assumptions 7 and 8 result in

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

)]
= E

[
Cv (q,w,x, υ (q,w,x,MRj (p, s,X;θc0))) + ef (w,x, υ (q,w,x,MRj (p, s,X;θc0)))

+eme (q,w,x) + ς + ν
∣∣∣ (q̃ = q, w̃ = w, p̃ = p, s̃ = s, X̃ = X, j

) ]
= Cv (q,w,x, υ) + ef (w,x, υ) + eme (q,w,x)

In this subsection, we call a variable observable if it is directly observable in the population or

can be recovered as the expectation of a directly observable variable conditional on other directly

observable variables. Thus, C̃ is observed because it is the conditional expectation of observed

cost conditional on other observed data. From now on, we sometimes refer to the deterministic

component of cost as cost for convenience.

Before providing formal results, we outline the logic of our identi�cation argument. In par-

ticular, we �rst explain how we remove the need for instruments to deal with the endogeneity of

the supply shock. We use the following three equations, for �rm j in market m, for identi�cation:

sjm = qjm/Qm, (14)

14



MRj (pm, sm,Xm;θc0) = MC (qjm,wm,xjm, υjm) , (15)

C̃jm = Cv (qjm,wm,xjm, υjm) + ef (wm,xjm, υjm) + eme (qjm,wm,xjm) . (16)

If we had data on marginal cost, denoted by MCjm, we could just use Equation (15) for

identi�cation of θc0. Then, by substituting MCjm into the RHS, we would have a function of

only observables. For example, in the logit model, Equation (15) can then be written as:

pjm +
1

(1− sjm)α0
= MCjm,

and the price coe�cient α0 can be identi�ed as

α0 =
1

(1− sjm) (MCjm − pjm)
.

However, marginal cost is generally not observable. One could then consider estimating the cost

function C̃jm ≡ C (qjm,wm,xjm, υjm), and taking its derivative with respect to output to derive

the marginal cost. However, as discussed in the previous section, this strategy runs into the

potential endogeneity issue of output being correlated with the cost shock and thus requires the

use of instruments which we propose to avoid with our methodology.13

Instead, we use cost data to control for the cost shock. That is, we invert the cost function

in Equation (16) to derive

υjm = υ
(
qjm,wm,xjm, C̃jm

)
. (17)

Such inversion is possible because Assumption 7 implies that given output, input price and

observed characteristics, the deterministic component of cost is a strictly increasing function of

the cost shock. After substituting Equation (17) into Equation (15), the F.O.C. becomes:

MRj (pm, sm,Xm;θc0) = ψ
(
qjm,wm,xjm, C̃jm

)
, (18)

where ψ is an unspeci�ed function. Note that there are no unobservables in Equation (18) that

may be correlated with the observables and create endogeneity problems.

We now de�ne identi�cation based on this F.O.C, letting �rm jm denote �rm j in market

m.

De�nition 1 Identi�cation by the F.O.C.: Let the marginal revenue function be speci�ed as in

13Such a derivative would also include the derivative of the deterministic component of the measurement error
with respect to output, which should not be part of marginal cost.
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Equation (9). Then, the true parameter vector θc0 is identi�ed if the following two statements

hold only at θc0:

1. For any �rm jm in the population, marginal revenue is positive and can be expressed as a

function of only
(
qjm,wm,xjm, C̃jm

)
.

2. Given (q,w,x), this function is one-to-one in C̃.

The function of
(
qjm,wm,xjm, C̃jm

)
in the above de�nition corresponds to ψ () in Equa-

tion (18). From Assumption 7, we know that given (q,w,x), C̃ and marginal cost are strictly

increasing in the cost shock υ, which implies that, given (q,w,x), ψ is strictly increasing and

thus, one-to-one in C̃. Our de�nition implies that only at the true parameter vector θc0, given

(q,w,x), each value of C̃jm is associated with a unique marginal revenue. Intuitively this means

that for �rms with the same output, input prices and observed characteristics, having equal

observed cost is equivalent to having equal marginal revenue only at the true parameter vector.

The sources of variation we use for identi�cation of θc0 are similar to the ones in the literature.

In the logit demand model, as we explain below, these are market size Qm and price pjm, and in

BLP, additionally, we can use price, market share and observed characteristics of the rival �rms.

All these sources of variation re�ect the �market structure� and appear in the marginal revenue

function but not in the marginal cost function ψ (see Equation (18)). The di�erence from the

literature is that these variables do not need to be instruments, i.e. orthogonal to the cost shock

υjm, because we have already controlled for it using C̃jm. Thus, our identi�cation strategy is

based on the exclusion restriction that market structure variables do not enter the cost function

directly.

To illustrate how Equation (18) identi�es θc0, we use the logit demand model, where the

parameter we identify is the price coe�cient, i.e, θc0 = α0. Then, using Equation (14), Equation

(18) can be written as:

MRj (pm, sm,Xm;α0) = pjm +
1

(1− qjm/Qm)α0
= ψ

(
qjm,wm,xjm, C̃jm

)
. (19)

Given Assumption 7, Conditions 1 and 2 of De�nition 1 are clearly satis�ed for α0. Next, we

16



consider any α 6= α0. Then,

MRj (pm, sm,Xm;α0)

= pjm +
1

(1− qjm/Qm)α0
= pjm +

1

(1− qjm/Qm)α
+

1

(1− qjm/Qm)

(
1

α0
− 1

α

)
= MRj (pm, sm,Xm;α) +

1

(1− qjm/Qm)

(
1

α0
− 1

α

)
.

Substituting into (19), we obtain

MRj (pm, sm,Xm;α)

= pjm +
1

(1− qjm/Qm)α
= ψ

(
qjm,wm,xjm, C̃jm

)
− 1

(1− qjm/Qm)

(
1

α0
− 1

α

)
(20)

≡ ψ̃(qjm,wm,xjm, C̃jm, Qm, α).

Note that ψ̃ includes market size as an argument, violating Condition 1 of De�nition 1 for

α 6= α0. Thus, α0 is identi�ed. Note also that if we do not have any variation in market size,

i.e., Qm = Q, then ψ̃ remains a function of
(
q,w,x, C̃

)
. Furthermore, if Qm = Q, in Equation

(20), C̃ enters in ψ and we know that given (q,w,x), ψ is a one-to-one function of C̃, and thus,

ψ̃ satis�es both Conditions 1 and 2 for α 6= α0. Hence, the true price coe�cient cannot be

identi�ed. Thus, for the logit model, our identi�cation strategy requires variation in market size.

Price variation is also needed unless 1/α0 is zero, otherwise Equation (19) would fail to hold.

This becomes transparent later in this subsection.

However, dealing with unspeci�ed functions ψ and ψ̃ makes the identi�cation analysis com-

plex and unintuitive. This is because for each parameter θc, we need to evaluate whether marginal

revenue at θc is a function of only
(
q,w,x, C̃

)
. Instead, in our analysis, we use an alternative

equivalent way of proving identi�cation, which we call the pairing approach. This approach lets

us focus on the parametric marginal revenue side. The only role of cost data and the marginal

cost function is to identify the following two sets of pairs of �rms in di�erent markets: those

that have the same true marginal revenue, and those that have di�erent true marginal revenues.

Then, from these two sets of pairs, we proceed to identify the price coe�cient by using only the

demand side. We illustrate this approach for the logit model �rst. As we will see, the pairing

approach provides us with the exact sources of variation needed to identify the price parameter

in the logit model, namely, market size and price of the �rm's product.

More speci�cally, we ��x� the variables in the marginal cost function by �nding a pair of �rms
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(
jm, j†m†

)
in the data that have the same output, same input price, same observed character-

istics and the same cost:
(
qjm,wm,xjm, C̃jm

)
=
(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
but (pjm, Qm) 6=(

pj†m† , Qm†
)
. Then, from De�nition 1,

ψ
(
qjm,wm,xjm, C̃jm

)
= ψ

(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
,

and thus, using Equation (19), at α0,

pjm +
1

(1− qjm/Qm)α0
= ψ

(
qjm,wm,xjm, C̃jm

)
= ψ

(
qj†m† ,wm† ,xj†m† , C̃j†m†

)
= pj†m† +

1(
1− qj†m†/Qm†

)
α0
. (21)

In the above equation, ψ is eliminated and what remains is the equality of the true marginal

revenue of the two �rms that have di�erent prices and market shares.

Then, α0 can be identi�ed straightforwardly from the above marginal revenue equality as

follows:

α0 = − 1

pjm − pj†m†

[
1

(1− qjm/Qm)
− 1(

1− qj†m†/Qm†
)] . (22)

Note that since qjm = qj†m† , if we assume constant market size, the term in the bracket is

always zero, and thus, α0 6= 0 cannot be identi�ed. Furthermore, without variation in price,

RHS is either not bounded or not well-de�ned. Therefore, identi�cation using pairing requires

variation in both price and market size. We show next that given qjm = qj†m† , wm = wm† and

xjm = xj†m† , there exist (Qm, ξjm) and
(
Qm† , ξj†m†

)
that generate the above prices

(
pjm, pj†m†

)
and market shares (sjm, sj†m†). First, we choose Qm = qm/sjm, Qm† = qm†/sj†m† . This is

feasible because from Assumption 6, the conditional support of market size Q is R+. Also,

using Equation (1), and the normalization in Equation (3), we can choose ξjm, ξj†m† from the

conditional support of R as:

ξjm = −xjmβ0 − pjmα0 + ln (sjm)− ln (s0m) ,

ξj†m† = −xj†m†β0 − pj†m†α0 + ln
(
sj†m†

)
− ln (s0m†) .

It is clear from the discussion above that in logit, identi�cation of the price coe�cient is based

on the true marginal revenue equality for a pair of �rms that has the same output, input prices,

observed product characteristics and cost. Indeed, Equations (21) and (22) indicate that we only

need to consider a single pair of �rms to prove identi�cation. In BLP however, marginal revenue
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is a complex, nonlinear function of parameters and thus, we cannot show analytically that the

demand parameters θc0 are identi�ed or that the marginal revenue equality for one pair of �rms

generates a unique set of true parameters. Instead, we exploit the information contained in the

data about the set of pairs whose two �rms have the same output, input prices and observed

characteristics. We divide these �rm-pairs into two subsets of pairs according to whether the

two �rms within a pair have equal observed cost or not. The group of pairs whose �rms have

the same observed cost must have the same true marginal revenue while the opposite is true for

the other group. We use this insight to formulate a condition on the marginal revenue function

that is su�cient for identifying θc0.

We now reformulate our identi�cation de�nition in terms of pairing.

De�nition 2 Identi�cation by Pairing: Let the marginal revenue function be speci�ed as in

Equation (9). We say that θc0 is identi�ed if the following holds only for θc = θc0:

1 For any �rm jm in the population,

MRj (pm, sm,Xm,θc) > 0. (23)

2 Given any two �rms jm 6= j†m† in the population with (qjm,wm,xjm) =
(
qj†m† ,wm† ,xm†

)
,

MRj (pm, sm,Xm,θc) = MRj† (pm† , sm† ,Xm† ,θc) ,

if and only if

C̃jm = C̃j†m† .

It is straightforward to see that the two de�nitions are equivalent. Both require positivity

of true marginal revenue and a one-to-one relationship between the observable cost and the

true marginal revenue given output, input prices and observed characteristics, and violation

of at least one of these conditions if the parameter vector is not the true one. The pairwise

approach to identi�cation is simpler than the �rst de�nition because we no longer have to deal

with the unspeci�ed marginal cost function. Instead, we identify the true parameter vector

by examining all the pairs in which the two �rms have the same output, input prices and

observed characteristics. We check if marginal revenue is strictly positive and whether the

within-pair equality between the two observed costs and between the two marginal revenues

holds simultaneously at a candidate parameter vector. If any marginal revenue is nonpositive or
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if simultaneity does not hold for some of these pairs, i.e., if for some pairs, only the costs are

equal but not the marginal revenues, or vice versa, then the candidate parameter vector cannot

be the true one. We can also state it more formally by de�ning the set S to be the set of pairs

whose two �rms have the same output, input prices and observed characteristics, and letting

C ⊂ S be the subset of S whose two �rms have the same cost, andMR (θc) ⊂ S be the subset

of S whose two �rms have the same marginal revenue. Then, De�nition 2 states that θc0 is

identi�ed if for any θc 6= θc0, either positivity in Equation (23) is violated for some �rm jm in

the population, or

C =MR (θc0) 6=MR (θc) ,

or both.

Lemma 2 De�nitions 1 and 2 are equivalent.

The proof is in the appendix.

We next state a condition on the demand model that together with our assumptions is su�-

cient for identi�cation of the demand parameters. We need this condition because the information

we can use from the data on cost and the assumptions on the cost function are not su�cient

to identify the true marginal revenue. Among the pairs of �rms in S, the cost data allows us

to identify the subset of pairs (subset 1), whose two �rms have the same true marginal revenue

(i.e. have the same cost), and the subset of pairs, (subset 2), whose two �rms have di�erent true

marginal revenues (i.e. di�erent costs). The additional source of information that identi�es the

true marginal revenue and θc0 needs to come from the functional form of the demand model,

such as logit or BLP.

Condition 1 Let the marginal revenue function be speci�ed as in Equation (9). Let D =

{p, s,X} and D† =
{
p†, s†,X†

}
be two sets of vectors of prices, market shares and observed

product characteristics, and let θc0 be the true parameter vector. Then, for any given θc 6= θc0,

either positivity in Equation (23) is violated for a �rm jm in the population; or the following

statement holds, or both: There exist D and D† that satisfy the following properties: 1) for any

reordering of the rows in set D†, D 6= D†, and 2) there exists a row j in D and a row j† in D†,

such that

2a. pl > 0, 0 < sl < 1 for l = 1, ..., J and p†l > 0, 0 < s†l < 1, for l = 1, .., J†, and 0 <
∑J

l=1 sl <

1, 0 <
∑J†

l=1 s
†
l < 1.
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2b. xj = x†
j†
.

2c. EitherMRj (p, s,X,θc) = MRj†
(
p†, s†,X†,θc

)
orMRj (p, s,X,θc0) = MRj†

(
p†, s†,X†,θc0

)
but not both.

Condition 1 is the restatement of De�nition 2 of identi�cation without any restrictions on

the cost side. That is, Condition 1 applied to the population is equivalent to requiring that for

any θc 6= θc0, either for some �rm in the population, marginal revenue is nonpositive at θc or

within S, the set of pairs whose two �rms have the same positive marginal revenue under θc0

and the corresponding set of pairs under θc cannot be equal (that is, MR (θc0) 6= MR (θc)),

or both. Thus, the demand speci�cation is such that only the true parameter can exactly

replicate subsets 1 and 2 identi�ed by the data. In the lemma below, we show that given our

assumptions, Condition 1 is su�cient for identi�cation because for any pairs of observed demand

variables (p, s,X, j) and
(
p†, s†,X†, j†

)
satisfying xj = xj† , we can always �nd two �rms in

the population that have the same output, input prices and observed characteristics and these

demand variables.

Lemma 3 Suppose Assumptions 1-3, 5-8 and Condition 1 are satis�ed. Then, θc0 is identi�ed

according to De�nition 2 of identi�cation.

Proof. First, consider θc0. Then, given Assumptions 5 and 7, in the population, marginal

revenue is positive at θc0. Also, given Assumptions 2-3 and 5-8, Equation (18) holds, and from

Equation (18), for any
(
D, q,w,x, C̃, j

)
and

(
D†, q,w,x, C̃†, j†

)
in the population with C̃ = C̃†,

MRj (p, s,X,θc0) = ψ
(
q,w,x, C̃

)
= ψ

(
q,w,x, C̃†

)
= MRj†

(
p†, s†,X†,θc0

)
.

Similarly, ifMRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
, then, given (q,w,x), from Assumptions

5-7, there exists a unique cost shock υ such that

MRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
= MC (q,w,x, υ) .

Therefore, C̃ = C̃†. Hence, for any pair of �rms with the same (q,w,x), C̃ = C̃† if and

only if MRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
. Therefore, θc0 satis�es the conditions for

identi�cation of De�nition 2.

We now consider any θc 6= θc0. Suppose there exists
(
D, q,w,x, C̃, j

)
in the population

satisfying MRj (p, s,X,θc) ≤ 0. Then, θc violates the �rst condition of De�nition 2. Next, we
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consider the case where any
(
D, q,w,x, C̃, j

)
in the population satis�es MRj (p, s,X,θc) > 0.

We analyze the two cases of Condition 1 separately.

Case 1: Suppose (D, j) and
(
D†, j†

)
satisfy MRj (p, s,X,θc) = MRj†

(
p†, s†,X†,θc

)
but

MRj (p, s,X,θc0) 6= MRj†
(
p†, s†,X†,θc0

)
. Then, for any (q,w,x), from Assumptions 6 and

7, there exist
(
υ, υ†

)
in the population such that MRj (p, s,X,θc0) = MC (q,w,x, υ) and

MRj†
(
p†, s†,X†,θc0

)
= MC

(
q,w,x, υ†

)
. Because marginal cost is strictly increasing in the

cost shock, this implies that υ 6= υ†, and since the deterministic component of cost is increasing

in the cost shock, C̃ 6= C̃†. Therefore, in this case, MRj (p, s,X,θc) = MRj†
(
p†, s†,X†,θc

)
but

for (q,w,x) =
(
q†,w†,x†

)
, C̃ 6= C̃†.

Case 2: SupposeMRj (p, s,X,θc0) = MRj†
(
p†, s†,X†,θc0

)
butMRj (p, s,X,θc) 6= MRj†

(
p†, s†,X†,θc

)
.

Then, for any (q,w,x), from Assumptions 6 and 7, there exists υ such that MRj (p, s,X,θc0) =

MRj†
(
p†, s†,X†,θc0

)
= MC (q,w,x, υ). Therefore, both �rms have the same cost shock, and

thus, C̃ = C̃†. Therefore, in this case, for (q,w,x) =
(
q†,w†,x†

)
, C̃ = C̃† butMRj (p, s,X,θc) 6=

MRj†
(
p†, s†,X†,θc

)
.

If marginal revenue is positive at θc for all the �rms in the population, either Case 1 or Case

2 holds.

Together, we have shown that θc0 is identi�ed.

Note that in Condition 1 or in proving the lemma above, we did not need to make any

assumptions about independence of any of the variables from each other, except for the �xed

cost shock and the random component of the measurement error of cost. That is, θc0 is identi�ed

regardless of possible correlation across input prices, variable cost shock, observed characteristics,

unobserved product characteristics and market size, within markets or across markets. For

example, a positive correlation between market size and the demand/cost shock can arise as

a larger market size may induce �rms to invest in quality improvements or more advertising,

which improves unobserved product quality but increases cost. But this does not break our

identi�cation strategy.14

Also, note that in the market share speci�cation, there are no moment restrictions on the

unobserved characteristics, and thus, they can contain market-level �xed e�ects. In particular,

14Notice that any violation of the F.O.C. (Equation (15)) may result in θc0 not being identi�ed. An example
would be if higher prices and more advertising spending signal product quality, as in the model of Milgrom (1986).
It is also important to note that each pair of observations satisfying Condition 1 can be generated from di�erent

equilibria. Since the observables
{
q,w,x, C̃

}
uniquely determine the pair of �rms that have the same cost shock

υ, and the marginal cost, the above procedure identi�es the true price coe�cient even when multiple equilibria
exist.
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consider the BLP speci�cation with market-level �xed e�ects:

uij = xjβi + pjαi + ξjm + εij ,

ξjm = ξf,m + ξ̃jm,

E
[
ξ̃jm

∣∣∣xjm, ξf,m] = 0,

where ξf,m denotes market m-speci�c heterogeneity. Because we do not use such moment con-

ditions for identi�cation, these �xed e�ects do not prevent us from identifying and consistently

estimating the BLP parameters θc0 = (µα0, σα0,σβ0).

Our main identi�cation result is stated in the following proposition, with the proof in the

appendix:

Proposition 1 Suppose Assumptions 1-8 are satis�ed. Then, the BLP coe�cients θc0 = (µα0, σα0,σβ0)

are identi�ed.

Note that this result holds even without any variation in market size across markets. To

see why, suppose we �nd a pair �rms jm and j†m† that have the same (q,w,x) and the same

marginal revenue. Then, if the demand speci�cation is logit, without market size variation,

they have the same market share, and Equation (22) tells us that we cannot identify the price

coe�cient. On the other hand, under BLP, even though the same market size leads to the pair of

�rms with the same (q,w,x) having the same market share, these �rms can have di�erent price

e�ects on own market share due to di�erences in prices, market shares and observed product

characteristics of rival �rms, and thus, di�erent prices in the relationship.

More formally, those two �rms satisfy

sjm = sj†m† , MRjm = MRj†m† ,
∂sjm
∂pjm

6=
∂sj†m†

∂pj†m†
.

Therefore,

pjm = MRjm −
[
∂sjm
∂pjm

]−1

sjm 6= MRj†m† −
[
∂sj†m†

∂pj†m†

]−1

sj†m† = pj†m† .

Thus, the relationship

pjm − pj†m† = −sjm

[(
∂sjm
∂pjm

)−1

−
(
∂sj†m†

∂pj†m†

)−1
]
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identi�es the parameters.15

3.3 Identi�cation of unobserved market size

We now consider the case where market size Qm is not observed, and thus, needs to be esti-

mated. This is an important issue in the empirical IO literature. Because market participation

is unobserved, it is often hard for researchers to measure the total number of participants of a

market without any arbitrariness.

We follow Bresnahan and Reiss (1991) and specify the market size as follows:

ln (Qm) = λc0 + zmλz0, (24)

where zm is a 1×Kz vector of observables in market m, and λz0 = (λz01, . . . , λz0Kz).

Then, the true market share of �rm j in market m, denoted by

s∗jm ≡ qjm/exp (λc0 + zmλz0) (25)

is unobservable. Bresnahan and Reiss (1991) and other literature on this issue assume that

variables that determine market size are not included in the market share equation. However,

we do not impose such a restriction since one can convincingly argue that demographic variables

determine not only market size but also consumer demand. Thus, the modi�ed utility function

for individual i in market m consuming product j is

uijm = xjmβx + zmβz + pjmα+ ξjm + εijm. (26)

On the other hand, following the literature, we assume that the variables determining market

size are not included in the cost function. This assumption is reasonable as demographic variables

usually do not enter the production function. Then, it follows that market structure variables

only enter in the marginal revenue function but not in the marginal cost function. Therefore,

the identi�cation procedure is the same as before.

15The exclusion restriction for the logit model is that marginal revenue only depends on own price and own
market share. That is, unobserved product characteristics of �rms and prices of rival �rms in a market do not
enter directly in the marginal revenue equation of any given �rm: these variables only enter indirectly through
the market share function. For the BLP demand, we have similar exclusion restrictions at high prices. That is,
if we let pjm be own price, the exclusion restriction we use is that at high prices, in the 2nd term of the marginal
revenue function, own price only enters through pjm − pj−1,m (where pj−1,m is the next highest price in the
market), and pjm − pj+1,m (where pj+1,m is the next lowest price in the market). For details, see the appendix.
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We prove identi�cation for the logit demand model here, and for the BLP model in the

appendix.

First, note that since market share s and market size Q are unobserved, and market size is a

function of z in Equation (25), marginal revenue is a function of (p, z,q,X) instead of (p, s,X).

Therefore, the �rst order condition is modi�ed to be

MRj (p, z,q,X;θc0) = MC (q,w,x, υ) ,

where θc0 now includes the price coe�cient and the parameters of the market size equation, i.e.

θc0 = (α0, λc0,λz0). Then, the cost shock can be expressed as follows:

υ = υ (q,w,x,MRj (p, z,q,X;θc0)) .

Furthermore, instead of R = {p, s,X,q,w, j}, now we have R = {p,X,q,w, z, j} with which

we derive the deterministic component of cost given below:

E
[
C
∣∣ (q̃ = q, w̃ = w, p̃ = p, z̃ = z, X̃ = X, j

)]
= Cv (q,w,x, υ)+ef (w,x, υ)+eme (q,w,x) ≡ C̃.

Then, as before, we form pairs of �rms that have the same (q,w,x) and the same C̃. Through

these pairs, we identify the parameters θc0 using the following two restrictions on the cost function

and the marginal revenue function of the logit demand model: 1) p and z do not enter in the

cost function. 2) Given q, variation in z changes the market share only through the market size

equation (24), not through the utility function in Equation (26).

Furthermore, in this set of pairs, we choose the ones whose within-pair prices are equal, i.e.,

pjm = pj†m† . Then, since the two �rms in the pair have the same marginal revenue, we derive

pjm +
1(

1− s∗jm
)
α0

= pj†m† +
1(

1− s∗
j†m†

)
α0

.

It follows that within each pair, the true market shares must be equal. Thus, using Equation

(25), we obtain

ln
(
s∗jm
)

= ln (qjm)− ln (Qm) = ln (qjm)− λc0 − zmλz0

= ln
(
s∗j†m†

)
= ln

(
qj†m†

)
− λc0 − zm†λz0,
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which results in

(zm − zm†)λz0 = 0. (27)

By using Equation (27), we �rst show that the vector λz0 is identi�ed up to a multiplicative

constant. That is, λ̂z0 ≡ λz0/λz01 is identi�ed. We do so by �nding k = 1, . . . ,Kz pairs of �rms

in di�erent markets j(k)m(k) and j†(k)m†(k) satisfying qj(k)m(k) = qj†(k)m†(k) , wm(k) = wm†(k) ,

xj(k)m(k) = xj†(k)m†(k) , pj(k)m(k) = pj†(k)m†(k) and C̃j(k)m(k) = C̃j†(k)m†(k) , but zm(k) 6= zm†(k) . If we

assume that conditional on (ξm,υm,wm,Xm), the support of zm is RKz , then the space spanned

by zm(k) − zm†(k) , k = 1, . . .Kz, subject to the restriction of Equation (27), has rank Kz − 1.

Therefore, under our normalization, the equations

(zm(k) − zm†(k)) λ̂z0 = 0, k = 1, . . . ,Kz

identify λ̂z0 ≡ λz0/λz01.

Next, we focus on the identi�cation of λc0 and λz01 by setting zmk = 0 for k = 2, . . .Kz.

That is, only one variable zm1 determines market size. We then proceed by considering two

pairs of �rms k = 1, 2 where wm(k) = wm†(k) = w, xm(k) = xm†(k) = x, C̃j(k)m(k) = C̃j†(k)m†(k)

and for small ∆z > 0, zm(k)1 = 0, zm†(k)1 = ∆z. Output is di�erent across the two pairs, that

is, qj(1)m(1) = qj†(1)m†(1) = q, qj(2)m(2) = qj†(2‘)m†(2) = q′ for q′ 6= q. Note we do not put any

restrictions on prices within the pairs. Then, these two pairs identify λc0 regardless of the value

of α0. More concretely, using

s∗
j(1)m(1) = q/exp (λc0) , s∗

j†(1)m†(1) = q/exp (λc0 + ∆zλz01) ,

and Equation (22), we have for pair 1,

pj(1)m(1) − pj†(1)m†(1) = − 1

α0

[
q

exp (λc0)− q
− q

exp (λc0 + ∆zλz01)− q

]
≡ ∆p (q, 0,∆z) .

Note that

q

exp (λc0 + ∆zλz01)− q
≈ q

exp (λc0)− q
− q

(exp (λc0)− q)2 [exp (λc0 + ∆zλz01)− exp (λc0)] ,

and since we can �nd q such that q 6= exp (λc0),

∆p (q, 0,∆z) = pj(1)m(1) − pj†(1)m†(1) ≈ −
1

α0

q

(exp (λc0)− q)2 exp (λc0) ∆zλz01 6= 0
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holds and is bounded.

Next, we do the same with the second pair with q′ 6= q where q′ 6= exp (λc0) as well. Letting

B (q, q′, 0,∆z) ≡ ∆p (q, 0,∆z) /∆p (q′, 0,∆z), we have

B
(
q, q′, 0,∆z

)
≡ ∆p (q, 0,∆z)

∆p (q′, 0,∆z)
≈ q

q′

[
exp (λc0)− q′

exp (λc0)− q

]2

=
q

q′

[
1 +

q − q′

exp (λc0)− q

]2

,

which identi�es λc0. Then, to identify λz01, we do the same with two new pairs having zm1 = z,

zm†1 = z + ∆z, and everything else de�ned in the same manner as for the �rst two pairs, and,

given λc0, we do similar calculations as before to derive

B
(
q, q′, z,∆z

)
≡ ∆p (q, z,∆z)

∆p (q′, z,∆z)
≈ q

q′

[
exp (λc0 + zλz01)− q′

exp (λc0 + zλz01)− q

]2

=
q

q′

[
1 +

q − q′

exp (λc0 + zλz01)− q

]2

.

Since λc0 is already identi�ed, the above equation identi�es λz01.

4 Estimation

In practice, an estimator that directly applies the parametric identi�cation results in Subsection

3.2 will likely su�er from the Curse of Dimensionality. To implement such an estimator, one

would need to derive an estimator of the deterministic component of cost C̃jm. Furthermore, we

would need to �nd pairs with qjm ≈ qj†m† , xjm ≈ xj†m† , wm ≈ wm† and C̃jm ≈ C̃j†m† . For

most markets of interest, Xm would contain some product characteristics across a non-negligible

number of �rms. This makes the dimensionality problem potentially quite severe. Further, this

estimator may not converge at the parametric rate and/or may not be asymptotically normal

(see Khan and Tamer (2010) for a discussion of similar concerns). Because of these reasons, we

construct an estimator that exploits the parametric marginal revenue in such a way that the

above derivation is no longer required. This estimator conditions on marginal revenue, which is

a parametric function of the data, rather than the conditional expected cost.

We propose to embed the estimation of demand parameters in the estimation of the deter-

ministic component of cost C̃jm. To overcome the problem of a possible correlation between

the cost shock υjm and output qjm, we argue below that given qjm, wm, and xjm, we can use

marginal revenue MRj (pm, sm,Xm,θc) to control for υjm as long as the demand parameter

vector θc equals the vector of true values θc0. The lemma below formalizes this control function

idea.

Lemma 4 Suppose that Assumptions 5-8 are satis�ed. Then, C̃jm = ϕ (qjm,wm,xjm,MRjm (θc0))
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for �rm j in market m with observables {pm, sm,Xm, qjm,wm, j}, where ϕ is a function that is

strictly increasing and continuous in marginal revenue.

Proof. By Assumption 5 and 7, we can invert the the marginal cost function with respect to

cost shock υ such that υ= υ(q,w,x,MC). Using this function to control for υ, the deterministic

component of cost becomes

C̃ = Cv (q,w,x, υ) + ef (w,x, υ) + eme (q,w,x) = ϕ (q,w,x,MC) ,

where ϕ is an increasing and continuous function of MC by Assumptions 7 and 8. Because

Equation (15) holds, i.e., MR = MC, at the true parameter vector θc0,

C̃ = ϕ (q,w,x,MC) = ϕ (q,w,x,MR) . (28)

Thus, the claim holds.

We call the function ϕ (q,w,x,MR) the pseudo-cost function.

The essence of our estimation strategy is to invert the �rst order condition given in Equation

(18), which is the basis of our identi�cation strategy, with respect to MR and C̃, given q,w

and x. Because De�nition 1 guarantees invertibility at the true parameter θ0, the pseudo-cost

function is derived from our identi�cation de�nition.

4.1 Two-step Sieve Nonlinear Least Squares (SNLLS) estimator

Using the above lemma, we construct an estimator that is based on the control function approach

mentioned above, using a nonparametric sieve regression (see Chen (2007) and Bierens (2014)).

The following assumption formalizes this:

Assumption 9 ϕ can be expressed as a linear function of an in�nite sequence of polynomials:

ϕ (qjm,wm,xjm,MRjm (θc0)) =

∞∑
l=1

γl0ψl (qjm,wm,xjm,MRjm (θc0)) , (29)

where ψ1 (·) , ψ2 (·) , . . . are the basis functions for the sieve, which are uniformly bounded on a

compact domain, and γ1, γ2, . . . is a sequence of their coe�cients, satisfying
∑∞

l=1 |γl0| <∞.

Our estimator is based on Equation (29). It is useful to introduce some additional notation

before formally de�ning the estimator and its sample analog. Let M be the number of markets
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in the sample, and LM an integer that increases with M . For some bounded but su�ciently

large constant T > 0, let Γk (T ) = {πkγ : ‖πkγ‖ ≤ T} where πk is the operator that applies to

an in�nite sequence γ = {γn}∞n=1
, replacing γn, n > k with zeros. That is, for n ≤ k, πkγn = γn,

and for n > k, πkγn = 0. The norm ‖x‖ is de�ned as ‖x‖ =
√∑∞

k=1 x
2
k
.

We now present our main result on estimation. The proof is in the appendix.

Proposition 2 Suppose Assumptions 1-9 are satis�ed. Then

[θc0,γ0] = argmin(θ,γ)∈Θc×ΓE

[
Cjm −

∞∑
l=1

γlψl

(
qjm,wm,xjm,MRjm (θc)

)]2

, (30)

where Γ = limM→∞ΓLM (T ). Equation (30) identi�es θc0.

In the proof, rather than using Equation (30) directly which would require joint identi�cation

of θc0 and γ, we use the pairing approach to identi�cation discussed in Subsection 3.2. By

forming pairs of �rms along similar lines as described in that subsection, we eliminate the cost

side and thus, the need for identifying γ. Thus, the pairing approach plays a central role in our

identi�cation proofs. In the Appendix, we provide another way of expressing our pairing strategy

so that it can be linked better with our estimation strategy. We show there that De�nition 2 and

Condition 1 can be expressed in terms of conditional variances of the deterministic component

of cost as well as of marginal revenue, thereby leading to our estimator.16 Further, note that we

do not require the sieve function
∑∞

l=1 γlψl (q,w,x,MRjm (θc)) to be one-to-one with respect

to MRjm (θc) given (q,w,x), for θc 6= θc0. However, in the proof, we show that if the demand

function is BLP, the sieve function satis�es this property for all θc.

Our SNLLS (Sieve-NLLS) approach deals with issues of endogeneity by adopting a control

function approach for the unobserved cost shock υjm. With our estimator, the right hand side

of Equation (30) is minimized only when parameters are at their true value θc0, so that the

computed marginal revenue equals the true marginal revenue, and thus, works as a control

function for the supply shock υjm. If θc 6= θc0, then using the false marginal revenue adds

noise, which increases the sum of squared residuals in Equation (30). This can be seen from the

16We are grateful to an anonymous referee for suggesting this.
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following: because νjm and ςjm are independent to the other observed variables,

E

[(
Cjm −

∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc))
)2
]

= E

(Cjm − C̃jm + C̃jm −
∞∑
l=1

γlψl (qjm,wm,xjm,MRjm (θc))

)2


≥ E
[
(νjm + ςjm)2

]
= σ2

ν + σ2
ς . (31)

Inequality (31) holds with equality if and only if θc = θc0, by de�nition (see Equation (28)).

Thus, the true demand parameter θc0 can be obtained as a by-product of this control function

approach.17

We assume the sample of M markets to be the M random draws of the population, and

denote market m to be the mth random draw. Then, the sample analog of Equation (30) is:

[
θ̂cM , γ̂M

]
= argmin(θc,γ)∈Θc×ΓLM (T )

1∑M
m=1 Jm

M∑
m=1

Jm∑
j=1

[
Cjm −

LM∑
l=1

γlψl

(
qjm,wjm,xjm,MRjm (θc)

)]2

.

(32)

The set ΓLM (T ) makes clear the fact that the complexity of the sieve is increasing in the number

of markets.

In the actual estimation exercise, the objective function can be constructed in the following

two steps.

Step 1: Given a candidate parameter vector θc, derive marginal revenue MRjm (θc) for each

jm, j = 1, ..., Jm, m = 1, ...,M .

Step 2: Derive the estimates of γ̂l, l = 1, ..., LM by OLS, where the dependent variable is Cjm

and the RHS variables are ψl (qjm,wm,xjm,MRjm (θc)), l = 1, ..., LM . Then, construct

the objective function, which isthe average of squared residuals

QM (θc) =
1∑M

m=1 Jm

M∑
m=1

Jm∑
j=1

[
Cjm −

LM∑
l=1

γ̂lψl (qjm,wm,xjm,MRjm (θc))

]2

.

We choose θc that minimizes the objective function QM (θc). In sum, we search for the demand

parameters in the outer loop and �nd the best-�tting cost function in the inner loop for each

17After estimating the marginal revenue function, we can recover the cost function. The details are discussed
in the appendix.
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candidate set of parameters. We use the Newton search algorithm to �nd the solution.18

In the second step, to identify β for the logit model and µβ for BLP, we include addi-

tional moment conditions in our estimator that leverage the ( commonly-used) assumption that

E
[
ξjm|xjm

]
= 0. That is, after obtaining θ̂cM , we can recover δ̂M by inversion, and then

estimate β̂M for logit or µ̂βM for BLP simply by OLS as follows:

β̂M =

(
M∑
m=1

X′mXm

)−1 M∑
m=1

X′m

(
δ̂m − pmα̂M

)
or µ̂βM =

(
M∑
m=1

X′mXm

)−1 M∑
m=1

X′m

(
δ̂m − pmµ̂αM

)
.

(33)

Equations (32) and (33) constitute our two-step SNLLS estimator for parameters θ = (α,β)

for logit demand and θ =
(
µα, σα,µβ,σβ

)
for BLP demand.19

4.2 Further speci�cation and data issues

We have thus far worked with the standard di�erentiated products model of Berry (1994) and

BLP. Depending on the empirical context, however, a number of speci�cation and data-related

issues can potentially arise. In this subsection, we list some empirical settings in which our

estimator can be adapted by modifying the SNLLS part of the objective function in Equation

(32). The details are in the appendix. They are:

1. Economic versus accounting cost : With only minor modi�cations to our estimation procedure,

we can consistently estimate the parameters even if the cost data in accounting statements

do not re�ect the economic cost.

2. Endogenous product characteristics: We can deal with the case where �rms also choose prod-

uct characteristics by including the additional �rst order conditions in our estimator. For

more details, see Chu (2010), Fan (2013), Crawford (2012), and Byrne (2015).

3. Cost function restrictions: We can incorporate the restriction that the cost function satis-

�es homogeneity of degree one in input prices. Doing so has the bene�t of reducing the

dimensionality of the nonparametric pseudo-cost function.

18Note that practitioners need to be careful in the nonparametric estimation of the pseudo-cost function if xjm
includes discrete variables.

19Note that if the restriction E [ξjm|Xjm] = 0 is not met, we can still obtain consistent parameter estimates
of β (or µβ) if we assume that the observed characteristics of other products X−jm and ξjm are uncorrelated.
Then, we can use X−jm as instruments for xjm. In contrast, the literature uses these variables as instruments
for both pjm and xjm. For example, BLP use the sum of product characteristics over other �rms as instruments
for pjm. It is also important to recall that even if β (or µβ) cannot be consistently estimated, in our procedure,
θc0 is still estimated consistently, and so are marginal revenue and pro�t margin.
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4. Missing cost data: Because the SNLLS part of our estimator does not involve any orthogonal-

ity conditions, and because the random components of the measurement error of cost and

�xed cost are assumed to be i.i.d, choosing only those �rms for which cost data is available

does not result in selection bias in estimation. It is important to notice, however, that

we still need demand-side data for all the �rms in the same market to compute marginal

revenue.

5. Multi-product �rms: Even though �rms produce multiple products, in most accounting state-

ments, only the total cost, as opposed to product-level cost, is reported. In such cases,

with logit or the BLP functional form, we can still estimate the parameters of the model by

putting additional reasonable restrictions on market share functions and the cost function.

4.3 Large sample properties

In the appendix, we prove consistency and asymptotic normality of our estimator. These proofs

are based on the asymptotic analysis of sieve estimators by Bierens (2014).

4.4 Bootstrap procedure for calculating the standard errors

In this subsection, we propose a bootstrap procedure for deriving the standard errors of θ̂cM .

In equilibrium models, bootstrapping by resampling the demand shocks ξjm and supply shocks

υjm is computationally demanding because the equilibrium prices pm and the market shares

sm need to be recomputed for each market m. Instead, Fu and Wolpin (2018), and oth-

ers, propose conducting nonparametric bootstrap where one would resample market outcomes

(Xm,pm, sm,wm,qm,Cm), m = 1, . . . ,M and estimate based on the resampled market data.

However, the results of this procedure may be subject to small sample issues due to the relatively

small number of markets. Furthermore, the bootstrapped parameter estimates would likely be

a�ected by the additional variation from the resampled Xm and wm, which could overestimate

the standard errors. In addition, if the demand and supply shocks, Xm and wm, are correlated

across markets, then this correlation needs to be dealt with in resampling.

In our bootstrap, we instead resample νjm + ςjm to reconstruct the cost data and then,

reestimate the parameters. The procedure is valid since we assume that νjm+ ςjm is independent

of other variables, which we leave unchanged. We describe the procedure below.

Step 1 Estimate the parameters θ̂
(1)

cM and γ̂
(1)
M using Cjm,xjm, sjm, pjm, qjm,wm, j = 1, . . . , Jm,

m = 1, . . . ,M .
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Step 2 Derive the residuals

(
ν̂ + ς

)
jm

= Cjm −
LM∑
l=1

γ̂
(1)
lMψl

(
qjm,wm,xjm,MRjm

(
θ̂

(1)

cM

))
.

Step 3 Resample with replacement from

{(
ν̂ + ς

)
jm
, j = 1, . . . , Jm,m = 1, . . . ,M

}
to gener-

ate

{(
ν̃ + ς

)
jm
, j = 1, . . . , Jm,m = 1, . . . ,M

}
.

Step 4 Generate the bootstrapped cost

Ĉjm =

LM∑
l=1

γ̂
(1)
lMψl

(
qjm,wm,xjm,MRjm

(
θ̂

(1)

cM

))
+
(
ν̃ + ς

)
jm
.

Step 5 Go back to Step 1 with Ĉjm instead of Cjm, and reestimate to derive θ̂
(2)

cM , γ̂
(2)
M using

Ĉjm,xjm, sjm, pjm, qjm,wm, j = 1, . . . , Jm, m = 1, . . . ,M .

Repeat the above steps MB − 1 times to derive θ
(lB)
cM , lB = 1, . . . ,MB and report standard errors

from the MB bootstrapped parameter estimates.

5 Monte Carlo experiments

In this section, we present results from a series of Monte Carlo experiments that highlight the

�nite sample performance of our estimator. To generate samples, we use the following random

coe�cients logit demand model:

sjm (θ) =

ˆ
α

ˆ
β

exp (xjmβ + pjmα+ ξjm)∑Jm
j=0 exp (xjmβ + pjmα+ ξjm)

1

σα
φ

(
α− µα
σα

)
1

σβ
φ

(
β − µβ
σβ

)
dαdβ, (34)

where we set the number of product characteristics K to be 1, and φ() to be the density of the

standard normal distribution. We assume that each market has four �rms, each producing one

product (e.g., Jm = J = 4). Hence consumers in each market have a choice of j = 1, . . . , 4

di�erentiated products or not purchasing any of them (j = 0).

On the supply-side, we assume �rms compete on prices, use labor and capital inputs in

production and have a Cobb-Douglas production function. Given output, input pricesw = [w, r]′

(w is the wage and r is the rental rate of capital), total cost and marginal cost functions are
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speci�ed as20

C (q, w, r, x, υ) = x (αc + βc)

[
1

B

(
w

αc

)αc ( r

βc

)βc
υq

] 1
αc+βc

MC (q, w, r, x, υ) = x

[
1

B

(
w

αc

)αc ( r

βc

)βc
υ

] 1
αc+βc

q
1

αc+βc
−1
.

Note that the cost function is homogeneous of degree one in input prices.21

To create our Monte Carlo samples, we generate wage, rental rate, variable cost shock, market

size Qm, and observable product characteristics xjm as follows:

wm ∼ i.i.d.TN (µw, σw) , e.g., wm = µw + σw%wm, %wm ∼ i.i.d.TN (0, 1) .

rm ∼ i.i.d.TN (µr, σr) , e.g., rm = µr + σr%rm, %rm ∼ i.i.d.TN (0, 1) .

Qm ∼ i.i.d.U (QL, QH) .

xjm ∼ i.i.d.TN (µx, σx) , e.g., xjm = µx + σx%xjm, %xjm ∼ i.i.d.TN (0, 1) .

TN (0, 1) is the truncated standard normal distribution, where we truncate both upper and

lower 0.82 percentiles. U (QL, QH) is the uniform distribution with lower bound of QL and

upper bound of QH . Furthermore, we specify the variable cost shock as follows:

υjm = µυ + συ%υjm + ζQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
, %υjm ∼ i.i.d.TN (0, 1) .

For transforming the uniformly distributed market size shock to truncated normal distribution,

we use small positive δ = 0.025 for truncation. We truncate the distribution of the shocks to

ensure that the true cost function is positive and bounded given the parameter values of the cost

function we set (which will be discussed later). We let the cost shock υjm be positively correlated

with the market size shock, i.e., we set ζQ to be 0.2.

Importantly, we specify the unobserved characteristics so as to allow for correlation between

ξjm and input prices, the cost shock, market size and the observed characteristics of products

20In our Monte Carlo, we assume away the deterministic components of the �xed cost and the measurement
error.

21The cost function given the Cobb-Douglas production technology is de�ned as

C (q, w, r, x, υ) = argminL,KwL+ rK subject to q = Bυ−1LαcKβcx−1/(αc+βc).
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other than j in market m denoted by xojm ≡ (1/3)
∑

l 6=j %xlm. Speci�cally, we set:

ξjm = δ0 + δξ%ξjm + δw%wm + δr%rm + δυ%υjm + δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+ δxoxojm,

where %ξ is the idiosyncratic component of the demand shock. We set δl = 1
2
√

6
for l ∈

{ξ, w, r, υ,Q, xo}.

By construction, neither input prices nor observed characteristics of other products can be

used as valid instruments for prices in demand estimation. Furthermore, since both demand and

variable cost shocks are correlated with market size, one cannot use the variation of market size

as an instrument for prices, or for output in the cost function estimation discussed in Subsection

2.2. We let the sum of the random terms νjm + ςjm be distributed TN
(

0,
√
V ar (ν + ς)

)
where√

V ar (ν + ς) =
√
σ2
ν + σ2

ς = 0.2.

To solve for the equilibrium price, quantity, and market share for each oligopoly �rm, we use

the golden section search on price.

Table 1 summarizes the parameter setup of the Monte Carlo experiments. Table 2 presents

sample statistics from the simulated data of 1600 market-�rm observations (there are 400 local

markets). Note that σν+ς is about seven percent of the total cost. The parameter estimates of

θc = (µα, σα, σβ) are obtained by the following minimization algorithm:

[
θ̂M , γ̂M

]
= argmin(θc,γ)∈Θc×ΓkM (T )

[ 1∑M
m=1 Jm

∑
jm

[
Cjm
rm
−
∑
l

γlψl

(
qjm,

wm
rm

,xjm,
MRjm (θc)

rm

)]2

.

In this pseudo-cost function, we exploit the property that the cost function is homogeneous

of degree one. For a detailed discussion, see the appendix. We then recover δ by inversion and

in the 2nd stage, we estimate the parameter µβ as follows:

µ̂βM =
(
X′X

)−1
X′
(
δ̂M − pµ̂αM

)
.

In Table 3, we present the Monte Carlo results for our two-step estimator. We report the

mean, standard deviation, and square root of the mean squared errors (RMSE) of the parameter

estimates from 100 Monte Carlo simulation/estimation replications. From the table, we see that

as the sample size increases, the standard deviation and the RMSE of the parameter estimates

decrease. The results highlight the consistency of our estimator. It is noteworthy that means

of the estimates are quite close to their true values even with the small sample size of 200.
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Table 1: Monte Carlo Parameter Values

Parameter Description Value

(a) Demand-side parameters
µα Price coef. mean 2.0
σα Price coef. std. dev. 0.5
µβ Product characteristic coef. mean 1.0
σβ Product characteristic coef. std. dev. 0.2
µX Product characteristic mean 3.0
σX Product characteristic std. dev. 1.0
δ0 Unobserved product quality mean 4.0
δξ Unobserved product quality std. dev. 0.5
QL Lower bound on market size 5.0
QH Upper bound on market size 10.0

(b) Supply-side parameters
αc Labor coef. in Cobb-Douglas prod. fun. 0.4
βc Capital coef. in Cobb-Douglas prod. fun. 0.4
µw Wage mean 1.0
σw Wage std. dev. 0.2
µr Rental rate mean 1.0
σr Rental rate std. dev. 0.2
µv Cost shock mean 0.3
σv Cost shock std. dev. 0.1
J Number of �rms in each market 4
B Scaling factor for output in the cost function 0.8326

(c) Cost measurement error
σν+ς Measurement std. dev. 0.2

(d) Correlation parameters with unobservables ξjm and vjm
δxo ξjm and X−jm correlation 1/(2

√
6)

δw ξjm and wm correlation 1/(2
√
6)

δr ξjm and rm correlation 1/(2
√
6)

δv ξjm and vjm correlation 1/(2
√
6)

δQ ξjm and Qm correlation 1/(2
√
6)

ζQ vjm and Qm correlation 1/(2
√
6)

Furthermore, since the estimated parameter values are close to their true values, the standard

deviations and the RMSEs are close to each other as well. Overall, these results demonstrate

the validity of our approach.22

In Table 4, we present the results where we allow for the observed characteristics x to be

correlated with the unobserved characteristics ξ. That is,

ξjm = δ0+δξ%ξjm+δw%wm+δr%rm+δυ%υjm+δQΦ−1

(
δ + (1.0− 2δ)

Qm −QL
QH −QL

)
+δxoxojm+δx%xjm,

(35)

where δ0 = 4.0, δξ = δw = δr = δυ = δQ = δxo = δx = 1/
(
2
√

7
)
. Now, by construction, no

observed variable of the �rm can be used as a valid instrument for its price in demand estimation.

We can see that θc is consistently estimated. On the other hand, µβ is estimated to be around

22Results with σν+ς larger than 0.2 are similar to the ones presented, but with larger standard deviations and
RMSEs.
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Table 2: Sample Statistics from Simulated Data

Variable Description Mean Std. Dev.

pm Price 4.104 1.239
xjm Product characteristic 1.704 0.465
ξm Unobserved product quality 4.008 0.436
sjm Market share 0.191 0.091
qjm Output 1.395 0.662
Cjm Total cost 2.814 1.005
wm Wage 1.007 0.183
rm Rental Rate 1.001 0.195

Notes: Sample statistics from simulated data from a Monte Carlo
sample with 400 markets, J = 4 �rms per market, and 1600 observa-
tions.

1.2, much higher than the true coe�cient 1.0. The upward bias is due to the positive correlation

between the demand shock ξjm and the random term of the observed characteristics %xjm as

speci�ed in Equation (35). However, since all the other parameters are estimated consistently,

markups can still be recovered consistently.

In Table ?? in the appendix, we report the results when the variation in market size is set

to be zero. We can see that overall, means of the parameter estimates become closer to the true

values, and the standard deviations and the RMSEs become smaller as sample size increases.

By comparing the results in Table 3, we �nd that the standard deviations and the RMSEs are

higher than the ones where we had variation in market size. We conclude that even though the

variation in market size is not needed, it helps in improving the accuracy of the estimators. We

also report additional numerical examples in the appendix illustrating that market size variation

is needed for estimating the logit demand parameters.

Next, we consider the case where market size is not observable, and needs to be estimated.

We specify market size as follows:

Q∗m = λ0 + λ1zm,

where Q∗m is the unobserved market size, and we set zm = Qm, and λ0 = 0, λ1 = 1. Then, the

true market share vector is sm = qm/Q
∗
m. We keep the BLP market share equation as speci�ed

in Equation (34) except that market size is unobservable and therefore, parameters λ0 and λ1

need to be jointly estimated. Note that market shares sm are unobservable as well. In Table

5, panel (a), we present the statistics of the parameter estimates that were generated from 100

repeated simulation/estimation exercises, based on the model used in Table 3 with unobservable

market size. In addition, in panel (b), we report the results where we set xjm = Φ−1 (zm) in

Equation (34). As we can see, in both cases, means of the parameter estimates are close to the

true values.
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Table 3: SNLLS Estimator of Random Coe�cient Demand Parameters
(Product Characteristic xjm and Unobserved Product Quality ξjm Uncorrelated)

(a) Price coe�cients parameters
µ̂α σ̂α

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU minutes

50 200 144 -2.178 0.823 0.838 0.455 0.215 0.218 274.0
100 400 171 -2.195 0.539 0.571 0.547 0.178 0.183 788.5
200 800 204 -2.004 0.184 0.183 0.506 0.094 0.093 1795.4
400 1600 256 -2.020 0.124 0.125 0.504 0.053 0.053 2278.4

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.130 0.586 0.598 0.258 0.284 0.289 1.392D-2
100 400 171 1.069 0.272 0.280 0.265 0.213 0.222 2.294D-2
200 800 204 0.988 0.118 0.118 0.204 0.085 0.084 2.944D-2
400 1600 256 1.007 0.086 0.086 0.207 0.056 0.056 3.365D-2

True Value 1.000 0.200

Notes: Monte Carlo experiment results are based on calibration described in panels (a)-(d) of Table 1. CPU minutes are the
average estimation time in minutes across the simulation/estimation replications. Measurement error in cost data has a standard
deviation of σν+ς = 0.2 which is approximately seven percent of mean total cost.

Table 4: SNLLS Estimator of Random Coe�cient Demand Parameters
(Product Characteristic xjm and Unobserved Product Quality ξjm Correlated)

(a) Price coe�cients parameters
µ̂α σ̂α

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU minutes

50 200 144 -2.204 0.954 0.971 0.508 0.196 0.195 762.2
100 400 171 -2.071 0.272 0.279 0.517 0.117 0.118 1526.7
200 800 204 -2.012 0.150 0.150 0.500 0.066 0.065 3189.4
400 1600 256 -2.006 0.088 0.088 0.502 0.034 0.034 5770.0

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Markets Sample Size Polynomials Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

50 200 144 1.315 0.661 0.729 0.231 0.256 0.256 1.392D-2
100 400 171 1.222 0.158 0.272 0.213 0.111 0.111 2.320D-2
200 800 204 1.197 0.090 0.216 0.202 0.078 0.078 2.953D-2
400 1600 256 1.190 0.056 0.198 0.198 0.052 0.052 3.375D-2

True Value 1.000 0.200

Notes: Monte Carlo experiment results are based on calibration described in panels (a)-(c) of Table 1 with ξjm distributed ac-

cording to Equation (35) with δξ = δw = δr = δυ = δQ = δxo = δx = 1/
(

2
√

7
)
. CPU minutes are the average estimation time

in minutes across the simulation/estimation replications. Measurement error in cost data has a standard deviation of σν+ς = 0.2
which is approximately seven percent of mean total cost.

In Table 6, we compare the estimated parameters using our two-step SNLLS method with

the standard IV approach using instruments that are commonly used in the literature. These

are: wage, rental rate and observed product characteristics of own and rival �rms and their
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Table 5: SNLLS Estimator of Random Coe�cient Demand Parameters
(Unobservable Market Size)

(a) zm not in market (b) zm in market
share function share function

Parameter True Value Mean Std. Dev. RMSE Mean Std. Dev. RMSE

µ̂α 2.000 -2.025 0.125 0.127 -1.964 0.130 0.134
σ̂α 0.500 0.510 0.043 0.041 0.506 0.050 0.050
µ̂β 1.000 1.005 0.100 0.100 0.996 0.254 0.253
σ̂β 0.200 0.208 0.057 0.057 0.199 0.073 0.073

λ̂0 0.000 -0.034 0.249 0.250 0.002 0.096 0.096

λ̂1 1.000 1.020 0.073 0.075 1.060 0.136 0.148

Notes: Monte Carlo experiment results are based on calibration described in panels (a)-(d) of
Table 1 except we assume market size is unobserved and distributed according to equation (42) in
the paper, where we set λ0 = 0 and λ1 = 1 in generating samples. All results are based on sam-
ples with 500 markets, sample size of 2000 market-�rm observations, with 256 polynomials used
in estimation. Measurement error in cost data has a standard deviation of σν+ς = 0.2 which is
approximately seven percent of mean total cost.

interactions. Results show that our two-step SNLLS estimates are consistent throughout whereas

the IV estimates of the demand parameters are biased when the instruments are invalid.

In the �rst row (SNLLS 1) of Table 6, the demand shock is set to be orthogonal to the other

variables, (i.e., δξ = 0.5, δw = δr = δυ = δQ = δxo = 0), so that the instruments are valid. As

we can see, the two-step SNLLS estimated coe�cients are close to the true values, as are the IV

estimates presented in the third row (IV1). However, the standard deviations of the IV estimates

of σα and σβ are higher than those of the two-step SNLLS estimates. This implies that higher

order interactions of the instruments may be needed in the IV method to estimate σα and σβ as

accurately as the two-step SNLLS ones. Next, in the fourth row (IV2), we set δξ = 1/
(
2
√

1.08
)
,

δυ = δQ = δx0 = 0, and δw = δr = 0.2δξ.
23 Thus, the input prices are not valid instruments.

We can see that while the two-step SNLLS estimates in the second row (SNLLS2) are close to

the true values, the IV estimated µα has an upward bias. The positive direction of bias is to be

expected because ξ in Equation (5) is set up to be positively correlated with the instruments.

Notice also that the coe�cient estimate on the observed characteristic is biased downwards, and

the heterogeneity parameter of price e�ect, σα is biased upwards.

Next, in row IV3, we present the IV results where the rival �rms' observed product charac-

teristics X−jm are correlated with own unobserved characteristics ξjm. That is, we set δxo =

1
2
√

1.04
, δξ = 1

2
√

1.04
, δw = δr = δυ = δQ = 0. Hence, the observed characteristics of rival �rms

cannot be used as instruments for own price. Results show that the IV-estimated µα again has a

23In all the subsequent analysis where we allow correlation between the demand shocks and the other variables,
these correlations are set to be smaller than the ones used for the SNLLS estimates. We also conducted the Monte
Carlo experiments with larger correlations, but faced numerical di�culties during the IV estimation exercise.

39



Table 6: SNLLS and IV Estimators of Random Coe�cient Demand Parameters
(Variation in Market Size)

(a) Price coe�cients parameters
µ̂α σ̂α

Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE CPU minutes

SNLLS1 -2.025 0.085 0.088 0.505 0.036 0.036 9400.8
SNLLS2 -2.034 0.087 0.092 0.507 0.033 0.034 7932.0
IV1 -1.978 0.086 0.089 0.475 0.069 0.073 11571.3
IV2 -1.614 0.088 0.395 0.609 0.051 0.120 13607.4
IV3 -1.453 0.078 0.552 0.157 0.055 0.347 11793.1
IV4 -1.278 0.086 0.727 0.394 0.054 0.119 12875.1

True Value -2.000 0.500

(b) Product characteristic coe�cients parameters
µ̂β σ̂β

Experiment Mean Std. Dev. RMSE Mean Std. Dev. RMSE Obj. Fun.

SNLLS1 1.011 0.048 0.048 0.200 0.041 0.041 3.487D-2
SNLLS2 1.016 0.052 0.054 0.204 0.043 0.042 3.504D-2
IV1 0.982 0.052 0.055 0.197 0.147 0.146 8.344D-4
IV2 0.620 0.046 0.383 0.206 0.148 0.148 1.498D-3
IV3 0.775 0.030 0.227 0.203 0.111 0.111 9.492D-4
IV4 0.533 0.035 0.468 0.159 0.120 0.126 1.203D-3

True Value 1.000 0.200

Notes: Monte Carlo experiment results are based on calibration described in panels (a)-(d) of Table 1
with variations in experimental designs described at the end of this table's note. The results are based
on randomly generated samples with 500 markets, sample size of 2000 market-�rm observations, with
256 polynomials used in estimation. CPU minutes are the average estimation time in minutes across
the simulation/estimation replications. Measurement error in cost data has a standard deviation of
σν+ς = 0.2 which is approximately seven percent of mean total cost.
Monte Carlo experiment designs:

SNLLS1, IV1: instruments are valid, δw = δr = δv = δQ = δxo = 0

SNLLS2, IV2: input prices are correlated with demand shock: δξ = δw = δr = 1
2
√
3
, δv = δQ = δxo = 0

IV3: rival product observed characteristics are correlated with demand shock, δξ = 1
2
√
1.04

,

δxo = 1
10
√
1.04

, δw = δr = δv = δQ = 0

IV4: input prices, variable cost shock, market size, and rival product observed characteristics are
correlated with the demand shock, δξ = 1

2
√
1.20

, δw = δr = δv = δQ = δxo = 1
10
√
1.20

positive bias. The parameter µβ is again estimated with a negative bias, and so is σα, unlike the

results in Table 3, where we show the two-step SNLLS estimator delivers consistent parameter

estimates even if the demand shock is correlated with rival product characteristics.

Finally, in row IV4, we report the results where all the instruments considered here are

positively correlated with the demand shock. Again, we have an upward bias in the IV-estimated

µα and downward bias in the estimates of σα, µβ and σβ .

Overall, we conclude that our two-step SNLLS estimator provides unbiased parameter es-

timates even in situations where the commonly-used instruments are invalid and thus the IV

estimates are biased. In addition, our two-step SNLLS estimator performs well even when mar-

ket size is not observable, and the variable that determines market size is correlated with the
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demand shock or enters directly in the market share equation. Furthermore, with similar con-

vergence criteria, the CPU minutes required for the two-step SNLLS estimator are less than for

the IV estimates. Thus, we tentatively conclude that our sieve-estimation procedure does not

impose excessive computational burden.

6 Empirical application to U.S. banking industry

We next apply our method to the actual data on banks and depository institutions to estimate the

demand for deposits. We estimate a slightly di�erent version of the demand model estimated by

Dick (2008). In particular, we assume that each consumer has one unit to deposit. The indirect

utility function of individual i putting his/her deposits in bank j in market m is speci�ed as:

uijm = xjmβ + rdjmα+ ξjm + εijm,

where xjm is a vector of observed characteristics of bank j in market m, which consists of log of

number of its branches, log of number of markets served and log of one plus bank age; rdjm is the

deposit interest rate of bank j in market m net of the service charge, and ξjm is its unobserved

characteristic. Finally, εijm is the random residual term in the utility function, which is assumed

to be i.i.d. Extreme-Value distributed. We follow Dick (2008) and let the outside option be

depositing in credit unions. Notice that since individuals receive interest rate on their deposits,

banks need to loan out or invest the deposits to earn any revenues. Thus, we assume revenue

to be (rjm − rdjm) qjm, where rjm is the interest rate earned by bank j in market m. We set

the interest rate to be rjm = r, where r is the interest rate on the government treasury notes in

January 2002.24 Market size Qm is the total number of deposits (including credit unions).

Then, we can write down the market share function of this model and the marginal revenue

function in a straightforward way. For details, see the appendix.

Our data is for year 2002 and comes from similar sources as Dick (2008). In the appendix,

we provide information on the data sources, the sample statistics and discuss some data and

estimation issues.

24There are three possible choices of variables for the interest rate rjm. One could use the interest rate on
assets such as government bonds, loan interest rate, or a basket of rates of returns on loans and other �nancial
assets. Choosing the loan interest rate would raise the additional endogeneity issue of bank lending. To the best
of our knowledge, the existing literature on banking focuses primarily on (endogenous) deposits. Since one of the
important goals of this empirical analysis is to demonstrate the validity of our estimator by comparing our results
with those in the existing literature, we use the interest rate on the government treasury notes in January 2002,
since one can reasonably assume it to be exogenous. An interesting future direction of research would be to allow
for both deposits and loans to be endogenous.
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We use the cost data of only those banks that operate in a single market. We do so because

banks that operate in multiple markets may not exercise third degree discrimination, which then

violates Assumption 5. Also, for the sake of reducing the computational burden, we restrict

the sample to markets with no more than 40 banks. In the �nal sample, the number of banks

whose cost data we use is 2067, whereas the total number of banks is 3230. As we can see in

the sample statistics in Table ??, and the results in Table ??, even after imposing the single-

market restriction, we have enough sample size and variation in the data for identi�cation. It

is important to remember that θc is identi�ed based on the assumption of independence of the

measurement error to the other variables. Therefore, using the cost data of only those banks

that serve only one market does not result in any selection bias for the estimation of θc, as long

as we have data on all the variables entering the marginal revenue function, for every bank in

the sample. For estimating µβ, selection matters, and thus we use the full sample.

We present our results in Table ?? in the appendix. Our estimated price coe�cient is around

32 and the average price elasticity is 1.64. The proportion of banks whose elasticity is less than 1

is 4 %. In contrast the IV-estimated price coe�cient on the deposit interest rate in Dick (2008)

ranges from 54.19 to 100.23, depending on the inclusion of the bank/market/state �xed e�ects.

A possible reason for this di�erence could be that Dick (2008) uses banks in areas which are

predominantly urban whereas we also include rural areas. Indeed, our estimated price e�ects

are closer to the ones in Ho and Ishii (2012), who include rural markets in their analysis. The

price elasticity is expected to be lower in rural markets because the distance to branches of other

banks is likely to be greater.

We see in Panel (b) of the table that the IV-estimated price coe�cient is negative and

signi�cant. The negative sign is unintuitive because it implies that a higher deposit interest rate

reduces deposits. Furthermore, the IV-estimated parameters
(
µβ,σβ

)
are all insigni�cant,25

whereas in Panel (a), the two-step SNLLS estimated coe�cients are all positive, as is intuitive,

and signi�cant.

25We tried di�erent instruments in both logit and BLP demand models and found that only the logit speci�cation
with a relatively small number of instruments resulted in positive price coe�cients. This is not surprising because
the number of parameters to be estimated is higher in the BLP set-up, requiring more instruments. In this
application, it is very likely that some of the instruments or some of the polynomials of the instruments are
invalid.
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7 Conclusion

We have developed a new methodology for estimating demand and cost parameters of a di�er-

entiated products oligopoly model. The method uses data on prices, market shares, and product

characteristics, and some data on �rms' costs. Using this data, our approach identi�es demand

parameters in the presence of price endogeneity, and a nonparametric pseudo-cost function in

the presence of output endogeneity without any instruments. That is, demand and variable

cost shocks do not need to be uncorrelated with demand shifters, cost shifters or market size,

and demand shocks can be correlated with the observed characteristics of other products. Also,

demand and variable cost shocks are allowed to be uncorrelated with each other. Moreover, our

method can accommodate measurement error and �xed cost in cost data, endogenous product

characteristics, multi-product �rms, di�erence between accounting and economic costs, and some

non-pro�t maximizing �rms. In addition, we allow market size to be unobservable, and show

that even without conventional exclusion restrictions on the variables determining demand and

market size, we are able to identify and recover the unobserved market size, and consistently

estimate the demand parameters.

In our empirical application, we use data on the banking industry to compare our estimated

price coe�cient of deposit interest rate to the one in the literature estimated using IVs. Our

results indicate that cost data identi�es the demand parameters well. In contrast, studies such

as Dick (2008), Ho and Ishii (2012) and others use a large number of instruments (often 20 or

more) for estimating the demand parameters. The validity of all these instruments is often quite

di�cult to assess.

The small bootstrapped standard errors, especially for the θc estimate in our banking ap-

plication imply that the cost data and the nonparametric pseudo-cost function provide strong

identi�cation restrictions to control for endogeneity. This is also consistent with the favorable

small sample Monte Carlo results provided earlier. In many situations in empirical work, re-

searchers do not have enough identi�cation power from instruments to have their estimated

coe�cients be signi�cant. Even in such cases, the cost-based estimation method could provide

signi�cant parameter estimates. Then, our method has the potential to work well as a comple-

ment to the IV-based approach. As we have seen, both methodologies use similar variation in

the data. The input price, which is used as an instrument also appears as one of the variables

in the cost function in the cost-based approach. The main di�erences between the IV approach

and our cost-based approach are: 1) in the cost-based approach, such variation is more explicitly

43



modeled, which may improve e�ciency; 2) unlike the IV approach, such variation does not need

to be exogenous; 3) in our approach, the unobservable market size can be identi�ed and estimated

without strong exclusion restrictions. Thus, the results using our approach could provide some

guidance on the speci�cation of markets in the IV approach, and 4) the cost-based approach

requires cost data.

Our estimation strategy also presents an alternative tool for anti-trust authorities since they

have the power to subpoena detailed cost data from �rms for merger evaluation. Fundamental

to the predictions from merger simulations based on the standard IV approach (Nevo (2001))

is the estimated demand elasticity and inferred marginal costs from the supply-side �rst order

conditions of the structural model. The demand elasticity and the nonparametric pseudo-cost

estimates based on our instrument-free approach can yield a complementary set of estimates

and predictions regarding the welfare e�ects of proposed mergers when reliable instruments are

scarce, or there are di�erences in opinions among the parties on the validity of the instruments.

Our estimation procedure requires marginal revenue to equal marginal cost. We believe that a

fruitful direction of future research would be to make the method applicable to situations where

marginal revenue fails to be equal to marginal cost. Examples include �rms facing capacity

constraints, or when �rms' decisions include dynamic considerations.
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