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Abstract

We examine the problem of selling an object to a stream of potential buyers with independent private
values and participation costs. If the object can be resold in the future, and resellers can make posted
price offers, the original seller may prefer to deal with potential buyers sequentially instead of holding
an auction. The reason is that resale opportunities compress the dispersion of buyers’ willingness to
pay for the object, which lowers the surplus each buyer expects to receive in the auction. This effect may
reduce participation in the initial auction to just one buyer, in which case the seller obtains zero revenue.
We show that a simple form of sequential mechanism allows the seller to extract positive revenue, and
becomes approximately optimal if the resale market is large. Our finding contrasts with the result that
sellers usually prefer auctions when resale is not allowed (see Bulow and Klemperer 2009).
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1 Introduction

Consider the problem of a seller who faces a group of potential buyers. Assume the buyers arrive in
sequence and that each buyer can learn his private valuation by paying a cost. The seller must sell the
item and does not have any information about the distributions of bidder valuations and entry costs.
Therefore, she is constrained from using reserve price and/or subsidizing bidder entry. In this case, the
seller can run a standard auction in which buyers first decide to enter, and those who enter then submit
their bids simultaneously. Alternatively, the seller can deal with each buyer sequentially, by giving each
buyer the opportunity to bid before inviting the next buyer to participate.

Bulow and Klemperer (2009, henceforth “BK”) showed that sellers usually prefer to use the auction.
Simply put, auctions are “more competitive” than sequential mechanisms. In the latter, bidders can
place jump bids (i.e., publicly observable price commitments) that signal the presence of a high-value
competitor and deter entry by other bidders. Buyers cannot send such signals in auctions, because
bidding commences only after entry has stopped. Thus, in expectation there is more entry in the auction,
resulting in more aggressive bids and a higher seller revenue. Of course, the sequential mechanism
can lead to a higher price ex post, if the bidders who enter in the auction have relatively low valuations.
However, BK demonstrate that this potential advantage is unlikely to dominate the competitiveness of the
auction ex ante, as this requires a large set of potential bidders and a carefully chosen value distribution
and entry cost.

In this paper, we examine the same choice between auctions and sequential mechanisms, but allow
the buyer who acquires the object from the original seller to resell it to other buyers.1 We show that the
original seller may no longer prefer to use the auction. The reason is the following: The opportunity
to resell introduces a common value element to both the auction and the sequential mechanisms. All
buyers—even those with low private values—now have a willingness to pay that is at least equal to the
item’s value in the resale market. This reduces the information rents that buyers can earn and, thus,
reduces entry in the auction. If the resale value is high enough, only one buyer will find it profitable to
enter the initial auction, in which case the original seller’s revenue in the auction must be zero. Whether
this extreme outcome happens depends on the expected size of the resale market. We present an example
in which entry by the second buyer is deterred if there are only 2.33 potential buyers on expectation.2

Thus, it is precisely the competitiveness of the auction that works against it in the presence of re-
sale opportunities. However, even a sequential mechanism may be too competitive. In particular, the
mechanism studied by BK has, at every stage, two bidders competing in an ascending auction before
the survivor makes an additional jump bid. But if a standard second-price auction with no reserve price
leaves insufficient rents for more than one buyer to compete profitably, then the same must be true for an
ascending auction that has a non-negative starting price and whose winner may have to compete again
in the future. Therefore, the first buyer in the sequential mechanism can deter all future entry by placing
a zero (or epsilon) jump bid, leaving the seller with no revenue once again.

To avoid this problem, we introduce a modified sequential selling mechanism in which any simulta-
neous head-to-head competition between buyers is removed. Each bidder is permitted to make exactly
one publicly observable price offer (i.e., a jump bid) immediately after entry, which he commits to
paying if accepted by the seller. If, later, another bidder enters, he observes the previous offers and is

1Resale is a common feature in real auctions. For example, Orange, a telecom firm, participated in the UK mobile spectrum
auction in 2000. Orange won and then immediately sold its license to France Telecom.

2See Table 1 in Section 5.3.
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then permitted to make exactly one offer himself. We call this process a fully sequential mechanism. In
the fully sequential mechanism, a bidder does not care about the valuation of previous bidders—he
only cares about their bids. Because bids cannot be revised later, in order to deter entry by subsequent
bidders a buyer’s jump bid must be sufficiently high to begin with. In other words, the fully sequential
mechanism utilizes the preemptive nature of jump bids, but shuts down any signaling role. We show
that this mechanism becomes approximately revenue-optimal as the number of buyers grows, whereas
the auction and the conventional sequential mechanism become worst. Thus, the conclusion in BK—that
preemptive jump bidding hurts the seller’s revenue while simultaneous competition between bidders
helps—is exactly reversed when resale is possible and the number of buyers is large enough (we provide
a detailed discussion in Section 6).

An important implication of this result is that the fully sequential mechanism allows the initial seller
to approximate the performance of an optimal, but unavailable, mechanism. In general, the seller-optimal
mechanism involves the use of reserve prices and entry fees, and we assume that only resellers, but
not the original seller, can use such instruments. More precisely, we assume that resellers can (but do
not necessarily have to) make take-it-or-leave-it offers. This asymmetry reflects situations in which the
original seller is unable or unwilling to commit to not sell below a certain price, or in which the original
seller does not have enough information to compute reserve prices. Such constraints are realistic in certain
applications, for at least two reasons. First, the initial seller may not want to use an optimal mechanism
because of its objective. For example, consider a government agency that wants to privatize a public
asset. This agency may have efficiency concerns that override revenue concerns, such as a concern for
maximizing the overall economic benefits associated with the transaction. If the asset is the right to
operate a railroad in a given area, for instance, an outcome in which rail service is suspended because a
reserve price has not been met may be unacceptable.

In addition, the initial seller may be at an informational disadvantage. In general, constructing an
optimal mechanism requires knowledge of the distributions of bidder valuations and, in environments
with costly participation, knowledge of buyers’ entry costs (see, e.g., Myerson 1981; Zheng 2002). Our
analysis applies to cases where the initial seller has no knowledge of these variables required to run
an optimal mechanism. This implies that the initial seller is restricted to choose from a smaller set of
mechanisms that are not, generally, revenue-optimal. The assumption that selling mechanisms not depend
on the details of the selling environment, such as the distribution of buyers’ valuations, is sometimes
referred to as the Wilson doctrine (see, e.g., Krishna 2002, p. 75). The doctrine reflects the criterion that
“practical mechanisms should be simple and designed without assuming that the designer has very
precise knowledge about the economic environment in which the mechanism will operate” (Milgrom
2004, p. 23). On the other hand, buyers may be more likely to possess this knowledge. For example, a
government seller may face corporate buyers that are better informed than the government about the
commercial value of an asset and or about costs in an industry, enabling them (but not the government
seller) to compute optimal reserve prices or otherwise construct an optimal mechanism. Our paper,
therefore, applies to environments in which the initial seller, but not the reseller, is constrained by the
Wilson doctrine. We show that an initial selling mechanism exists that is approximately revenue-optimal
and which does comply with the doctrine.

One way for the seller to deal with the aforementioned constraints is to enlist the help of some buyers
to sell the object to others. For such a scheme to be successful, there must be gains from trade after
the initial sale—that is, the initial mechanism must be inefficient. This is part of the reason why the
seller should not let all buyers compete in an auction without a reserve price, and why both the auction
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and the BK sequential mechanism may fail to generate enough entry to raise positive revenue in our
environment. The original seller’s goal, rather, is to construct an alternative mechanism that sells with a
high probability but not always to the “correct” buyer, and still leverages competition among potential
resellers in a way that allows the original seller to extract some of the resale profits that an unconstrained
seller can generate. In the context of the privatization example, this implies that post-privatization trade
among private parties does not necessarily imply that money has been “left on the table,” provided the
government seller can find a way to extract some of the post-privatization gains at the initial selling
stage. This is precisely what our fully sequential mechanism accomplishes. In fact, we show that the fully
sequential mechanism asymptotically extracts all resale profits, and does so without having to use any of
the additional instruments available to resellers.

We proceed as follows. In Section 1.1 below, we review the related literature on auctions with resale
and auctions with endogenous participation. In Section 2 we present a simple three-bidder example that
illustrates the performance of auctions and sequential mechanisms when resale is allowed. In Section
3 we present our basic formal model and in Section 4 we introduce the resale market to that model.
In Section 5 we analyze entry and bidding behavior in the auction and the (conventional) sequential
mechanism, and show that both fail to generate revenue if there are too many potential buyers. In Section
6 we introduce the fully sequential mechanism and show that it is approximately optimal with a large
number of bidders. Section 7 concludes. Most proofs are in the Appendix.

1.1 Related literature

This paper is related to two strands of previous work: The literature on endogenous participation in
auctions, and the literature on auctions with resale. To the best of our knowledge, ours is the first model
to intersect these two areas. In the following, we briefly review both literatures and then highlight the
contributions of our paper to each.

Endogenous participation in auctions. The literature on endogenous participation in auctions can be
divided into two branches. The first branch originates with Samuelson (1985) and assumes that potential
bidders know their private values before making their costly entry decisions.3 The entry cost paid by a
bidder reflects either entry fees charged by the seller, or the cost for preparing and delivering a formal
bid. The second branch originates with McAfee and McMillan (1987) and Levin and Smith (1996) and
assumes that potential bidders learn their private values only after making their entry decision. Here, the
participation cost can be interpreted as resources spent by a bidder to investigate the item and determine
his willingness to pay. Within this branch, the outcome of a selling mechanisms depends crucially on
what is assumed about the timing of entry and bidding decisions: If bidding is possible before entry is
completed, bidders can deter the participation of future competitors either by preemptive jump bidding
(an effect first demonstrated by Fishman 1988) or by coordinated bidding (see Che and Klumpp 2016).
Bulow and Klemperer (2009, “BK”) later showed that, because of the possibility to deter entry, sellers
generally receive more revenue if they use auctions in which bids cannot be submitted until all entry is
complete.4

3See also Stegeman (1996); Tan and Yilankaya (2006); Lu (2009); Cao and Tian (2010); Moreno and Wooders (2011); Shi
(2012); Lu and Ye (2012, 2014).

4There is also a strand of literature that characterizes optimal selling mechanisms assuming that the seller has control over the
set of participating bidders (see Crémer et al. 2007, 2009). In such settings, the seller designs both a selling mechanism and a search
procedure by which participating bidders are selected from a given universe of potential buyers, and which operates in parallel
to the selling mechanism. This is not the type of environment considered here. Like BK, we assume that potential buyers arrive
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Auctions with resale. If bidders in an auction draw their valuations from asymmetric value distributions,
common auction formats may fail to allocate efficiently. In this case, the opportunity for post-auction trade
arises naturally. Gupta and Lebrun (1999) characterize the equilibrium of the first-price auction with
two asymmetric private-value bidders and resale, assuming that the bidders’ private values are common
knowledge at the resale stage and resale price is given by a bargaining solution (e.g., the Nash bargaining
solution). Hafalir and Krishna (2008) show that, when resale occurs via a take-it-or-leave-it offer, the
original seller obtains a higher expected revenue in the first-price auction than in the second-price auction.
Virág (2013) extends this result to the case of more than two bidders and to the case where resale occurs
via a second-price auction. If the original seller can set a reserve price, however, Virág (2016) shows
that this revenue ranking can be reversed. Zheng (2002) examines the design of seller-optimal auctions
with resale. He shows that, in order to achieve the optimal allocation of Myerson (1981), resale must
occur with positive probability. On the other hand, if buyers’ valuations are symmetrically distributed,
common auction formats allocate to the buyer with the highest valuation. Thus, additional assumptions
on the economic environment are necessary to generate post-auction resale. Haile (2000, 2003) develops
models in which bidders face residual uncertainty about their private values, which is resolved after the
initial auction. In this case, the winning bidder may attempt to resell to buyers who turn out to have
higher private valuations ex post. Bose and Deltas (1999) and Haile (2001) assume that some bidders
cannot participate in the initial auction. In this case, the winning bidder may attempt to resell to one
of the excluded bidders. In either case, the anticipation of future resale opportunities affects bidders’
willingness to pay in the initial auction, and depending on the initial auction format, this feedback can
increase or decrease the expected revenue of the original seller, relative to the no-resale case.

Our model belongs to the “pay to learn your value” class of endogenous participation models and
to the “symmetric values” class of resale models, and it contributes to each. As BK, we compare two
types of mechanisms: Simultaneous auctions and sequential processes that permit placing of preemptive
bids (within the latter, we now introduce a distinction between fully sequential mechanisms in which
only preemptive bids are permitted, and mechanisms in which an element of simultaneous competition
remains). Regardless of the mechanism, only some buyers participate. Thus, as in Bose and Deltas (1999)
and Haile (2001), the reason why resale occurs in our model is that some buyers do not participate in the
initial sale. However, instead of being exogenously excluded, these buyers chose not to participate in the
initial sale because participation was not optimal. Our results also reflects an important finding in Zheng
(2002): When resale is possible and cannot be banned, the seller benefits from selling the item to a buyer
who then resells it. In contrast to Zheng (2002), we assume a more restricted set of mechanisms available
to the original seller; however, these mechanisms not require knowledge of the distribution of bidder
valuations and entry costs.

Two other papers show that sequential mechanisms can have an advantage over auctions. Roberts
and Sweeting (2013) assume that potential buyers first receive noisy signals about their valuations, then
decide whether to enter, and then learn their actual valuations if they enter. In this environment, a
bidder’s entry decision depends not only on the number of previous entrants and their bids, but also on
each bidder’s signal. Roberts and Sweeting (2013) show that this facilitates entry by high value bidders
in both the auction and the sequential mechanism. However, the selection effect is stronger in the latter
and may result in a larger expected revenue compared to the auction. Davis et al. (2013) test BK’s result
in a laboratory experiment and find that, contrary to the theoretical prediction, sequential mechanisms

according to an exogenous arrival process over which the seller has no control, and can enter the mechanism as long as they pay
their participation costs.
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tend to perform better than auctions. The authors show that this could be explained by random shocks
to each bidder’s (perceived) entry cost. In contrast to these models, ours retains BK’s assumptions about
information or payoffs and instead modifies the trading possibilities that are available to agents.

Finally, several other papers examine auctions with resale; however, the assumptions and research
questions in these studies are quite different from ours. Garratt and Tröger (2006) examine speculation
and resale in standard auctions, showing that for second-price (but not first-price) auctions, the speculator
can profits from resale. Pagnozzi (2007) shows that resale may encourage low-value bidders to enter
while inducing high-value bidders to drop out in order to buy the object in the resale market instead, with
seller revenue being increased as a result. Pagnozzi (2010) examines how resale can attract speculators
in uniform-price auctions and finds that high-value bidders prefer buy from a speculator in the resale
market. Garratt et al. (2009) consider collusion through inter-bidder resale in English auctions and find
that collusive equilibria interim Pareto-dominate the standard value-bidding equilibrium. Che et al.
(2013) examine the effect of resale on entry strategies in second price auctions and show entry strategies
depend on the reseller’s bargaining power.5

2 A Simple Motivating Example

In this section, we present a motivating example with a fixed set of three buyers and binary private
values. In our main model, we will assume a general stochastic buyer arrival process and a continuous
distribution of values. The simple example below nevertheless foreshadows our main results: If resale is
allowed, the auction (and BK’s sequential mechanism) may fail to generate positive revenue, while the
fully sequential mechanism will perform well.

Example 1. A seller has a zero value for an item. There are three potential buyers whose valuations are
independent of each other and either vi = 0 or vi = 1 (i = 1, 2, 3) with equal probabilities. Buyers are
initially uninformed about their valuations, but each buyer i can learn vi at a cost of c = 0.2.

The seller uses a standard second-price auction, which proceeds as follows. Buyers sequentially
decide whether to participate in the auction. If buyer i decides to participate, he pays c and learns vi.
After all entry decisions are made, the participating buyers simultaneously submit their bids. The highest
bidder wins and pays the second-highest bid (the seller flips a coin if more than one buyer submitted the
highest bid).

Consider first a scenario in which no resale market exists. Clearly, each participating buyer’s dominant
strategy is to bid his valuation, bi = vi. Note that, with these strategies, a participating buyer obtains a
surplus of 1 if and only if his own valuation is 1 and the valuation of every one of his competitors is 0.
Therefore, the expected payoff to a buyer in an auction with n participants is V (n) = (1/2)n − c, or

V (1) = 0.3, V (2) = 0.05, V (3) = −0.075.

In equilibrium, the first two buyers enter and the seller’s expected revenue is (1/4) · 1 = 0.25.

Now suppose that the winner of the auction can resell the item to buyer 3, using take-it-or-leave-it
offer r. Buyer 3 observes r and can then decide whether to pay c to learn v3 and participate in the resale

5Other studies of auctions with resale include Mylovanov and Tröger (2009); Lebrun (2012); Cheng (2011); Zhang and Wang
(2013); Carroll and Segal (2019).

5



market. Buyer 3 participates if and only if

1

2
(1− r)− c ≥ 0,

which implies that the optimal resale offer is r̂ = 0.6. This offer is accepted if v3 = 1, which has probability
1/2. Thus, conditional on offering the item for resale, the expected resale revenue is z∗ = r̂/2 = 0.3. This
implies that a buyer with private valuation vi = 0 should be willing to pay up to z∗ for the item in the
initial auction. If two buyers participate in the auction, and both use the bidding strategy bi = 1 if vi = 1

and bi = z∗ if vi = 0, the expected payoff to each is

V ( 2 | resale allowed ) =
1

4
(1− z∗)− c = −0.025.

Therefore, when resale is possible two buyers can no longer profitably participate in the initial auction.
Instead, only a single buyer will enter now, and the seller’s revenue is zero.

Later in the paper, we will show that the same is true if the seller uses the sequential mechanism
described in BK. The reason is that this mechanism also involves a second-price auction between the first
and the second buyer (the only difference is that the auction is ascending instead of sealed-bid, and buyer
1 gets to make an initial jump bid before the auction commences). However, suppose the seller uses the
following selling procedure, called the fully sequential mechanism: First, she asks buyer 1 to make an
offer p (which is publicly observable). She then asks whether buyer 2 wants to match it. If the offer is
matched, she sells the object to buyer 2 for a price of p; otherwise, she sells the object to buyer 1 for a price
of p. As before, the winning buyer may then try to resell the item to buyer 3, using a take-it-or-leave-it
offer.6

Conditional on having entered, for buyer 2 it is optimal to match any offer p ≤ z∗ if v2 = 0, and any
offer p ≤ 1 if v2 = 1. Moreover, it is strictly optimal for 2 to enter if and only if

1

2
(1− p)− c > 0,

or p < r̂ ≡ 0.6. Thus, by offering 0.6 or more, buyer 1 can deter entry and prevent potentially ruinous
competition with the second buyer. It is now straightforward to verify that the following is a subgame
perfect equilibrium of the fully sequential mechanism:

(i) Buyer 1 offers p = 0.3 if v1 = 0, and p = 0.6 if v1 = 1.

(ii) Buyer 2 enters if and only if p < 0.6.

(iii) Conditional on entry, buyer 2 matches buyer 1’s offer if and only if either v2 = 1 and p ≤ 1, or
v2 = 0 and p ≤ 0.3.

In the equilibrium, buyer 1 gets exactly a zero expected payoff, buyer 2’s expected payoff is 0.15, and the
seller’s revenue is (1/2) · r̂ + (1/2) · z∗ = 0.45 on expectation.7

Note that if the initial seller were able to make take-it-or-leave-it offers herself, she could offer the item
to buyer 1 at price r̂, which is just small enough to induce buyer 1 to enter. If v1 = 0 then buyer 1 rejects

6We assume here that resale cannot take place between the buyers who already participate in the initial mechanism. This
assumption will be discussed in more detail in Section 6.2.

7There are other subgame perfect equilibria in which the seller’s revenue is less than 0.45. However, the seller’s expected
revenue is at least z∗ = 0.3 in every subgame perfect equilibrium.
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the offer, and the seller would make the same offer to buyer 2, and eventually to buyer 3 if necessary. In
this scenario, the seller’s expected revenue is (1− (1/2)3) · r̂ = 0.525, which is the highest value that an
individually rational and incentive compatible mechanism can generate.8 We will later show that the
revenue of the fully sequential mechanism under resale converges to this theoretical maximum as the
number of potential buyers grows.

3 Basic Model

3.1 Demand structure

Following Bulow and Klemperer (2009), we consider the following setup: The owner of an item faces
a (possibly random) queue of risk-neutral potential buyers, indexed i = 1, 2, . . .. The probability that
at least n buyers are present, conditional on n− 1 buyers being present, is ρn ∈ [0, 1]. We assume that
ρ1 = ρ2 = 1 and 1 ≥ ρ3 ≥ ρ4 ≥ . . ., with at least one inequality strict. We denote by

N = ρ1

(
1 + ρ2

(
1 + ρ3

(
1 + . . .

)))
∈
[
2,∞)

the expected number of buyers, which is our measure of the market’s size. Note that this model of buyer
arrival subsumes the case of a fixed number N of bidders, which corresponds to ρ1 = . . . = ρN = 1 and
ρN+1 = ρN+2 = . . . = 0. In this case, the arrival sequence represents merely an exogenous ordering in
which buyers are treated by the seller.

Buyer i, if he exists, must pay c > 0 in order to learn his private valuation vi. This valuation is drawn
from an atomless distribution F with support [0, v] and independent of vj for all j 6= i. We assume that
c <

∫ v
0

(1− F (v))F (v)dv, i.e., at least two buyers could profitably enter a standard second-price auction.
It will also be useful to define the (unique) value 0 < r̂ < v that satisfies the condition

∫ v

r̂

(v − r̂)dF (v)− c = 0. (1)

If the item was offered at a posted price, then r̂ is the highest such price at which a buyer is willing to pay
the entry cost, learn his valuation, and buy the item if and only if his valuation exceeds the posted price.9

3.2 Initial selling mechanism

The owner’s valuation for the item is zero. The owner has to sell the item and can choose among two
types of initial selling mechanism: Auctions and sequential mechanisms. In both cases, bidders arrive in
sequence and, when they arrive, must decide whether to enter or not. In auctions, bidding takes place
only after the entry of all participants has stopped, whereas in sequential mechanisms, buyers can place
bids on which later buyers can condition their entry decisions. BK compare a standard second-price
auction to the sequential mechanism originally introduced by Fishman (1988), which they generalize to
the case of more than two buyers.

8This can be shown by applying the arguments in Crémer et al. (2009). With non-binary valuations, the mechanism that
achieves this maximum value would be more complicated (it would involve all buyers paying an entry fee to the seller initially,
followed by two differentiated take-it-or-leave-it offers to buyers 1 and 2, followed (if necessary) by a second price auction among
all three buyers.

9Our term r̂ is the same as the term VK in BK.
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Second-price auction. When buyer 1 arrives he decides whether or not to enter. If 1 enters he pays c and
learns his valuation v1, and the seller gives buyer 2 the opportunity to enter. If 2 enters, he pays c and
learns his valuation v2, and the seller waits for buyer 3 to arrive. If 3 arrives he is given the opportunity
to enter. If 3 enters he pays c, learns valuation v3, and the seller waits for buyer 4 to arrive. This process
continues until either the arrival of new buyers comes to a halt or a new buyer arrives and decides not to
enter for the first time. Previous entrants do not observe which of the two possibilities is the case.10 At
this time, all buyers i who did enter simultaneously submit bids bi ≥ 0. The bidder who submitted the
highest bid wins and pays the second-highest bid. If only a single bid is placed, the winner pays zero.

Fishman/BK sequential mechanism. The initial price is p0 = 0. When buyer 1 arrives he decides whether
to enter. If he enters, 1 pays c, learns v1, and can place a bid of p1 ≥ 0. This is a jump bid, i.e., a public
commitment to pay p1 if 1 wins. When bidder 2 arrives, he observes p1 and decides whether to enter. If
he enters he pays c and learns v2. Bidders 1 and 2 then simultaneously raise the price until one of them
quits. The survivor is the new high bidder, and can make an additional discrete jump bid. The price at
the end of the second stage is p2. Now bidder 3 arrives, observes the previous price history, and decides
to enter. If he enters he pays c, learns v3, and then competes with the survivor of the previous stage by
simultaneously raising the price until one bidder quits. The survivor is the new high bidder and can
place an additional jump bid, after which the price is p3. This process continues until either the arrival of
buyers stops, or until the first buyer arrives and decides not to enter. At this time, the current high bidder
wins and pays the current price.

We compare the same two selling mechanisms, and then consider a third. The third mechanism is a
sequential mechanism similar to the Fishman/BK mechanism, with one exception: The new entrant and
the current high bidder do not simultaneously raise the price before the survivor makes a jump bid:

Fully sequential mechanism. The fully sequential mechanism proceeds as follows. The initial price is
p0 = 0. When bidder 1 arrives he decides whether to enter. If he enters, 1 pays c, learns v1, and can make
a jump bid of p1 ≥ 0. When bidder 2 arrives, he observes p1 and decides whether to enter. If he enters
he pays c and learns v2. He can then either quit, or submit a jump bid p2 > p1 to become the new high
bidder. Now bidder 3 arrives, observes p2, and decides to enter. If he enters he pays c, learns v3, and then
either quits or bids p3 > p2 to become the new high bidder. This process continues until either the arrival
of buyers stops, or until the first buyer arrives and decides not to enter. At this time, the current high
bidder wins and pays the current price.

After the initial selling mechanism has concluded, the successful buyer may, if he wishes, attempt to
resell the object. In Section 4, we formally introduce and analyze the resale stage of our model.

3.3 Strategies and beliefs

In all initial selling mechanisms we consider, an agent’s strategy has two components: An entry strategy
and a bidding strategy. An entry strategy is a mapping from the information available to a potential
buyer at the time the buyer arrives to that player’s entry decision. This information varies depending on

10This assumption matters for the equilibrium of the auction insofar as, if entry stops due to a lack of potential buyers, there
will be no resale market. If existing buyers knew that this was the case, their bidding behavior would be different from the case in
which there was a further potential buyer who decided not to enter (in the latter case, existing buyers would know that there is at
least one buyer to whom the object could be resold).
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the mechanism considered; however, since buyers learn their valuations only after having entered, the
decision to enter can never be conditioned on a buyer’s private valuation. Likewise, a bidding strategy is
a mapping from the information available to a buyer after entry in the initial mechanism to the buyer’s
bid(s), including jump bids. This information, too, varies depending on the mechanism considered, but
since only buyers who have entered can bid, bidding strategies can always be conditioned on a buyer’s
private valuation.

To predict the outcome of a mechanism, and to derive implications of a particular of mechanism on
seller revenue, one must identify mutually optimal entry and bidding strategies in the games induced by
these mechanisms. Since these games are Bayesian games, it is convenient to derive the optimality of
strategies given a player’s beliefs and derive beliefs from strategies and observable information through
Bayes’ rule whenever possible. The resulting strategy-belief profile then constitutes a weak perfect
Bayesian Nash equilibrium (and the strategy profile alone constitutes a Nash Equilibrium). When we
describe an “equilibrium” of a mechanism, therefore, we mean a profile of strategies and beliefs that
constitute a weak perfect Bayesian Nash equilibrium. For each mechanism we consider, appropriate
formalizations of the relevant beliefs, as well as of the relevant information sets on which strategies are
conditioned, will be introduced in Sections 5 and 6.

4 The Resale Market

The winner of the initial mechanism announces a resale mechanism after the initial mechanism has ended,
but before any subsequent buyers arrive. Buyers who have already entered the initial mechanism are free
to participate in the resale mechanism, and any potential buyer who arrives later must pay the entry cost
c to participate. Potential buyers who arrive but do not enter cannot return at a later stage. We assume
that the item can be resold at most once, that is, the winner of the resale mechanism consumes the item.

We now state the formal assumptions underpinning the resale mechanisms in our model; this is
done in Section 4.1. We then develop a number of results concerning the item’s resale value (and, hence,
buyers’ willingness to pay at the initial selling stage) in Section 4.2. Finally, in Section 4.3 we discuss the
role of our assumptions for these results.

4.1 Resale mechanisms: Assumptions and notation

The reseller can choose among some class of available resale mechanisms. A resale mechanism is a
complete description of the rules governing sale to any set of potential buyers. Regarding the set of
mechanisms available to the reseller, we make the following assumptions:

A1. The set of available resale mechanisms does not depend on the original selling mechanism, on the
identity of the seller, or on how many bidders have already arrived or entered.

A2. The set of available resale mechanisms includes the option to not resell the object, and it includes
resale via take-it-or-leave-it offers to individual buyers.

A3. All resale mechanisms are ex ante and interim individually rational. That is, a potential buyer cannot
be forced to enter and participate in the mechanism, and if he enters and learns his valuation, he
can walk away from the mechanism at no additional cost.

9



Once a resale mechanism is announced, buyers interact with each other by playing an (appropriately
defined) equilibrium of the game induced by the mechanism. Instead of characterizing this equilibrium
for every resale mechanism, we summarize its outcome as follows. Fix a resale mechanism, its associated
equilibrium, the sequence {ρn}∞n=1, the entry cost c, and the value distribution F , and suppose n bidders
participated in the initial mechanism. Let Qn ∈ [0, 1] be the probability that the resale mechanism results
in a sale to some buyer n′ > n. Let Xn be the expected total payment made by buyers n′ > n in the resale
mechanism.11 The set of available resale mechanisms can then be summarized by the set of sequences
(Q,X) = (Qn, Xn)n=1,2,... associated with each mechanism and its equilibrium. We call this set Ω and
make the following technical assumption:

A4.
{

(Qn, Xn) : (Q,X) ∈ Ω
}
∈ R2 is compact for each n.

4.2 Resale revenue and effective valuations

Buyers’ willingness to pay for the object at the initial selling stage will depend, in part, on the revenue they
can expect to receive if they were to sell the object in the resale market. We now examine this relationship
between expected resale revenue and the surplus a buyer obtains when he acquires the object in the
initial mechanism. We begin by establishing an upper bound on resale revenue, which is driven by the
individual rationality assumption A3:

Lemma 1. The expected revenue of any resale mechanism that satisfies assumption A3 and that sells with probability
q is at most qr̂, where r̂ was defined in (1).

Suppose that n buyers participate in the initial mechanism and that buyer i ≤ n is the winner. Assume
that the initial mechanism allocates to the buyer with the highest private valuation (this will be the case
in both the auction and the Fishman/BK sequential mechanism). This implies that, if buyer i resells the
object to buyer j, then j > n. For each n and vi, we can then define

zn(vi) = max
(Q,X)∈Ω

{
Xn + (1−Qn)vi)

}
(2)

to be i’s effective valuation in the initial selling mechanism with n participants, that is, the possible surplus
that i can attain on expectation if he wins the object. Note that zn(0) is the “pure resale value” of the
object. In the following result, we collect several properties of effective valuations to be used later:

Lemma 2. Suppose the set of resale mechanisms satisfies assumptions A1–A4. For given n, the effective valuation
function zn is well-defined and has the following properties:

(i) zn is strictly increasing and weakly convex.

(ii) zn(vi) ≥ max{zn(0), vi}.

11For example, suppose vi ∼ U [0, 1] and ρi = α for all i ≤ N and ρi = 0 for i > N . As a resale mechanism, consider a
sequence of take-it-or-leave-it offers p ∈ (0, 1) that are made by the reseller to every buyer, until either the offer is accepted or the
arrival of new buyers stops. For n = 1, . . . , N − 1 we have

Qn = α
[
p+ (1− p)α

[
p+ (1− p)α

[
. . .

]]]
= αp

1−
[
(1− p)α

]N−n

1− (1− p)α
and Xn = Qnp,

and for n ≥ N we have Qn = Xn = 0.
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(iii) zn(vi) ≤ max{r̂, vi}, where r̂ < v was defined in (1).

(iv) zn(vi)− zn(v′i) ≤ vi − v′i for all vi > v′i.

Because the lowest effective valuation is zn(0), the difference zn(vi) − zn(0) limits the information
rent buyer i can hope to earn in the initial mechanism. We will now show that this rent is small when the
resale market is large.

To formalize the notion of a large resale market, recall that the number of potential buyers to which
the item can be resold to depends (stochastically) on the sequence (ρi) that specifies the conditional
arrival probabilities of buyers. We endow the space of all such sequences with the product topology; that
is, one sequence converges to another if it converges pointwise. Now consider a sequence of sequences
(ρt) = ((ρi)

t
i=1,2,...)

t=1,2,..., where t indexes the sequence and i indexes buyers in the sequence. Suppose
that ρt → (1, 1, 1, . . .). This includes two important cases: When there is a finite number of buyers and
this number grows (e.g., ρti = 1 ∀i ≤ t and ρti = 0 ∀i > t); and when there is a potentially infinite number
of bidders whose arrival probabilities increase (e.g., ρti = αt < 1 ∀i, t and αt → 1). Intuitively, in both
cases the set of resale opportunities expands as t→∞. At the same time, if N t is the expected number
of buyers associated with ρt, then N t →∞ as t→∞.12

Thus, from now on when we say there is a “sufficiently large number of buyers” or “sufficiently large
resale market,” we mean that N is large (but still finite), which is equivalent to (ρi) being close, but not
equal, to (1, 1, 1, . . .). The following result describes what happens to effective valuations in this case:

Lemma 3. Suppose the set of resale mechanisms satisfies assumptions A1–A4. Fix F and c. Take any sequence of
arrival probability sequences (ρt), such that ρt → (1, 1, 1, . . .) pointwise. Let ztn : [0, v]→ [0, v] be the effective
value function associated with sequence ρt, for given n. As t→∞,

(i) ztn(0)→ r̂;

(ii) ztn(vi)→ max{r̂, vi} uniformly;

(iii) E
[
ztn(vi)− zn(0)

]
→ c.

4.3 Discussion of assumptions

Our model of the resale market encompasses a variety of ways in which resellers interact with buyers,
subject to the assumptions spelled out in Section 4.1. These assumptions are that the object can be resold
only once, as well as the requirements in assumptions A1–A4 on the set of resale mechanisms available
to the reseller.

The assumption that repeated resale is not possible is made in order to rule out Ponzi schemes in the
resale market, that is, situations in which the object is sold indefinitely for an unbounded total profit.
Suppose buyer i buys the object from the previous buyer i− 1 for some price, say pi−1, and then resells it
to the next buyer i+ 1 for a higher price pi. If pi > (c+ pi−1)/ρi+1, the scheme compensates buyer i for
the entry cost c, the payment pi−1 to the previous buyer, and the risk that the next buyer does not arrive.
As long as ρi > 0 ∀i, every buyer who arrives would earn a positive expected profit from trading, which
is uncoupled from any buyer’s consumption value of the traded item. In anticipation of such speculative

12This follows from the assumption that the ρ-sequences are monotonic.
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bubbles in the resale market, buyers would have a potentially unlimited willingness to pay to acquire the
object in the initial mechanism. We need to rule out this possibility, and the simplest way of doing so is
to assume that the object can only be resold once.

Of the remaining assumptions A1–A4, assumption A1 is made for convenience and can be relaxed
at the expense of additional notation. Assumption A4 is a technical requirement that ensures that
the reseller’s choice of resale mechanism is well-defined. The substantive assumptions are A2 and A3.
Assumption A2 serves to put a lower bound on a buyer’s effective valuation, and A3 serves to put an
upper bound on a buyer’s effective valuation. With a large number of buyers these two bounds lie very
close together, and our characterization of the outcomes of the initial selling mechanism for large N
(presented in the following sections) stems from this fact. Therefore, these two assumptions are central
for our results.

The first part of A2 is uncontroversial: It allows the winner of the initial mechanism to consume
the object if expected resale revenue is below the initial winner’s private valuation. The second part
of A2—the ability to make take-it-or-leave-it offers—is the primary source of asymmetry between the
original seller and resellers in our model. Note that we are not requiring resellers to actually sell via take-
it-or-leave-it offers; we only assume that such offers can be made.13 With an infinite stream of potential
buyers, an optimal individually rational resale mechanism is, in fact, a sequence of take-it-or-leave-it
offers at price r̂. However, this is not generally the case if N < ∞, and resellers may well prefer to
use other mechanisms, if available (e.g., auctions with buyer-specific or time-specific reserve prices).
The ability to make take-it-or-leave-it offers only implies that any mechanism the reseller actually uses
generates at least the same expected revenue that a sequence of such offers would generate.

Assumption A3 imposes two individual rationality constraints on the reseller. The first is an ex
ante constraint, which implies that a buyer who enters receives, on expectation, sufficient surplus from
the mechanism to cover the entry cost c. This, in turn, limits the revenue the reseller can extract from
each buyer—in particular, the proof of Lemma 1 depends only on the ex ante constraint. The second
constraint is an interim individual rationality constraint, which means that the buyer can walk away from
the mechanism at no cost (other than the entry cost c) after learning his valuation. Interim individual
rationality precludes pre-entry contracts between resellers and potential buyers that provide the buyer
with enough surplus on expectation to induce entry, but oblige the buyer to receive a negative surplus
for some realizations of vi. We exclude such resale mechanisms from our model in order to guarantee
that effective valuations are strictly monotone in private values (see the proof of Lemma 2). This, in turn,
guarantees that both the auction and the BK/Fishman sequential mechanism allocate the object to the
buyer with the highest private value in the initial mechanism, as they do in the no-resale case.

5 Equilibrium in the Auction and Sequential Mechanism

In this section, we focus on the two mechanisms examined in BK: The second-price auction, and the
Fishman/BK sequential mechanism.

13The previous literature on auctions with resale has assumed a variety of resale mechanisms, including take-it-or-leave-it offers
(e.g., Halafir and Krishna 2008; Che et al. 2013), re-auctioning (e.g., Zheng 2002), and Nash bargaining (e.g., Haile 2000, 2003;
Pagnozzi 2007). In this paper we do not rule out any of these mechanisms, but merely assume that take-it-or-leave-it offers are
possible.
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5.1 Second-price auction

In the auction, when a buyer arrives he faces a decision whether to enter or not if and only if all previous
buyers have entered. Thus, buyer i’s entry decision is a binary variable ei ∈ {0, 1}, where ei = 1 means
that i enters if he arrives to the auction. Once either buyer arrival stops or the first arriving buyer decides
not to enter, the game proceeds to the bidding stage. In the bidding stage, every participating buyer
will know his private valuation, vi, and the total number of buyers in the auction, n. Thus, a bidding
strategy for buyer i is a mapping si : [0, v]× {1, 2, . . .} → [0,∞), where si(vi, n) is the bid submitted by
participating bidder i with private valuation vi in the second-price auction with n participants.

No participating bidder i observes the private values of the other n− 1 participants, and knows only
that each of these values is independent and follows distribution F . In addition, i does not observe
whether the auction contains n bidders because only n bidders exist, or because bidder n+ 1 exists but
decided not to enter. This information matters to i, because a resale market exists only in the latter case
but not in the former. Thus, we let µi(n) ∈ [0, 1] denote bidder i’s belief that buyer n+ 1 exists. This belief
is not conditioned on vi because i’s private valuation is independent of with whether bidder n+ 1 exists;
however, it is a conditioned on the number of participating bidders, n.

Suppose, for the time being, that there is a Bayesian Nash equilibrium in which the first n∗ ≥ 1

buyers enter in the auction, if n∗ or more buyers exist. That is, we consider the following profile of entry
strategies:

ei =

{
1 if i ≤ n∗,
0 otherwise.

(3)

Now consider the bidding stage, where the actual number of entrants, n, is observed by all participating
bidders. What should participating bidder i’s beliefs be (i = 1, . . . , n)? There are three cases to consider:

(1) n < n∗ and ρn+1 < 1. In this case, each of the n participating buyers must infer that entry stopped
at n bidders because buyer n+ 1 does not exist. This means that Bayesian beliefs are µi(n) = 0.

(2) n = n∗. In this case, entry stopped at n∗ bidders either because buyer n+ 1 arrived and decided
not to enter (probability ρn∗+1), or because buyer n+ 1 does not exist (probability 1− ρn∗+1). This
means that Bayesian beliefs are µi(n) = ρn∗+1.

(3) All other possibilities, i.e.: n < n∗ and ρn+1 = 1, or n > n∗. In this case, having n bidders participate
is an out-of-equilibrium event that have zero probability under the hypothesized entry strategies
(in the first case, bidder n+ 1 arrived but did not enter despite his entry strategy prescribing entry;
in the second case bidders n∗ + 1, . . . , n arrived and entered despite their strategies prescribing
non-entry.) In each case, out-of-equilbrium beliefs µn+1 are non-Bayesian. Because the mistaken
entry decision that led to the out-of-equilibrium event could not have been conditioned on the
existence of buyer n+ 1, we assign the prior probability that buyer n+ 1 exists: µi(n) = ρn+1.14

The arguments above imply the following equilibrium beliefs (about the existence of buyer n+ 1) for
each participating bidder i = 1, . . . , n:

µi(n) =

{
0 if n < n∗ and ρn+1 < 1,

ρn+1 otherwise.
(4)

14For example, these are the only out-of-equilibrium beliefs that are structurally consistent with the game in the spirit of Kreps
and Wilson (1982).

13



In the case where µi(n) = 0, the continuation game at the bidding stage amounts to a standard second-
price auction with independent private values, and it follows that bidding private value vi is a dominant
strategy for each buyer i. On the other hand, if µi(n) = ρn+1, as long as the auction allocates efficiently,
the participating bidders expect a resale market with probability ρn+1. We show in the Appendix that,
in this case, each bidder i in the initial mechanism should bid his effective valuation zn(vi). Thus, we
following result:

Proposition 4. Suppose that, in the equilibrium of the auction game, entry strategies are given by (3). Let n be
the actual number of bidders who participate in the auction. Then, at the subgame in which bidding commences, the
following is a continuation equilibrium in bidding strategies for i = 1, . . . , n:

si(vi) =

{
vi if n < n∗ and ρn+1 < 1,

zn(vi) otherwise,
(5)

where zn is defined in (2). The beliefs about the existence of buyer n+ 1 that support these bidding strategies are
given by (4).

We now turn to the entry stage. If n is the actual number of entrants, and these entrants bid as
described in Proposition 4, the expected surplus each of them receives is

πAU (n, n∗) =



∫ v

0

∫ v

0

(v − w) dF (w)n−1dF (v)− c if n < n∗,

∫ v

0

∫ v

0

(zn(v)− zn(w))dF (w)n−1dF (v)− c if n ≥ n∗.

(6)

When bidder n∗ arrives, he compares πAU (n∗, n∗) to the expected “outside payoff” from not entering.
Because zn is bounded for all n, πAU (n∗, n∗) must be negative for all large enough n∗. On the other hand,
the outside payoff is at least zero (but may be positive if there is a positive probability that a bidder who
does not enter purchases the good on the resale market later). Thus, the equilibrium value for n∗ is given
by the largest integer such that πAU (n∗, n∗) is at least equal to the outside payoff.15

The following result shows that, if the set of resale opportunities is large in the sense defined in Section
4, then n∗ = 1. That is, exactly one bidder enters in the equilibrium.

Proposition 5. Fix F and c. Assume the initial seller uses a second-price auction and consider the equilibrium
described by entry strategies (3), beliefs (4), and bidding strategies (5). If N is sufficiently large, the equilibrium
number of entrants in the auction is n∗ = 1, and the initial seller receives a zero price.

Thus, if the original seller uses the auction and there are a sufficiently many resale opportunities
available to the winning bidder, the original seller will receive a zero price in the equilibrium.

15To confirm that bidders n < n∗ also have an incentive to enter, note that if n < n∗ enters and entry stops at n∗ bidders, n
receives πAU (n∗, n∗), which is at least as large as the payoff from not entering (by definition of n∗). If n enters and entry stops at
n′ bidders with n ≤ n′ < n∗, there can be no resale market and the expected surplus from not entering is zero. In this event, n
receives an expected surplus of πAU (n′|n∗) in the auction, which (using Lemma 2 (iv) and n′ < n∗) is larger than πAU (n∗|n∗),
which in turn is at least zero. Thus, if n∗ has an incentive to enter, n < n∗ must have an incentive to enter as well.
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5.2 Fishman/BK sequential mechanism

In the sequential mechanism, entry and bidding decisions are intertwined: Buyer i’s entry decision
depends on the bid history prior to i’s arrival, and i’s bidding strategy will affect the entry decisions of
future buyers.

To define these strategies formally, recall that a buyer can place two kinds of bids in the sequential
mechanism. We refer to these as “continuous bids” and “jump bids,” respectively. A continuous bid is
the maximum value to which the buyer is willing to raise the price in the ascending auction, at any stage
of the mechanism. A jump bid represents the value to which a buyer openly raises the price, should he
win the ascending auction. Following the original BK model, we assume that both continuous bids and
jump bids depend on a buyer’s private value and the stage of the mechanism. Thus, the continuous bid
component of n’s bidding strategy is a mapping

sn : [0, v]× {n, n+ 1, . . .} → [0,∞).

The interpretation is that sn(vn, n
′) is the maximum price at which buyer n with private value vn would

remain in the ascending auction at stage n′ of the mechanism, if buyer n was competing at that stage.
Likewise, the jump bid component is a mapping

jn : [0, v]× {n, n+ 1, . . .} → [0,∞)).

The interpretation is that jn(vn, n
′) is the value to which buyer n with private value vn would raise the

price following the ascending auction at stage n′ of the mechanism, if buyer n competed at that stage,
won the ascending auction, and the price was below jn(vn, n

′). The choice of not making a jump bid at
stage n′ can simply be represented by jn(vn, n

′) = 0.

Now consider buyer n’s entry strategy. As in the original BK model, we assume that the buyer’s entry
decision depends on the current price of the mechanism, pn−1 and on whether this price was reached as
the outcome of the ascending auction or a jump bid. We denote the first case by “C” (for “continuous
bid”) and the second case by “J” (for “jump bid.”) Therefore, an entry strategy for buyer n > 1 is a
mapping

en : [0,∞)× {C, J} → {0, 1}.

For instance, en(pn−1, J} = 1 means that buyer n enters if he observes a jump bid of pn−1 at the end of
stage n− 1. For the first buyer, n = 1, the entry strategy is simply a decision e1 ∈ {0, 1}.

Finally, in the context of the sequential mechanism the relevant beliefs are those entertained by a newly
arriving buyer n about the private value of the incumbent (denoted vI). Thus, we let µn(vI |pn−1,C)

denote a cumulative density function on [0, v] that represents the belief of buyer n > 1 about vI if the
current price is pn−1 and the result of a continuous bid. Similarly, we let µn(v|pn−1, J) denote a cumulative
density function on [0, v] that represents the belief of buyer n > 1 about vI if the current price is pn−1

and the result of a jump bid.

Before proceeding to characterize the equilibrium of the sequential mechanism with resale, it will be
helpful to review the outcome of the mechanism when there is no resale.

Recap of the outcome of the sequential mechanism without resale. BK showed that the sequential mechanism
has equilibria of the following form: Bidders enter at low enough prices. After entering, a bidder whose
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valuation is below some cutoff v∗ raises the price against his rivals (i.e., against the previous high bidder
and, should he prevail, against future entrants) until there is no more entry and he wins, or until the
price reaches his valuation and he leaves. Such bidders never place jump bids. A bidder with valuation
v∗ or higher bids in the same way first, but when he becomes the high bidder he places an additional
jump bid, which deters all further entry. Multiple equilibria of this form exist that differ in their threshold
v∗. The largest cutoff value is r̂ (= VK in BK), and the smallest is a value VS that satisfies the condition

1

1− F (VS)

∫ v

VS

∫ v

VS

(v − w) dF (w)dF (v)− c = 0. (7)

To understand (7), note that if the current high-bidder’s value was known to be at least VS , then paying
the entry cost to compete against this bidder yields exactly a zero surplus. A jump bid signals that the
current bidder’s valuation is at least v∗, and since v∗ ≥ VS entry is deterred. The precise value of the
entry-deterring jump bid, j∗n, is determined by the requirement that only bidders above v∗ want to use
this costly signal.16

BK show that only the v∗ = VS equilibrium satisfies a forward induction criterion, perfect sequentiality.
In the other equilibria, buyers with valuations in [v∗, v] can deviate and place lower jump bids that, if
interpreted “correctly” by potential entrants, also deter entry and give the deviating player a strictly
larger payoff.

If resale is possible, the basic logic behind the BK equilibria continues to hold, but the characterization
of the lower entry deterrence threshold (VS) becomes much more tedious. The reason is that this
threshold now depends on the period to which it applies.17 We steer clear of this complication by proving
an asymptotic result: If the number of potential buyers is large, then an equilibrium exists in which v∗ = 0

is an entry-deterring threshold in the initial stage of the mechanism.

We begin with an intermediate result that establishes a condition under which the sequential mecha-
nism ends, which is independent of the equilibrium being played (the proof is in the Appendix):

Lemma 6. Fix F and c and assume the initial seller uses the Fishman/BK sequential mechanism. Consider any
stage n of the mechanism. For N sufficiently large, the following holds in every Perfect Bayesian Equilibrium of the
mechanism: If

(i) the price at the end of stage n of the mechanism is pn ≥ zn(0); and

(ii) buyer n+ 1 arrives and, upon observing pn, believes that the distribution of the current incumbent’s private
valuation is µn+1(vI |·) = F (vI |vI ≥ y) for some y ∈ [0, v],

then buyer n+ 1 does not enter.

Lemma 6 can be used to construct an equilibrium of the sequential mechanism in which all types of
buyer 1 deters entry by buyer 2, provided N is large.

16Because the expected payoff from not using the signal (i.e., continuing to compete in the mechanism) depends on how high
the current auction price is, the value of the entry-deterring jump bid changes as the sequential mechanism progresses, even if the
threshold v∗ stays constant.

17This is because, unlike the private value vi, a bidder’s effective valuation zn(vi) is time-dependent. That is, the function zn is
generally not the same as the function zn′ . The exception is the case in which new buyers arrive with a constant probability in
every period (i.e., ρ3 = ρ4 = . . .). In this case, the zn-functions are the same for all n, and the lower bound VS becomes stationary.
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Suppose buyer 1 enters the mechanism but does not submit a jump bid (or, equivalently, submits a
jump bid of zero). Since buyer learns nothing from seeing a stage-1 price of zero, 2’s Bayesian beliefs
about 1’s type are

µ2(v1|0,C) = µ2(v1|0, J) = F (v1).

If buyer 2 enters at stage 2, he competes against buyer 1 in an ascending auction. Assume, for a moment,
that buyer 3 (if he exists) does not enter at the third stage. Thus, bidders 1 and 2 will raise the price until
it reaches z2(v1) or z2(v2), whichever comes first. If there is no further jump bid, the price at the end of
stage 2 equals

p2 = min{z2(v1), z2(v2)} ≥ z2(0).

Moreover, buyer 3 will believe that the incumbent’s valuation is at least z−1
2 (p2); that is,

µ3(vI |pn−1,C) = F (vI |vI ≥ z−1
2 (p2)).

Provided N is sufficiently large, Lemma 6 implies that bidder 3 does not enter, as was hypothesized.
Going back to player 2’s entry decision, the expected surplus that buyer 2 achieves by entering against
incumbent 1 is given by

πSM (2) =

∫ v

0

∫ v1

0

(z2(v2)− z2(v1)) dF (v2)dµ2(v1)− c

=

∫ v

0

∫ v1

0

(z2(v2)− z2(v1)) dF (v2)dF (v1)− c = πAU (2, 2). (8)

For N sufficiently large, Proposition 5 implies that πAU (2, 2) < 0. Since buyer 2’s expected surplus from
not entering is at least zero, he prefers not to enter. If, out of equilibrium, buyer 1 were to submit a
positive jump bid, we assume that 2’s beliefs remain µ2(v1|p1, J) = F (v1) (which is equivalent to saying
that buyer 2 believes that all types of buyer 1 are equally likely to have made the positive jump bid).
Buyer 2’s expected payoff from entering would then be

∫ v

z−1
2 (p1)

∫ v1

0

(z2(v2)− z2(v1)) dF (v2)dF (v1)− c ≤ πSM (2),

so buyer 2 would still prefer not to enter. An analogous argument can be made if 2 entered and a positive
jump bid was submitted at stage 2.

Thus, we have shown the following:

Proposition 7. Fix F and c. Assume the initial seller uses the Fishman/BK sequential mechanism. If N is
sufficiently large, there exists a weak perfect Bayesian equilibrium of the sequential mechanism exists in which bidder
1 enters, does not bid, and no further bidders enter. This equilibrium is characterized by the following strategies and
beliefs:

e1 = 1, en(pn−1,C) = en(pn−1, J) = 0 ∀n > 1,

sn(vn, n
′) = zn′(vn) ∀n, ∀n′ ≥ n,

jn(vn, n
′) = 0 ∀n, ∀n′ ≥ n,

µn(vI |pn−1,C) = µn(vI |pn−1, J) = F (vI) ∀n, ∀pn−1.

The seller’s revenue in the equilibrium is zero.
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The equilibrium in Proposition 7 corresponds to the VS-equilibrium in BK, i.e., when resale is possible
andN is large, then VS = 0. (Note that the expected surplus term in (7) for the no-resale case mirrors the
the corresponding term in (8) for the resale case). Furthermore, like the VS-equilibrium in BK, the one
in Proposition 7 satisfies the perfect sequentiality criterion. To understand the criterion, it is helpful to
consider those equilibria in BK that do not satisfy it. Specifically, suppose that, in equilibrium, only those
buyers with valuations v1 ≥ v∗ > 0 deter entry, by placing jump bid j∗1 > 0. This implies that all jump
bids j1 < j∗1 must lead to entry (as, otherwise, buyers who want to deter entry would not use j∗1). Now
imagine that bidder 1 actually did place jump bid j1 just slightly below j∗1 . This bid is clearly a mistake
for all types of buyer 1, as player 2 enters in response to such a bid. Thus, for j1 not to be a mistake, buyer
1 must anticipate that a bid of j1 would deter entry (contrary to the equilibrium strategy of buyer 2).
BK show that, as long as v∗ > VS , the types of buyer 1 for whom a bid of j1 would be preferable to the
equilibrium bid if it deterred entry are buyers whose valuations are above some threshold v1(j1) < v∗.
Thus, if buyer 2 were to attempt to explain the unexpected bid j1 as optimal behavior on part of buyer
1, he would conclude that v1 ≥ v1(j1). BK then show that, with these beliefs, player 2 should not enter
following jump bid j1 ∈ (0, j∗1 ). On the other hand, the VS-equilibrium cannot be broken in this way.

In our case, the equilibrium in Proposition 7 trivially satisfies the refinement since all types of buyer
1 deter entry by buyer 2 with a zero jump bid, which means all types of buyer 1 receive the maximum
possible payoff the mechanism permits. Thus, there is no scope for out-of-equilibrium signalling by
placing an unexpected jump bid.

5.3 Intuition and numerical example

We showed that only one bidder enters in the equilibrium of both the auction and the sequential mech-
anism if resale is allowed and the expected number of bidders in the market is sufficiently large. To
understand why, note that the introduction of a resale market has two consequences.

The first consequence is that even if a buyer draws a low private value, he can still resell the item
if he wins it. Thus, every buyer’s willingness to pay for the object at the initial selling stage (i.e., the
buyer’s effective valuation) increases. This does not necessarily translate into increased revenue for the
initial seller, however, because buyers enter the initial mechanism only if they expect to earn a sufficiently
high surplus from participating. The surplus the winning buyer receives in both the auction and the
sequential mechanism is an information rent. A buyer’s expected information rent may be small even if
his expected willingness to pay is large, which happens, in particular, when every buyer’s willingness
to pay is large. The second consequence of having a resale market is precisely that it compresses the
distribution of buyers’ effective valuations: Every buyer has access to the same resale market; therefore,
the resale profit one buyer can achieve is the same as the resale profit another buyer can achieve.

Figure 1 illustrates this effect. Suppose two buyers participate in the initial mechanism and buyers 1

and 2 are the buyers with the highest and second highest private valuation, respectively. Without resale,
buyer 1’s information rent in the initial mechanism would be the difference v1 − v2. The left diagram
in Figure 1 shows the effective valuation function zn(·) when resale is allowed: For private values less
than r̂, the effective valuation function is above the 45◦-line (the first effect of resale) and the slope of
the effective valuation function is strictly less than one (the second effect of resale). Thus, the winner’s
information rent zn(v1) − zn(v2) is strictly less than what it would be without resale. If N increases,
effective valuations increase and compress more, and as N →∞ the z2-function approaches the limit
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Figure 1: Resale and compression of effective valuations.
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shown in the right diagram (this is formally stated in Lemma 3). ForN large enough, a buyer’s expected
information rent will fall below the entry cost c. Once this happens, only a single buyer will enter and
the initial seller’s revenue drops to zero.

Our results did not address the question how large the resale market needs to be for only one buyer to
enter at the initial selling stage. We now compute this threshold in an example. We demonstrate that
even for moderate N , entry by all but a single buyer can be deterred in the equilibrium of the initial
mechanism.

Example 2. We assume that ρn = α < 1 for n ≥ 3. The set of available resale mechanisms consists of
take-it-or-leave-it offers. We consider four different distributions of private values on the unit interval:
The uniform distribution (F (v) = v), a distribution that shifts mass toward lower values relative to the
uniform case (F (v) = 2v− v2), and two distribution that shift mass toward higher valuations (F (v) = v2

and F (v) = v3). Moreover, we consider four different values for the entry cost: c = 0.1, c = 0.075,
c = 0.05, and c = 0.025.

Note that, once the first two buyers have arrived, the resale environment becomes stationary: If r is
an optimal posted price offer in period n ≥ 3 and the offer is not accepted by buyer n, the reseller makes
the same posted price offer r in the next period to buyer n+ 1. If a reseller with private valuation v posts
price r in every period n ≥ 3, he obtains the following expected payoff (not counting his own entry cost
and payment to the original seller):

(1−α)v + α
[(

1−F (r)
)
r + F (r)

[
(1−α)v + α

[(
1−F (r)

)
r + . . .

=
(1− α)v + α

(
1− F (r)

)
r

1− αF (r)
.
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Thus, the effective valuation function for reseller n ≥ 2 is

zn(v) =

 max
r≤ r̂

(1− α)v + α
(
1− F (r)

)
r

1− αF (r)
if v < r̂,

v if v ≥ r̂.
(9)

If only one buyer enters the initial mechanism, he can resell the object in period 2 already, and buyer 2

exists with probability 1. Thus, the effective valuation for reseller n = 1 is

z1(v) =

 max
r≤ r̂

(
1− F (r)

)
r + F (r)z3(v) if v < r̂,

v if v ≥ r̂.
(10)

Given F , α, and c, one can obtain a numerical solution for the effective valuation functions as well as
the optimal posted prices in each period. We use these solutions to compute the second buyer’s expected
payoff from entering the initial mechanism, as well as the expected payoff from not entering the initial
mechanism and instead entering the resale market if and only if the first buyer offers the item for resale.
For all twelve possible combinations of F and c, Table 1 below shows the values of α (and thus N ) for
which the payoff from not entering just exceeds the payoff from entering. Note that in all cases shown in
the table, at least two bidders would enter in the auction if resale was not allowed.

Table 1: Values for α andN such that only one bidder enters the initial auction/
sequential mechanism in Example 2.

Entry cost: c =

Distribution: 0.100 0.075 0.050 0.025

F (v) = v α > .8325 .9240 .9720 .9942

N > 6.97 14.16 36.71 173.41

F (v) = 2v − v2 α > .7470 .9075 .9726 .9958

N > 4.95 11.81 37.50 239.10

F (v) = v2 α > .6079 .8262 .9363 .9866

N > 3.55 6.75 16.70 75.63

F (v) = v3 α > .2487 .7221 .9073 .9819

N > 2.33 4.60 11.79 56.25

For example, consider the uniform values case F (v) = v and assume an entry cost of c = 0.1. If
α > .8325—or if at least 6.97 buyers are in the market on average—only one bidder enters in the auction
or sequential mechanism. If resale was not allowed, one can show that three bidders would have entered
in the auction (assuming that the third bidder exists). For the non-uniform distributions, the thresholds
for α and N are, with a few exceptions, lower than for the uniform distributions. For example, in the
final (cubic) case, N needs to be just slightly larger than 2 for the second bidder to stay out.18

18The intuition is that the uniform distribution is the maximum entropy distribution over a given interval. This means that a
buyer’s private information is, on expectation, most valuable, and the resulting expected information rent highest, in the uniform
case. Thus, it is generally less difficult to deter entry in the non-uniform case, where information rents are lower to begin with due
to the prior distribution being more informative. There is, however, a countervailing effect that depends critically on the possibility
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6 The Fully Sequential Mechanism

We have shown that auctions may attract only one buyer when resale is possible and the expected number
of potential buyers is large, resulting in a zero revenue for the initial seller. The BK/Fishman sequential
mechanism may generate positive revenue in these circumstances, but it also has a perfect sequential
equilibrium in which zero revenue is generated. We will now show that a variant of the sequential
mechanism, the fully sequential mechanism, can robustly generate positive revenue. Moreover, when the
number of potential buyers is large, the fully sequential mechanism is approximately optimal.

The mechanism we describe requires commitment on part of the initial seller to not “come back” to a
buyer who was outbid by a rival. It also requires that the initial seller is able to restrict, via contract, resale
among the participating buyers (but not resale to buyers who do not participate in the initial mechanism).
We will discuss these assumptions and requirements in more detail in Section 6.2 below. At the same
time, the fully sequential mechanism does not use a reserve price, minimum bid, posted price, entry
subsidy, or the like. It relies solely on competition between the buyers to generate revenue, but organizes
this competition in a way that leaves a positive (if small) expected information rent to every buyer who
does enter.

For simplicity, we consider here a very simple mechanism in which the original seller involves only
the first two buyers. The seller first invites the first buyer to make an offer, j1. If this buyer does not enter,
the seller retains the object. If buyer 1 enters and bids j1, the bid is publicly announced he second buyer
is invited to make an offer, j2. If the second buyer enters and submits offer j2 ≥ j1, he wins the object
and pays j2.19 He can then consume the object or resell it to any buyer other than buyer 1. In this case,
the first buyer has no opportunity to come back and react to the second buyer’s offer or to compete with
the second buyer head-to-head, as would be the case in the Fishman/BK mechanism. If the second buyer
does not enter, or if he enters and submits offer j2 < j1, the first buyer wins and pays j1. He can then
consume the object or resell it (to any buyer).

6.1 Equilibrium

Strategies are simple: Bidder 1 must make an entry decision e1 ∈ {0, 1} and, after entry, a jump bidding
decision j1(v1) that is a function of bidder 1’s valuation. Buyer 2 must make an entry decision e2(j1) that
is conditioned on buyer 1’s jump bid, and a bidding decision j2(v2, j1) that is conditioned on buyer 2’s
valuation and buyer 1’s bid. Unlike in the BK/Fishman sequential mechanism, strategies do not include
any continuous components s1(·) or s2(·).

Also unlike in the BK/Fishman mechanism, buyer 2 does not care about the distribution of v1 condi-
tional on observing 1’s bid. This is because buyer 1 cannot react to whatever bid buyer 2 makes, and buyer
2 cannot resell the object to buyer 1 should he win. Thus, we do not need to consider buyer 2’s belief
buyer 1’s type in the fully sequential mechanism, and subgame perfect equilibrium is the appropriate
solution concept.
of resale. When buyers are likely to have low private valuations (e.g., if F (v) = 2v − v2), the resale market is less profitable, and
the winner of the initial mechanism becomes more inclined to consume the object instead of reselling it. This effect slows down the
rate at which effective valuations become compressed when α increases. It is then possible that entry is deterred for larger α-values
than in the uniform case, even though information rents are higher in the uniform case without resale. In Table 1, this happens in
the last two columns for F (v) = 2v − v2.

19The only reason we assume that buyer 2 wins if he offers at least the amount buyer 1 offered (instead of strictly more) is
that in this case buyer 2 always has a well-defined best response to 1’s offer. The assumption could easily be relaxed, either by
permitting almost-best responses in equilibrium or by requiring offers to be integer multiples of some small currency unit.
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Proposition 8. Assume the initial seller uses the fully sequential mechanism in which only the first two buyers get
to participate. Suppose further that the initial seller can restrict resale from buyer 2 to buyer 1, should buyer 2 win.
The following holds in subgame perfect equilibrium of this mechanism (regardless of F , c, and N ):

(i) Buyer 1 enters (e1 = 1) and bids some amount j1(v1) ∈ [z2(0), r̂].

(ii) Buyer 2 enters if and only if j1 < r̂:

e2(j1) =

{
1 if j1 < r̂,

0 otherwise.

If buyer 2 enters, he bids

j2(v2, j1) =

{
j1 if z2(v2) > j1,

0 otherwise.

The initial seller’s revenue is at least z2(0), and is approximately equal to r̂ for large N .

To prove the result consider buyer 2’s strategy first. Note that, since 2 can resell to buyers 3, 4, . . .

but not to buyer 1, the most buyer 2 is willing to pay for the object is z2(v2); thus, 2’s bidding strategy is
optimal.20 Now turn to buyer 2’s entry decision. At the time 2 must make this decision, he effectively
faces a take-it-or-leave-it offer j1 but does not know v2 yet. The definition of r̂ and Lemma 2 imply that
buyer 2 strictly prefers entry if and only if j1 < r̂. Thus, buyer 2’s entry strategy is optimal.

Now consider 1’s decision, anticipating 2’s strategy. Note first that buyer 1 enters: If he does not enter,
1’s payoff is zero. If he enters, he can obtain a positive net surplus if he makes the following bid:21

j1 =


r̂ if v1 ≥ r̂,

z2(0) + z2(v1)

2
otherwise.

(11)

If v1 ≥ r̂ and buyer 1 bids r̂, then buyer 2 does not enter and 1 wins for a payment of r̂. By definition
of r̂, this possibility is sufficient to yield exactly a zero net profit from entering. If v1 < r̂, then the bid
[z2(0) + z2(v2)]/2 induces entry by buyer 2; however, buyer 1 still wins with positive probability and, if
he wins, pays a price that is strictly less than his effective valuation. Thus, strategy (11) generates an
expected positive net surplus from entering, and it follows that buyer 1 enters. Conditional on buyer 1

entering, we observe that buyer 1 never bids j1 < z2(0), for any v1. The reason is that buyer 2 will enter
and, with probability one, will win. At the same time, buyer 1 also never bids j1 > r̂: Any bid of at least
r̂ deters entry by bidder 2, and since buyer 1 must pay his bid, any offer j1 > r̂ is strictly dominated by a
jump bid of j′1 = r̂. Thus, it follows that j1(v1) ∈ [z2(0), r̂].

Finally, since buyer 1 enters with probability 1 and makes jump bid j1(v1) ∈ [z2(0), r̂], the initial
seller’s revenue is at least z2(0); z2(0) ≈ r̂ for large N by Lemma 3.

20Buyer 2 may want to bid zero and wait and see if buyer 1 attempts to resell the object. But buyer 1 would not have made an
offer to buy the object for j1 if his resale strategy was to resell the object for an expected price of j1 or less. Thus, the expected
surplus buyer 2 can achieve by waiting for the resale market must be strictly less than v2− j1, which in turn is less than z2(v2)− j1.

21This is not necessarily buyer 1’s equilibrium bidding strategy; strategy (11) is examined only to demonstrate that entry is
profitable for buyer 1 conditional on buyer 2’s strategy.
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6.2 Discussion

The result in Proposition 8 should not be confused with BK’s finding that, in the no-resale case, the
sequential mechanism may generate more revenue than the auction if the set of potential buyers is
large. Without resale, the potential advantage of dealing with buyers sequentially is that it permits the
flexibility to generate additional entry if previous buyers have low valuations. This effect is mechanical
and translates into an expected revenue advantage over the auction only under contrived assumptions
about the value distribution and the entry cost (see BK, p. 1558). If resale is possible and there is a large
stream of potential buyers, the fully sequential mechanism beats the auction for strategic reasons, and for
all value distributions and all entry costs.

The advantage of the fully sequential mechanism stems from the fact that no buyer has the opportunity
to revise an earlier offer. This means that, conditional on entry, the first buyer must bid at least z2(0) to
have a chance at winning, so the seller can be assured to receive at least one jump bid for an amount
z2(0) or higher. Table 2 displays the value z2(0) as a percentage of r̂, for the parameter combinations in
Example 2 and assuming that the buyer arrival rate α is equal to the corresponding thresholds at which
entry by the second bidder would be deterred in the auction or sequential mechanism (see Table 1).
Therefore, the numbers in Table 2 are lower bounds on the performance of the fully sequential mechanism
in those cases where the auction or sequential mechanism result in a zero revenue.22

For the fully sequential mechanism to yield this revenue, two requirements must be fulfilled, which
we now discuss. First, the initial seller must commit to not give any buyer the opportunity to revise
an offer once a better offer by a competing buyer is received. There are several ways in which such
commitment can be achieved in practice. The seller may try to develop a reputation for not renegotiating
previous offers. If the seller is a large organization, it may explicitly instruct its agents to only deal with
one buyer at a time; or it could limit the number of agents authorized to negotiate with buyers, which
makes repeated bargaining with the same buyers less likely.

Table 2: Lower bounds on the fully sequential mechanism’s revenue (as a per-
centage of r̂) in Example 2, in cases where the auction/sequential mechanism
yield zero revenue.

Entry cost: c =

Distribution: 0.100 0.075 0.050 0.025

F (v) = v 69.0% 82.5% 91.7% 97.5%

F (v) = 2v − v2 56.6% 78.2% 90.9% 97.7%

F (v) = v2 46.4% 69.9% 85.7% 95.6%

F (v) = v3 14.6% 52.7% 77.5% 93.2%

22The numbers are lower bounds for two reasons: First, Proposition 8 states that the initial seller receives at least z2(0). In
general, revenue will be more than that, as was illustrated already in our motivating Example 1 earlier in the paper. Second, the
numbers are computed for α being exactly equal to the entry deterrence thresholds in Table 1. If α is larger than this threshold,
z2(0) will increase.
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Second, if the initial seller awards the objects to buyer 2, this sale must involve the condition that buyer
2 does not resell the object to buyer 1. To see why, note that in equilibrium buyer 2’s entry is deterred if
buyer 1 places a jump bid of r̂. Moreover, as shown above, the ability to deter 2’s entry with a jump bid of
r̂ makes it (just) profitable for buyer 1 to enter. If buyer 2 could resell the object to 1, this would no longer
be the case. The reason is the following: Since only types v1 ≥ r̂ would bid r̂ or higher, buyer 2, upon
seeing j1 = r̂, must believe that v1 ≥ r̂. Buyer 2 could now enter, purchase the object for r̂, and attempt
to sell it (via a take-it-or-leave-it offer) to buyer 1. Since buyer 1 has already paid the entry cost c and
has already revealed that his valuation is above r̂, buyer 2 will receive a positive expected net surplus
from entry (whereas, without the resale opportunity, he would receive exactly a zero net surplus from
entering). In turn, buyer 1 is no longer able to guarantee to win the object for a price of r̂, and without
this ability buyer 1’s expected surplus from entering will be negative if N is large.

Thus, in order to receive the gains from any potential resale to buyers who do not participate in the
mechanism, the initial seller must put some restrictions on resale among those buyers who do participate.
The purpose of the restriction is to protect buyer 1 from opportunistic entry by buyer 2 and, therefore,
preserve buyer 1’s ability to make a preemptive bid that guarantees a win for a surplus just high enough
to make entry by buyer 1 profitable. Whether the initial seller can impose such a condition depends on
the nature of the asset being sold and on the legal environment. Seller-imposed restrictions on resale are
common, for instance, in manufacturer-dealer relationships and in the licensing of intellectual property.

Notwithstanding these requirements, the fully sequential mechanism has several practical advantages
over alternative selling mechanisms. Note that the initial seller could decide to use either the auction or
the sequential mechanism, but subsidize entry to ensure that at least two buyers participate. However, in
order to compute the entry subsidy the initial seller would have to know at least the value of the entry
cost c, and possibly also the distribution of buyer valuations and their arrival probabilities. The fully
sequential mechanism, on the other hand, does not require knowledge of these parameters on part of the
initial seller. The fully sequential mechanism is also robust in another sense: It yields at least revenue
z2(0), which is the pure resale value of the item. Thus, unless the number of buyers is exactly two, the
mechanism generates positive revenue for the initial seller regardless of N . While the auction and the
sequential mechanism may generate higher revenue on expectation, they run the risk of not resulting in
any revenue.

7 Conclusion

As discussed in Section 5.3, our results are driven by the effect that the possibility of resale compresses
the distribution of each buyer’s willingness to pay: Even those buyers with very low private values will
be willing to pay at least the item’s expected resale value. If all buyers have access to the resale market,
this effect reduces the information rents that can be earned by competing buyers in the initial auction or
sequential mechanism, and hence tends to reduce entry to the point where only a single buyer enters. By
adopting the fully sequential mechanism, the initial seller can leverage competition between buyers in a
way that still leaves enough surplus for the second buyer to enter.

In principle, similar results would obtain in any situation in which the willingness-to-pay distribution
was sufficiently compressed and the seller was restricted to choose among auctions and sequential
mechanisms—a resale market is only one application in which such a compressed distribution might
arise. A different application might be the case in which the buyers are a group of similar firms that
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compete for an input—say, logging rights—and that face the same demand curve and are well (but not
perfectly) informed about each other’s production costs. If the seller—say, a government selling logging
rights—is comparatively less well informed, it may be restricted to non-optimal mechanisms, which do
not entail reserve prices and other variables that depend on the value distribution or entry costs. It is
then possible, for the reasons as we analyzed in this paper, that an auctions or sequential mechanisms
would fail to generate revenue.

The above notwithstanding, the possibility of resale is an important application as a resale market is a
natural assumption in many settings in which the underlying value distribution is not a priori compressed.
These include several scenarios not examined explicitly in this paper. For example, while we considered
only the case where buyers learn their private value fully after entry but have no information about it
prior to entry, in certain applications it may be more realistic to assume that potential buyers receive
informative signals about their values before deciding to enter (see, e.g., Roberts and Sweeting 2013 for
a model with this information structure). However, even buyers with the most pessimistic of signals
will be willing to pay at least the pure resale value, zn(0), in the initial mechanism. If the resale market
is large (in the sense that N is large), this pure resale value will be relatively high—and just like in the
model examined here, this will result in a compression of the willingness-to-pay distribution in the initial
mechanism.

On the other hand, there are also situations in which resale may not result in the same compression
effect. For example, if bidders’ valuations vi are correlated, a buyer’s private value provides a signal about
the private value of other buyers, and hence about the object’s expected resale value. If this correlation
is positive, then a buyer with a low private value would expect other buyers to be more likely to also
have low private values, which implies a low expected value in the resale market (and vice versa for
buyers with high values). In this case, increasing the number of buyers who participate in the resale
market on expectation would no longer guarantee that the effective valuation functions zn(·) converge
to the limiting function shown in the right graph in Figure 1. Consequently, an outcome in which the
entry of all but one buyer is deterred (in the auction or sequential mechanism) may not arise, even if
resale is possible and the resale market is large. Thus, there may be no need for the seller to adopt a fully
sequential mechanism.

Proofs

Proof of Lemma 1

The part of Assumption 4 that matters for this result is ex ante individual rationality (EA-IR). Take any
EA-IR resale mechanism that results in resale with probability q and has expected revenue R. By the
revelation principle, without loss of generality we can assume that the mechanism is an EA-IR and
incentive compatible (IC) direct revelation mechanism. We first show that a direct revelation mechanism
exists that is EA-IR but not necessarily IC, is such that losing bidders pay exactly zero, sells with probability
q, and generates revenue R if buyers report their valuations truthfully (Step 1 below). Second, we show
that any direct mechanism that is EA-IR, is such that losing bidders pay exactly zero, and sells with
probability q generates at most qr̂ in expected revenue if buyers report their valuations truthfully (Step 2
below). The result that R ≤ qr̂ then follows.
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Step 1. Existence of the direct revelation mechanism

Consider a buyer j who arrives, observes information set Ij and then enters and learns valuation vj .
Denote by qj(Ij , vj) the probability with which j wins the object conditional on his post-entry information
(Ij , vj), and let mj(Ij , vj) be the expected payment j makes conditional on (Ij , vj) (net of any entry fees
charged, or entry subsidies paid, by the reseller). Since the mechanism is EA-IR, we have for all j and Ij∫ v

0

qj(Ij , vj)vj −mj(Ij , vj)dF (vj) ≥ c.

We will assume that
∫ v

0
qj(Ij , vj)dF (vj) > 0 for every buyer j who enters. This is without loss of

generality: A buyer who expects a zero probability of winning would only enter if he paid −c or less on
expectation. We could then replace the mechanism with one in which this buyer pays zero and does not
enter,23 which would increase the reseller’s expected revenue. Since our goal is to establish an upper
bound on the reseller’s revenue, we may assume that every buyer who does enter has a strictly positive
probability of winning the object (conditional on the buyer’s pre-entry information).

We now construct a new direct revelation mechanism with the same allocation rule as the first
mechanism. The payment that bidder j makes in the new mechanism depends on (Ij , vj) and whether j
wins or loses, but not on any other variables, and is given by

xj(Ij , vj) =


0 if j loses,∫ v

0

mj(Ij , t)dF (t)

/∫ v

0

qj(Ij , t)dF (t) if j wins.

(This is well-defined because
∫ v

0
qj(Ij , vj)dF (vj) > 0 for every buyer j who enters.) Conditional on the

pre-entry information Ij , a bidder’s expected payoff from entering is

∫ v

0

qj(Ij , vj) [vj − xj(Ij , vj)] dF (vj) =

∫ v

0

qj(Ij , vj)

[
vj −

∫ v
0
mj(Ij , t)dF (t)∫ v

0
qj(Ij , t)dF (t)

]
dF (vj)

=

∫ v

0

qj(Ij , vj)vj −mj(Ij , vj)dF (vj),

which is the same as in the first mechanism. Hence, the new mechanism is still EA-IR and results in
the same entry decisions as the first mechanism; and because the allocation rule is the same it results in
selling probability q. Since the expected payments entering bidders make are the same as well, this new
mechanism will have expected revenue R if buyers report their valuations truthfully.24

It follows that for every EA-IR and IC direct revelation resale mechanism that sells with probability q
and yields expected revenue R, there exists an EA-IR (but not necessarily IC) direct revelation resale
mechanism which sells with probability q, generates expected revenue R if buyers report their valuations
truthfully, and in which losing bidder pay exactly zero.

23If it is necessary for the operation of the mechanism, the reseller can always “simulate” the presence of buyer j by drawing a
random value vj from F .

24Since the mechanism is not IC, this revenue is hypothetical: If the mechanism was actually used, buyers would misrepresent
their information strategically and thereby reduce the revenue earned by the seller.
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Step 2. Revenue bound in the direct revelation mechanism

Next, we show that every EA-IR direct revelation mechanism that sells with probability q and in which
losing bidders pay exactly zero can at most have revenue qr̂ if buyers report their valuations truthfully.
Consider buyer j’s entry decision, having information Ij but not knowing his valuation vj . Let λ be the
probability with which j expects to win if he enters, and let τ be the expected payment j makes if he
enters and wins. By EA-IR, buyer j enters if and only if

λ
(
E
[
vj
∣∣Ij , j wins

]
− τ
)
≥ c. (12)

For given λ, E
[
vj
∣∣Ij , j wins

]
is maximized if the allocation rule of the mechanism is such that j wins

the object whenever vj ≥ F−1(1− λ). In this case

λE
[
vj
∣∣Ij , j wins

]
=

∫ v

F−1(1−λ)

vdF (v),

and it follows that, for given λ, the maximum τ that satisfies condition (12) is

τ(λ) =
1

λ

[∫ v

F−1(1−λ)

vdF (v)− c

]
. (13)

We need the following result (which we state as a formal Lemma for later reference):

Lemma 9. The expression in (13) is no larger than r̂, where r̂ is defined in (1).

Proof. The first-order condition for a maximum of (13) is

τ ′(λ) = − 1

λ2

[∫ v

F−1(1−λ)

vdF (v)− c

]
− 1

λ

[
F−1(1−λ)f

(
F−1(1−λ)

) d
dλ
F−1(1−λ)

]

= − 1

λ2

[∫ v

F−1(1−λ)

vdF (v)− c

]
+

1

λ
F−1(1− λ) = 0,

which can be rearranged to

∫ v

F−1(1−λ)

v − F−1(1− λ) dF (v)− c = 0. (14)

Using (1), (14) implies F−1(1 − λ) = r̂, or λ = 1 − F (r̂). Plugging this back into (13), and using (1)
again, we have

τ(1− F (r̂)) =
1

1− F (r̂)

[∫ v

r̂

vdF (v)− c

]
=

1

1− F (r̂)

∫ v

r̂

r̂dF (v) = r̂.

Returning now to the task of proving Lemma 1, we conclude: Conditional on winning, the expected
payment made by a buyer in this mechanism is at most r̂. Since losing buyers do not pay, the expected
revenue of this mechanism is at most qr̂.
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Proof of Lemma 2

We begin by translating the definition of effective valuations (2) into a more convenient form.

Note that for any (Q,X) ∈ Ω and all n, if Qn = 0 then Xn ≤ 0. This follows from the EA-IR constraint
in assumption A4: Buyers would not pay the entry cost c to participate in a mechanism in which they
had a zero chance of winning, unless Xn < 0. However, since (0, 0) ∈ Ω by assumption A3, if the reseller
chooses a mechanism with Qn = 0 he would never set Xn < 0. Hence we can assume, without loss of
generality, that Qn = 0 implies Xn = 0. Now define

Yn ≡

 Xn/Qn if Qn > 0,

0 if Qn = 0,

and let Ω̃ ≡
{

(Q,Y ) : (Q,X) ∈ Ω}. We can then restate (2) as follows:

zn(vi) = max
(Q,X)∈Ω

{
Xn + (1−Qn)vi)

}
original definition (2)

= max
(Q,Y )∈Ω̃

{
QnYn + (1−Qn)vi)

}
. (15)

In other words, we can focus (without loss of generality) on resale mechanisms that generate non-zero
revenue only in the event that the object is resold. Assumption A4 guarantees that max(Q,X)∈Ω{Xn +

(1−Qn)vi} exists for all n; hence zn(vi) is well-defined.

With this simplification, we now proceed to establish properties (i)–(iv) of the result.

Property (i). Take some v′i ∈ [0, v] and let

(Q′, Y ′) = arg max
(Q,Y )

{
QnYn + (1−Qn)v′i

}
.

If vi is another valuation, with vi > v′i, then we have

zn(vi) = max
(Q,Y )

{
QnYn + (1−Qn)vi

}
≥ Q′nY

′
n + (1−Q′n)vi

≥ Q′nY
′
n + (1−Q′n)v′i = max

(Q,Y )

{
QnYn + (1−Qn)v′i

}
= zn(v′i), (16)

which shows that zn is weakly increasing. To show that it is strictly increasing, we will argue that Q′ < 1

for all v′i > 0. (This implies that the second inequality in (16) is strict whenever vi > v′i > 0; since we
already know that zn is weakly increasing over [0, v], strict monotonicity follows.)

Since ρj < 1 for some j, there is a strictly positive probability that the arrival of buyers breaks down,
and hence a strictly positive probability that vj < v′i for all existing buyers j > n. Consider this event.
By the interim individual rationality (I-IR) constraint in assumption A3, conditional on a buyer’s entry
decision and private valuation, the buyer’s expected payment cannot exceed this valuation times the
buyer’s probability of winning. Thus, expected resale revenue must be strictly less than v′i. However, a
reseller with valuation v′i would never choose a mechanism that yielded expected revenue strictly below
v′i: He would prefer to either not sell the object or make a series of take-it-or-leave it offers at price v′i; by
assumption A2 both are possible. Thus, for a reseller with private valuation v′i > 0, it cannot be optimal
to choose a resale mechanism that results in resale with (unconditional) probability one.
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To show convexity of zn, take α ∈ (0, 1) and observe that

zn(αvi + (1− α)v′i) = max
(Q,Y )

{
QnYn + (1−Qn)(αvi + (1− α)v′i)

}
≤ α max

(Q,Y )

{
QnYn + (1−Qn)vi

}
+ (1− α) max

(Q,Y )

{
QnYn + (1−Qn)v′i)

}
= αzn(vi) + (1− α)zn(v′i).

Therefore, zn is weakly convex.

Property (ii). Note that Qn = Yn = 0 is a feasible choice (i.e., by assumption A2, a buyer who wins the
object has the option to not resell it), which implies zn(vi) ≥ vi. Since zn is strictly increasing, we have
zn(vi) > zn(0). Thus, zn(vi) ≥ max{zn(0), vi}.

Property (iii). Note that Lemma 1 implies Xn = QnYn ≤ Qnr̂ for all n. Thus Yn ≤ r̂, which implies
that for vi > r̂ the optimal reselling mechanism is such that Qn = Yn = 0; by assumption A2 such a
mechanism is available. It follows that zn(vi) ≤ max{r̂, vi}.

Property (iv). Recall the following properties: zn(vi) ≥ vi (from (ii)), zn(v) = v (from (ii) and (iii)),
and zn increasing and convex (from (i)). Together, these properties imply that zn is a (weak) contraction:
zn(vi)− zn(v′i) ≤ vi − v′i for vi > v′i.

Proof of Lemma 3

Suppose ρt → (1, 1, 1, . . .) pointwise. For every α ∈ (0, 1) and every integer k > n, there exists T (α, k) <

∞ such that ρti > α for all i < k and t > T (α, k). Fix any such t > T (α, k). If the reseller can make a
take-it-or-leave-it offer at posted price r̂ to every i > n (which is possible by assumption A3), his expected
revenue is at least

k − n iterations︷ ︸︸ ︷
α
(
1− F (r̂)

)
r̂ + F (r̂)

[
α
(
1− F (r̂)

)
r̂ + F (r̂)

[
α
(
1− F (r̂)

)
r̂ + . . .

]]
= r̂α

(
1− F (r̂)

)1− F (r̂)k−n

1− F (r̂)
= r̂α

(
1− F (r̂)k−n

)
.

At the same time, by Lemma 1 the reseller’s expected revenue can never be more than r̂. Thus, for
t > T (α, k), r̂α

(
1− F (r̂)k

)
≤ ztn(0) ≤ r̂. The term on the left-hand side becomes arbitrarily close to r̂ as

α→ 1 and k →∞. It follows that ztn(0)→ r̂ as t→∞; this establishes (i). Statement (ii) now follows
from (i) and the fact that max{zn(0), vi} ≤ zn(vi) ≤ max{r̂, vi}. Statement (iii) follows from (i), (ii), and
the definition of r̂ in (1).
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Proof of Proposition 4

Suppose entry strategies and post-entry beliefs are given by (3) and (4), respectively. Let E be the set of
bidders who entered the auction, with |E| = n

If n < n∗ and ρn+1 < 1, the buyers inE believe that it has a zero probability that a potential buyer exists
who is not in E already. In this case, the auction is a standard second price auction with symmetrically
distributed independent private values, and it is a dominant strategy profile to bid these values. This
gives bi(vi, n) = vi.

In all other cases, the buyers in E believe that at least one potential buyer not in E exists with
probability ρn+1. Suppose, for a moment, that no resale takes place among agents in E. Fix some i ≤ n,
let b−i be the highest bid submitted by bidders j 6= i, and let G be the distribution of b−i. Bidder i’s
expected payoff from bidding bi when his valuation is vi can be expressed as

Ui(bi|vi) =

∫ bi

0

zn(vi)− b−i dG(b−i),

and this is maximized if i submits bid bi = zn(vi). Since zn is strictly increasing, if all bidders bid their
effective valuations the object is allocated to the bidder with the highest private valuation, which implies
that there can be no resale among the buyers in E, as was posited initially. This gives bi(vi, n) = vi,
subject to one caveat:

Buyer i may still deviate from this bidding strategy and change his resale strategy, in a way that
involves the bidders in E. We show that this cannot benefit i. Suppose all buyers j ∈ E\i bid their
effective valuations zn(vj). If buyer i deviates this strategy and, as a result of the deviation, wins even
though he does not have the highest valuation, he pays maxj∈E\i zn(vj) to the original seller. But this is
the most any bidder in E\i would be willing to pay to acquire the object from i in the aftermarket, so i
cannot strictly benefit from the deviation. Similarly, if buyer i deviates and does not win even though he
has the highest valuation, and then tries to acquire the object in the aftermarket, he would have to pay at
least maxj∈E\i zn(vj) to the winner of the auction. But this is the same amount i would have had to pay
to the original seller if he had won in the auction, so again i cannot strictly benefit from the deviation
either.

Proof of Proposition 5

Take a sequence ρt → (1, 1, 1, . . .) pointwise. For a given n, let ztn, πtn, and πtn be a buyer’s effective
valuation, expected payoff from participating in the auction with n bidders, and expected payoff from not
participating in the auction, associated with the tth sequence. By Lemma 3 (ii), limt z

t
n(vi) = max{r̂, vi}

uniformly. Since (6) is continuous in zn, we have

lim
t→∞

πtn =

∫ v

0

∫ v

0

max{r̂, v} −max{r̂, w} dF (w)n−1dF (v)− c

=

∫ v

r̂

(
F (r̂)n−1(v − r̂) +

∫ v

r̂

v − w dF (w)n−1

)
dF (v)− c,
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which is strictly decreasing in n. For n = 2 we have

lim
t→∞

πt2 =

∫ v

r̂

(
F (r̂)(v − r̂) +

∫ v

r̂

v − w dF (w)

)
dF (v)− c

<

∫ v

r̂

(
F (r̂)(v − r̂) + (1− F (r̂))(v − r̂)

)
dF (v)− c

=

∫ v

r̂

v − r̂ dF (v)− c = 0,

where the final equality follows from the definition of r̂ in (1). This implies that for t sufficiently large,
πtn < 0 ≤ πtn for all n > 1. On the other hand, πt1 ≥ πt1 = 0 for all t (πt1 > 0 because bidder 1 wins and
pays a zero price; πt1 = 0 because there is no resale market if 1 does not enter). Stated in equivalent terms:
For N sufficiently large,

πAU (1, 1) > 0 > πAU (2, 2) > πAU (3, 3) > . . . ,

so n∗ = 1, which means the seller receives a zero price.

Proof of Lemma 6

If bidder n + 1 enters, then he and incumbent compete in an ascending auction. Let vI denote the
incumbent’s private value and suppose bidder n+ 1 beliefs that vI is distributed according µn+1(vI) =

F (vI |vI ≥ y) for some y ∈ [0, v]. Bidder n+ 1 gains at most zn+1(vn+1) if he wins against the incumbent
in the ascending auction. Furthermore, since the incumbent will raise the price at least to vI , if n+ 1 wins
he must pay at least max{pn, vI} ≥ {zn(0), vI} (since pn ≥ zn(0) by assumption). Thus, an upper bound
on the expected surplus that n+ 1 achieves if he enters is

∫ v

z−1
n+1(pn)

∫ vn+1

y

(
zn+1(vn+1)− max

{
zn(0), vI

})
dµn+1(vI)dF (vn+1) − c

=
1

1− F (y)

∫ v

z−1
n+1(pn)

∫ vn+1

y

(
zn+1(vn+1)− max

{
zn(0), vI

})
dF (vI)dF (vn+1) − c

≤
∫ v

0

∫ vn+1

0

(
zn+1(vn+1)−max

{
zn(0), vI

})
dF (vI)dF (vn+1) − c

≤
∫ r̂

0

∫ vn+1

0

(
r̂ − zn(0)

)
dF (vI)dF (vn+1) +

∫ v

r̂

∫ r̂

0

(
vn+1 − zn(0)

)
dF (vI)dF (vn+1)

+

∫ v

r̂

∫ vn+1

r̂

(
vn+1 − vI

)
dF (vI)dF (vn+1) − c

<

∫ r̂

0

∫ r̂

0

(
r̂ − zn(0)

)
dF (vI)dF (vn+1) +

∫ v

r̂

∫ r̂

0

(
vn+1 − zn(0)

)
dF (vI)dF (vn+1)

+

∫ v

r̂

∫ v

r̂

(
vn+1 − r̂

)
dF (vI)dF (vn+1) +

∫ v

r̂

∫ v

r̂

(
r̂ − vI

)
dF (vI)dF (vn+1) − c. (17)
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If N →∞ then ρ→ (1, 1, 1, . . .), and Lemma 3 implies that the right-hand side in (17) converges to

F (r̂)2(r̂ − r̂) + F (r̂)

∫ v

r̂

(vn+1 − r̂)dF (vn+1) + (1− F (r̂))

∫ v

r̂

(vn+1 − r̂)dF (vn+1)

+

∫ v

r̂

∫ v

r̂

(
r̂ − vI

)
dF (vI)dF (vn+1) − c

= 0 + F (r̂)c + (1− F (r̂))c +

∫ v

r̂

∫ v

r̂

(
r̂ − vI

)
dF (vI)dF (vn+1) − c

=

∫ v

r̂

∫ v

r̂

(
r̂ − vI

)
dF (vI)dF (vn+1) < 0.

It follows that bidder n+ 1 should not enter for N sufficiently large.
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