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Global burden of 87 risk factors in 204 countries and 
territories, 1990–2019: a systematic analysis for the Global 
Burden of Disease Study 2019
GBD 2019 Risk Factors Collaborators*

Summary
Background Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on 
human health are important to identify where public health is making progress and in which cases current efforts are 
inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and 
comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease.

Methods GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), 
and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, 
regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors 
(eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. 
(1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research 
studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for 
risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function 
of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. 
(3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data 
sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or 
alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with 
minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs 
were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-
sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account 
mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources 
were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of 
attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised 
with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because 
the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results 
supersede previously published GBD estimates of attributable burden.

Findings The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to 
social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and 
child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in 
risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-
mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, 
which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths 
in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) 
deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 
was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 
295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied 
considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed 
risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those 
aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years 
and 75 years and older.

Interpretation Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success 
with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public 
policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public.
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Introduction
The mechanism for much of disease and injury preven­
tion is through modifying environmental, occupational, 
behavioural, and metabolic risk factors. Other pathways, 
such as vaccination or addressing social determinants 
of health, are crucially important, but a substantial 
component of public health has targeted modifying the 
aforementioned risk factors. Whether the risk factor is 
targeted through public policy such as taxation or 
regulation, through programmes such as water supply 
improvement, or primary care advice and pharmacological 
intervention, it is essential to track progress on risk 
exposure. Which risk factors are declining, stagnating, or 
even increasing gives insights into where current efforts 
are working or are insufficient. Understanding where the 
promise of prevention is being realised might generate 
lessons that can be applied to other risks in which progress 
is slow. Tracking the burden attributable to risk exposure, 
measured by deaths, years of life lost (YLLs), years lived 
with disability (YLDs), or disability­adjusted life­years 
(DALYs), can also help governments, donor agencies, 
international organisations, and civil society organisations 
to identify new priorities.1–3

To help track risk exposures and the burden 
attributable to these exposures, many studies are pub­
lished each year on the burden of specific risks, often 
in specific countries or regions.4–7 To our knowledge, 
the only effort to examine attributable burden with 
standardised methods across a wide set of risk factors 
spanning all countries is the Global Burden of Diseases, 
Injuries, and Risk Factors Study (GBD).8–12 Many choices 
go into the comparable quantification of the burden of 
risk factors; GBD provides a rules­based approach to 
evidence synthesis that follows the Guidelines on 
Accurate and Transparent Health Estimates Reporting.13 
Comparable quantification across risks over time 
and across populations facilitates identi fying relative 
importance and how population health risks are 
evolving over time. GBD also provides a framework 
to understand both the trends in risk exposure and 
the trends in burden attributable to risks. Quantifying 
and reporting both exposure and attributable burden is 
important because exposure might be increasing and 
attributable burden decreasing if other drivers of the 
underlying outcomes are declining at a fast enough 
rate.

Research in context

Evidence before this study
The Global Burden of Diseases, Injuries, and Risk Factors Study 
(GBD) 2017 provided the most recent assessment of deaths, 
years of life lost because of premature mortality, years of life 
lived with disability, and disability-adjusted life-years 
attributable to metabolic, environmental and occupational, 
and behavioural risk factors. GBD 2017 provided estimates from 
1990 to 2017 for 195 countries and territories. Many reports 
explore the burden of disease that can be attributed to a specific 
risk factor in a specific country or territory, region, or globally, 
but none attempts to assess an extensive list of risk factors in all 
countries and regions.

Added value of this study
GBD 2019 advances the technical quantification of attributable 
burden in 12 ways. (1) In support of the agreement between GBD 
and WHO, nine new countries have been added to the analysis: 
Cook Islands, Monaco, San Marino, Nauru, Niue, Palau, Saint Kitts 
and Nevis, Tokelau, and Tuvalu. (2) Subnational assessments for 
Italy, Nigeria, Pakistan, the Philippines, and Poland have been 
added to GBD 2019. (3) High and low non-optimal temperatures 
have been added as risk factors (54 new risk–outcome pairs). 
(4) For 81 risk–outcome pairs, new systematic reviews have been 
done as part of GBD 2019. (5) For 139 risk–outcome pairs, 
dose–response meta-regressions have been done to evaluate if 
the relationship between exposure and relative risk might not be 
adequately captured by assuming a log-linear relationship 
between risk and per unit increase in exposure. (6) On the basis of 
the systematic reviews and dose–response meta-regression, 
12 risk–outcome pairs have been excluded from GBD 2019 
because they no longer met inclusion criteria. (7) On the basis of 

the systematic reviews and meta-regressions, 47 new risk–
outcome pairs have been included for risks that were previously 
included. This includes outcomes linked to low birthweight and 
short gestational age as intermediate outcomes linked to 
particulate matter with a diameter smaller than 2·5 μm (PM2·5), 
which has increased the burden attributable to PM2·5. (8) New 
cohorts, trials, and case-control studies have been added for the 
assessment of risk functions. (9) New sources have been added 
to the analysis of risk factor exposure by age, sex, and location. 
(10) Corrections for non-reference method exposure 
measurements have been revised using network or related 
meta-regression. (11) For dietary risks, the theoretical minimum 
risk exposure level (TMREL) has been revised based on the new 
systematic reviews. (12) The distribution of alcohol use across 
individuals has been revised to better capture the asymmetric 
nature of the distribution. In addition to the technical 
improvements in each step of the quantification of risk factor 
exposure, relative risk, TMREL, and attributable burden, in this 
study we have focused attention on the broad trends in risk 
exposure by computing summary exposure values for 
aggregations of risk factors. Isolating the long-term global and 
national trends in risk exposure reveals in which cases the world 
has been successful in reducing exposure to harmful risks.

Implications of all the available evidence
Improved analysis of risk exposure and burden attributable to 
risk factors at the national, regional, and global level can help to 
focus attention on risks for which exposure is increasing and in 
which locations. This quantification is an essential input into 
public health prioritisation and evaluation of programme 
success.
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In this study, we present new or updated results for 
the quantification of 560 risk–outcome pairs including 
updated data for exposure, updated data for relative risks, 
methods innovation in evaluating risk­exposure functions, 
and the addition of two new risk factors—high and 
low non­optimal temperatures. In addition to providing 
quanti fication of exposure and attributable burden in 
204 locations over the period 1990–2019, we used summary 
exposure values (SEVs) for aggregates of risk factors to 
understand where public health is making progress 
tackling the major environmental, occupational, beha­
vioural, and metabolic risk factors, and where it is not.

Methods
Overview
The GBD 2019 estimation of attributable burden fol­
lowed the general framework established for comparative 
risk assessment (CRA)14,15 used in GBD since 2002. Here, 
we provide a general overview and details on major 
innovations since GBD 2017. More detailed methods are 
available in appendix 1. CRA can be divided into six key 
steps: inclusion of risk–outcome pairs in the analysis; 
estimation of relative risk as a function of exposure; 
estimation of exposure levels and distributions; deter­
mination of the counterfactual level of exposure, the level 
of exposure with minimum risk called the theoretical 
minimum risk exposure level (TMREL); computation of 
population attributable fractions and attributable burden; 
and estimation of mediation of different risk factors 
through other risk factors such as high body­mass index 
(BMI) and ischaemic heart disease, mediated through 
elevated systolic blood pressure (SBP), elevated fasting 
plasma glucose (FPG), and elevated LDL cholesterol, to 
compute the burden attributable to various combinations 
of risk factors.10

Geographical units, age groups, and time periods
GBD 2019 estimated prevalence of exposure and attri­
butable deaths, YLLs, YLDs, and DALYs for 23 age 
groups; males, females, and both sexes combined; 
and 204 countries and territories that were grouped 
into 21 regions and seven super­regions. GBD 2019 
includes subnational analyses for Italy, Nigeria, Pakistan, 
the Philippines, and Poland, and 16 countries previously 
estimated at subnational levels (Brazil, China, Ethiopia, 
India, Indonesia, Iran, Japan, Kenya, Mexico, New 
Zealand, Norway, Russia, South Africa, Sweden, the UK, 
and the USA). All subnational analyses are at the 
first level of administrative organi sation within each 
country except for New Zealand (by Māori ethnicity), 
Sweden (by Stockholm and non­Stockholm), the UK 
(by local government authorities), and the Philippines 
(by province). In this publication, we present subnational 
estimates for Brazil, India, Indonesia, Japan, Kenya, 
Mexico, Sweden, the UK, and the USA; given space 
constraints, these results are presented in appendix 2. 
For this cycle, nine countries and territories (Cook 

Islands, Monaco, San Marino, Nauru, Niue, Palau, 
Saint Kitts and Nevis, Tokelau, and Tuvalu) were added, 
such that the GBD location hierarchy now includes 
all WHO member states. These new locations were 
previously included in regional totals by assuming 
that age­specific rates were equal to the regional rates. 
At the most detailed level, we generated estimates 
for 990 locations. The GBD diseases and injuries 
analytical framework generated estimates for every year 
from 1990 to 2019.

GBD risk factor hierarchy
Individual risk factors such as low birthweight or 
ambient ozone pollution are evaluated in the GBD CRA. 
In addition, there has been policy interest in groups of 
risk factors such as household air pollution combined 
with ambient particulate matter. To accommodate these 
diverse interests, the GBD CRA has a risk factor hier­
archy. Level 1 risk factors are behavioural, environmental 
and occupational, and metabolic; Level 2 risk factors 
include 20 risks or clusters of risks; Level 3 includes 
52 risk factors or clusters of risks; and Level 4 includes 
69 spe cific risk factors. Counting all specific risk factors 
and aggregates computed in GBD 2019 yields 87 risks or 
clusters of risks. For a full list of risk factors by level, see 
appendix 1 (section 5, table S2).

Determining the inclusion of risk–outcome pairs in GBD
Since GBD 2010, we have used the World Cancer Research 
Fund criteria for convincing or probable evidence of risk–
outcome pairs.16 For GBD 2019, we completely updated our 
systematic reviews for 81 risk–outcome pairs. Preferred 
Reporting Items for Systematic Reviews and Meta­
Analyses flowcharts on these reviews are available in 
appendix 1 (section 4). Convincing evidence requires more 
than one study type, at least two cohorts, no substantial 
unexplained heterogeneity across studies, good­quality 
studies to exclude the risk of confounding and selection 
bias, and biologically plausible dose–response gradients. 
For GBD, for a newly proposed or evaluated risk–outcome 
pair, we additionally required that there was a significant 
association (p<0·05) after taking into account sources of 
potential bias. To avoid risk–outcome pairs repetitively 
entering and leaving the analysis with each cycle of GBD, 
the criteria for exclusion requires that with the available 
studies the association has a p value greater than 0·1. 
On the basis of these reviews and meta­regressions, 
12 risk–outcome pairs included in GBD 2017 were excluded 
from GBD 2019: vitamin A deficiency and lower respiratory 
infections; zinc deficiency and lower respiratory infections; 
diet low in fruits and four out comes: lip and oral cavity 
cancer, nasopharynx cancer, other pharynx cancer, and 
larynx cancer; diet low in whole grains and two outcomes: 
intracerebral haemorrhage and subarachnoid haemor­
rhage; intimate partner violence and maternal abortion 
and miscarriage; and high FPG and three outcomes: 
chronic kidney disease due to hyper tension, chronic 

See Online for appendix 2

See Online for appendix 1
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kidney disease due to glomerulonephritis, and chronic 
kidney disease due to other and unspecified causes. 
In addition, on the basis of multiple requests to begin 
capturing important dimensions of climate change into 
GBD, we evaluated the direct relationship between high 
and low non­optimal temperatures on all GBD disease and 
injury outcomes. Rather than rely on a heterogeneous 
literature with a small number of studies examining 
relationships with specific diseases and injuries, we ana­
lysed individual­level cause of death data for all locations 
with available information on daily temperature, location, 
and Inter national Classification of Diseases­coded cause of 
death. These data totalled 58·9 million deaths covering 
eight countries. On the basis of this analysis, 27 GBD 
cause Level 3 outcomes met the inclusion criteria for each 
non­optimal risk factor (appendix 1 section 2.2.1) and were 
included in this analysis. Other climate­related relation­
ships, such as between precipitation or humidity and 
health outcomes, have not yet been evaluated.

Estimating relative risk as a function of exposure for 
each risk–outcome pair
In GBD, we use published systematic reviews and for 
GBD 2019, we updated these where necessary to include 
any new studies that became available before Dec 31, 2019. 
We did meta­analyses of relative risks from these studies 
as a function of exposure (appendix 1 sections 2.2.2, 4). For 
GBD 2019, 81 new systematic reviews were done, including 
for 44 diet risk–outcome pairs. To allow for risk functions 
that might not be log­linear, we relaxed the meta­regres­
sion assumptions to allow for monotonically increasing 
or decreasing but potentially non­linear func tions for 
147 risk–outcome pairs. Appendix 1 (section 2) provides the 
mathematical and computational details for how we 
implemented this approach for meta­regression. 218 risk–
outcome pairs were estimated assuming log­linear 
relationships. For 126 risk–out come pairs, exposure was 
dichotomous or polytomous. For 37 risk–outcome pairs, 
the population attributable fractions were assumed by 
definition to be 100% (eg, 100% of diabetes is assumed to 
be, by definition, related to elevated FPG). For 32 risk–
outcome pairs, other approaches were used that reflected 
the nature of the evidence that has been collected for 
those risks (appendix 1 section 4). For risks that affect 
cardiovascular outcomes, we adjusted relative risks by age 
such that they follow the empirical pattern of attenuation 
seen in published studies for elevated SBP, FPG, and LDL 
cholesterol.

Estimation of the distribution of exposure for each risk 
by age-sex-location-year
For each risk factor, we systematically searched for 
pub lished studies, household surveys, censuses, admin­
istrative data, ground monitor data, or remote sensing 
data that could inform estimates of risk exposure. To 
estimate mean levels of exposure by age­sex­location­year, 
specific methods varied across risk factors (appendix 1 

sections 2.1, 4). For many risk factors, exposure data were 
modelled using either spatiotemporal Gaussian process 
regression or DisMod­MR 2.1,17,18 which are Bayesian sta­
tistical models developed over the past 12 years for GBD 
analyses. For most risk factors, the distribution of exposure 
across individuals was estimated by modelling a measure 
of dispersion, usually the SD, and fitting an ensemble of 
parametric distributions to the predicted mean and SD. 
Ensemble distributions for each risk were estimated 
based on individual­level data. Details for each risk factor 
modelling for mean, SD, and ensemble distribution are 
available in appendix 1 (section 4). Because of the strong 
dependency between birthweight and gestational age, 
exposure for these risks was modelled as a joint distribution 
using the copula method.19

In many cases, exposure data were available for the 
reference method of ascertainment and for alternative 
methods, such as tobacco surveys reporting daily smoking 
versus total smoking; in these cases, we esti mated the 
statistical relationship between the reference and alter­
native methods of ascertainment using network meta­
regression and corrected the alternative data using this 
relationship.

Determining the TMREL
For harmful risk factors with monotonically increasing 
risk functions, the theoretical minimum risk level was 
set to 0. For risk factors with J­shaped or U­shaped risk 
functions, such as for sodium and ischaemic heart 
disease or BMI and ischaemic heart disease, the TMREL 
was determined as the low point of the risk function. 
When the bottom of the risk function was flat or 
poorly determined, the TMREL uncertainty interval (UI) 
captured the range over which risks are indistinguishable. 
For protective risks with monotonically declining risk 
functions with exposure, namely risk factors where 
exposure lowers the risk of an outcome, the challenge is 
selecting the level of exposure with the lowest level of 
risk strongly supported by the available data. Projecting 
beyond the level of exposure supported by the available 
studies could exaggerate the attributable burden for a 
risk factor. In these cases, for each risk–outcome pair, we 
determined the exposure level at the 85th percentile of 
exposure in the cohorts or trials used in the risk meta­
regression. We then generated the TMREL by weighting 
each risk–outcome pair by the relative global magnitude 
of each outcome. Appendix 1 (section 2.4 and 4) provides 
details on the TMREL estimation for each risk.

Estimation of the population attributable fraction and 
attributable burden
For each risk factor j, we computed the population 
attributable fraction (PAF) by age­sex­location­year using 
the following general formula for a continuous risk: 

PAFjoasgt=
∫x=lRRjoasg(x)Pjasgt(x)dx – RRjoasg(TMRELjas)

u

∫x = lRRjoasg(x)Pjasgt(x)dx
u
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where PAFjoasgt is the PAF for cause o, for age group a, 
sex s, location g, and year t; RRjoasg(x) is the relative risk as 
a function of exposure level x for risk factor j, for cause o 
controlled for confounding, age group a, sex s, and 
location g with the lowest level of observed exposure as l 
and the highest as u; Pjasgt(x) is the distribution of exposure 
at x for age group a, sex s, location g, and year t; and 
TMRELjas is the TMREL for risk factor j, age group a, and 
sex s. Where risk exposure is dichotomous or polytomous, 
this formula simplifies to the discrete form of the 
equation.

Estimation of the PAF took into account the risk 
function and the distribution of exposure across 
individuals in each age­sex­location­year. By drawing 
1000 samples from the risk function, 1000 distributions 
of exposure for each age­sex­location­year, and 
1000 samples from the TMREL, we propagated all of 
these sources of uncertainty into the PAF distri butions. 
PAFs were also applied at the draw level to the uncer­
tainty distributions of each associated outcome for that 
age­sex­location­year.

Estimating the PAF and attributable burden for 
combinations of risk factors
For the estimation of each specific risk factor, the 
counterfactual distribution of exposure is the TMREL 
for that specific risk with no change in other risk factors. 
Thus, the sum of these risk­specific estimates of attri­
butable burden can exceed 100% for some causes, such 
as cardiovascular diseases. It is also useful to assess the 
PAF and attributable burden for combinations of 
risk factors, such as all diet components together or 
household air and ambient particulate matter pollution. 
To estimate the combined effects of risk factors, we 
should take into account how one risk factor might be 
mediated through another (eg, the effect of fruit intake 
might be partly mediated through fibre intake). We used 
the mediation matrix as developed in GBD 201712 to try 
to correct for overestimation of the PAF and the attri­
butable burden for combinations of risks if we were to 
simply assume independence without any mediation. 
Appendix 1 (section 5, table S6) provides the estimated 
mediation matrix.

Summary exposure value
As in previous rounds of GBD, we summarised expo­
sure distributions for dichotomous, polytomous, and 
continuous risk factors using the SEV. The SEV 
compares the distribution of excess risk times exposure 
level to a population where everyone is at maximum 
risk.

For a given risk r and outcome c pair where RRmax is 
the relative risk at the 99th percentile of the global 

distribution of exposure. We then averaged across 
outcomes to compute the SEV for a given risk as

where N(c) is the total number of outcomes for a risk. 
The SEV is effectively excess risk­weighted prevalence, 

which allows for comparisons across different types of 
exposures. Maximum risk in the denominator of the SEV 
is determined by the relative risk at the 99th percentile of 
the global distribution of exposure. The SEV is on a 
0–100 scale where 100 means the entire population is at 
maximum risk and 0 means everyone in the population 
is at minimum risk. We computed age­standardised 
SEVs by age­standardising age­specific SEVs across the 
age groups in which that risk factor was evaluated; this 
method is a change from GBD 2017 in which age­
standardisation included age groups in which the risk 
was not evaluated. For example, the SEV for low 
birthweight is now age­standardised across age groups 
0–6 days to 7–27 days.

To estimate SEVs for groups of risk factors, we first 
estimated the value of RR2 without mediation through 
risk 1 (RR2/1).

where RR2 is the relative risk of risk factor 2 and MF2/1 is 
the mediation factor, or the proportion of the risk of risk 
factor 2 that is mediated through risk factor 1. We then 
computed the PAF using the non­mediated relative risk 
(RR1/2) and computed the joint PAF as

We cannot simply multiply RRmax values used for the 
SEV of each component risk as this would exaggerate 
the joint RRmax. We approximated the 99th percentile of 
risk for the combination of risk factors by taking the 
geometric mean of the ratio between the individual 
risk maximum risk and the individual risk global mean 
risk and multiplied that by the global mean joint risk. 
Formally,

where N(r) is the total number of risks. 

Risk-deleted death rates
We computed risk­deleted death rates as the death 
rates that would be observed if all risk factors were set 
to their respective TMRELs. This was calculated as 
the death rate in each age­sex group multiplied by 

SEVrc=
∫x=lP(x)RR(x)dx – 1

u

RRmax – 1

SEVr=
1

N(c)∑
c

SEVrc

RR2/1=MF2/1(RR2 − 1) + 1

PAF1..j =1 −∏
n

j=1

(1 – PAFj).

∏
r

RRglobal mean ∏
r

RRmax

RRglobal mean

1
N(r)

—
—
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1 minus the all­risk PAF for that age­sex group in each 
location.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
Global exposure to risks
The table shows the trends in risk exposure for each risk 
factor at the global level over two time intervals: the full 
duration of the study, 1990–2019, and the past decade, 
2010–19. On the basis of this table, we can divide risks 
into three groups based on the percentage change in 
the global SEV from 2010 to 2019: substantial declines 

(annual rate of change larger than –0·5%), substantial 
increases (annual rate of change greater than 0·5%) and 
the remainder of risks with either non­significant rates 
of change or significant rates of change between –0·5% 
and 0·5%. The declining risks fall into two categories. 
First, a set of risks that are strongly linked to social 
and economic development, measured by the Socio­
demographic Index (SDI): household air pollution; 
unsafe water, sanitation, and handwashing; child growth 
failure; vitamin A deficiency; and zinc deficiency. The 
second set of declining risks includes tobacco smoking 
and lead, which historically have not been negatively 
correlated with SDI. These risks could in fact increase as 
countries and territories increase SDI, at least for a phase 
in the development process. For a long list of risk factors, 
including some large risks, the annual rate of change 
was either statistically insignificant (p>0·05) or the 
annual rate of change was between –0·5% and 0·5% per 

SEV 1990 SEV 2010 SEV 2019 ARC 1990–2019 ARC 2010–19

All risk factors 23·09 (20·22 to 25·67) 21·21 (18·04 to 24·26) 21·22 (18·05 to 24·42) –0·29% (-0·46 to -0·15)* 0·00% (–0·18 to 0·20)

Environmental and occupational risks 52·55 (48·66 to 55·92) 48·50 (44·44 to 52·15) 45·36 (41·16 to 49·19) –0·51% (–0·62 to –0·40)* –0·74% (–0·88 to –0·61)*

Unsafe water, sanitation, and 
handwashing

55·40 (54·39 to 56·61) 49·70 (48·99 to 50·47) 47·13 (46·51 to 47·84) –0·56% (–0·61 to –0·51)* –0·59% (–0·67 to –0·52)*

Unsafe water source 42·78 (41·06 to 44·39) 36·29 (34·57 to 37·92) 32·74 (30·82 to 34·41) –0·92% (–1·08 to –0·76)* –1·14% (–1·52 to –0·77)*

Unsafe sanitation 56·28 (54·14 to 58·38) 38·21 (35·98 to 40·80) 28·93 (26·81 to 31·24) –2·29% (–2·52 to –2·07)* –3·09% (–3·68 to –2·47)*

No access to handwashing facility 36·77 (36·54 to 37·03) 34·05 (33·80 to 34·32) 32·19 (31·92 to 32·48) –0·46% (–0·50 to –0·42)* –0·63% (–0·70 to –0·56)*

Air pollution 45·11 (32·85 to 56·03) 38·36 (28·33 to 48·55) 34·68 (25·76 to 44·37) –0·91% (–1·21 to –0·60)* –1·12% (–1·48 to –0·81)*

Particulate matter pollution 44·22 (31·97 to 55·06) 37·56 (27·57 to 47·75) 33·94 (25·11 to 43·56) –0·91% (–1·24 to –0·61)* –1·13% (–1·48 to –0·81)*

Ambient particulate matter pollution 15·65 (10·62 to 21·58) 22·98 (18·28 to 27·62) 26·22 (21·57 to 30·50) 1·78% (0·95 to 2·71)* 1·46% (0·81 to 2·10)*

Household air pollution from solid fuels 27·08 (16·20 to 38·13) 16·33 (9·59 to 24·52) 11·71 (6·64 to 18·27) –2·89% (–3·60 to –2·25)* –3·70% (–4·64 to –2·88)*

Ambient ozone pollution 47·56 (22·76 to 60·54) 54·34 (29·48 to 65·36) 55·06 (32·21 to 67·16) 0·51% (0·27 to 1·24)* 0·15% (–0·10 to 1·08)

Non-optimal temperature 29·57 (26·06 to 33·72) 30·21 (26·17 to 34·83) 29·53 (25·41 to 34·26) 0·00% (–0·13 to 0·11) –0·25% (–0·39 to –0·13)*

High temperature 25·98 (22·07 to 30·21) 29·25 (24·92 to 33·82) 29·59 (25·16 to 34·26) 0·45% (0·29 to 0·59)* 0·13% (–0·01 to 0·26)

Low temperature 33·21 (29·24 to 37·58) 33·47 (29·06 to 38·25) 32·92 (28·44 to 37·82) –0·03% (–0·13 to 0·06) –0·18% (–0·31 to –0·07)*

Other environmental risks 50·81 (40·53 to 59·86) 45·11 (34·46 to 55·29) 39·67 (29·01 to 50·86) –0·85% (–1·18 to –0·55)* –1·43% (–1·95 to –0·93)*

Residential radon 18·54 (12·37 to 25·82) 18·20 (12·23 to 25·41) 18·12 (12·17 to 25·43) –0·08% (–0·27 to 0·10) –0·05% (–0·25 to 0·14)

Lead exposure 68·52 (53·18 to 80·97) 59·82 (43·52 to 74·40) 51·26 (35·09 to 67·32) –1·00% (–1·43 to –0·63)* –1·72% (–2·40 to –1·09)*

Occupational risks 3·36 (2·99 to 3·90) 3·33 (2·97 to 3·89) 3·32 (2·96 to 3·87) –0·05% (–0·15 to 0·05) –0·05% (–0·22 to 0·13)

Behavioural risks 16·80 (14·82 to 19·05) 15·38 (13·28 to 17·72) 15·09 (12·96 to 17·43) –0·37% (–0·50 to –0·25)* –0·21% (–0·36 to –0·07)*

Child and maternal malnutrition 20·05 (19·06 to 21·19) 17·77 (16·61 to 19·07) 17·23 (15·98 to 18·55) –0·52% (–0·67 to –0·40)* –0·34% (–0·51 to –0·18)*

Suboptimal breastfeeding 21·66 (20·28 to 22·96) 20·05 (18·26 to 21·34) 19·34 (17·42 to 20·68) –0·39% (–0·55 to –0·31)* –0·40% (–0·61 to –0·21)*

Non-exclusive breastfeeding 21·34 (14·67 to 29·82) 19·40 (13·38 to 27·18) 18·39 (12·91 to 25·53) –0·51% (–0·61 to –0·40)* –0·59% (–0·83 to –0·31)*

Discontinued breastfeeding 12·33 (12·04 to 12·65) 10·73 (10·50 to 10·99) 10·24 (9·96 to 10·54) –0·64% (–0·77 to –0·52)* –0·52% (–0·87 to –0·17)*

Child growth failure 4·93 (4·41 to 5·57) 4·21 (3·70 to 4·78) 3·53 (3·01 to 4·10) –1·15% (–1·43 to –0·83)* –1·95% (–2·37 to –1·50)*

Child underweight 13·32 (11·73 to 14·71) 10·51 (8·98 to 11·97) 8·13 (6·50 to 9·68) –1·70% (–2·05 to –1·45)* –2·86% (–3·54 to –2·37)*

Child wasting 5·28 (4·50 to 5·98) 5·23 (4·41 to 5·97) 4·89 (4·08 to 5·61) –0·26% (–0·34 to –0·21)* –0·74% (–0·88 to –0·64)*

Child stunting 24·07 (16·71 to 26·41) 19·65 (13·76 to 22·01) 16·24 (11·45 to 18·72) –1·36% (–1·63 to –1·17)* –2·11% (–2·68 to –1·74)*

Low birthweight and short gestation 11·92 (10·66 to 13·44) 11·32 (10·15 to 12·67) 11·10 (9·99 to 12·42) –0·25% (–0·46 to –0·10)* –0·21% (–0·49 to 0·02)

Short gestation 13·88 (12·81 to 15·20) 13·04 (12·19 to 13·96) 13·17 (12·30 to 14·13) –0·18% (–0·43 to –0·01)* 0·11% (–0·22 to 0·39)

Low birthweight 11·03 (10·41 to 11·81) 10·11 (9·68 to 10·52) 9·69 (9·28 to 10·14) –0·45% (–0·69 to –0·28)* –0·47% (–0·76 to –0·21)*

Iron deficiency 22·65 (21·51 to 23·98) 20·11 (18·78 to 21·59) 19·57 (18·11 to 21·12) –0·50% (–0·65 to –0·38)* –0·30% (–0·47 to –0·14)*

Vitamin A deficiency 33·42 (30·78 to 36·10) 22·00 (19·70 to 24·45) 15·01 (13·55 to 16·86) –2·76% (–3·13 to –2·30)* –4·25% (–5·02 to –3·47)*

Zinc deficiency 13·84 (5·91 to 24·06) 11·88 (4·96 to 21·34) 8·78 (2·89 to 17·60) –1·57% (–2·57 to –1·07)* –3·35% (–6·44 to –2·04)*

(Table continues on next page)



Global Health Metrics

www.thelancet.com   Vol 396   October 17, 2020 1229

year: ambient ozone pollution, high temperature, low 
temperature, residential radon, occupational risks, sub­
optimal breastfeeding, short gestation, low birthweight, 
iron deficiency, chewing tobacco, dietary risks as a group, 
intimate partner violence, low physical activity, high 
LDL cholesterol, low bone mineral density, and kidney 
dysfunction. Many of these stagnating risks have been or 
are targets of concerted public health efforts spanning 
public policy, targeted programmes, and primary care 
intervention.

Concerning for both current and future health are 
the exposures that are increasing at more than 0·5% per 
year. This list includes ambient particulate matter 

pollution, alcohol use, drug use, childhood sexual 
abuse, bullying victimisation, high FPG, high SBP, and 
high BMI. Many of the increasing risks are metabolic 
risk factors; in fact, taken together, the exposure to 
metabolic risks increased 1·37% per year (95% UI 
1·17–1·56) from 1990 to 2019 and 1·46% per year 
(1·26–1·69) from 2010 to 2019. Figure 1A, which shows 
the trends in the age­standardised SEV for each risk 
factor compared with the fraction of global DALYs 
attributable to each risk factor, further emphasises 
these patterns. In 2019, there were three risks that 
accounted for more than 1% of DALYs and were 
increasing in age­standardised SEVs by more than 

SEV 1990 SEV 2010 SEV 2019 ARC 1990–2019 ARC 2010–19 

(Continued from previous page)

Tobacco 30·54 (29·08 to 32·10) 25·32 (24·00 to 26·80) 24·03 (22·75 to 25·44) –0·83% (–0·89 to –0·77)* –0·58% (–0·69 to –0·47)*

Smoking 14·85 (13·27 to 16·56) 12·41 (11·08 to 13·94) 11·14 (9·93 to 12·54) –0·99% (–1·04 to –0·94)* –1·20% (–1·29 to –1·11)*

Chewing tobacco 4·58 (4·18 to 4·98) 4·95 (4·71 to 5·20) 5·11 (4·80 to 5·44) 0·37% (0·03 to 0·76)* 0·36% (–0·32 to 1·05)

Secondhand smoke 43·20 (42·80 to 43·62) 37·76 (37·32 to 38·19) 37·51 (37·00 to 38·09) –0·49% (–0·54 to –0·43)* –0·07% (–0·20 to 0·06)

Alcohol use 6·50 (4·62 to 8·84) 6·68 (4·81 to 9·02) 6·99 (4·98 to 9·41) 0·25% (0·00 to 0·56) 0·50% (0·05 to 0·95)*

Drug use 0·18 (0·12 to 0·28) 0·18 (0·13 to 0·27) 0·19 (0·14 to 0·27) 0·28% (–0·19 to 0·69) 0·53% (0·06 to 0·97)*

Dietary risks 51·31 (40·44 to 62·42) 48·28 (36·60 to 60·37) 47·10 (35·39 to 59·62) –0·30% (–0·50 to –0·15)* –0·28% (–0·50 to –0·10)*

Diet low in fruits 66·70 (59·36 to 75·08) 59·09 (51·17 to 67·81) 56·86 (49·36 to 65·37) –0·55% (–0·71 to –0·42)* –0·43% (–0·58 to –0·29)*

Diet low in vegetables 51·32 (38·33 to 65·78) 40·29 (29·88 to 52·52) 40·24 (29·59 to 52·46) –0·84% (–0·93 to –0·74)* –0·02% (–0·14 to 0·10)

Diet low in legumes 69·46 (36·73 to 91·69) 61·20 (28·89 to 84·10) 59·67 (27·55 to 83·28) –0·52% (–1·08 to –0·32)* –0·28% (–0·67 to 0·00)

Diet low in whole grains 79·92 (72·52 to 87·44) 79·57 (72·09 to 87·12) 78·81 (71·06 to 86·78) –0·05% (–0·07 to –0·03)* –0·11% (–0·17 to –0·06)*

Diet low in nuts and seeds 57·76 (29·48 to 73·08) 50·13 (25·10 to 68·03) 47·47 (23·73 to 66·35) –0·68% (–0·92 to –0·29)* –0·61% (–0·91 to –0·26)*

Diet low in milk 80·09 (68·47 to 89·10) 80·81 (70·31 to 89·37) 82·54 (71·88 to 91·12) 0·10% (0·05 to 0·18)* 0·23% (0·16 to 0·33)*

Diet high in red meat 40·50 (33·75 to 47·06) 43·15 (36·95 to 49·10) 43·94 (38·03 to 49·58) 0·28% (0·15 to 0·47)* 0·20% (–0·04 to 0·50)

Diet high in processed meat 30·95 (20·80 to 42·39) 30·56 (20·13 to 43·05) 29·81 (19·04 to 43·32) –0·13% (–0·39 to 0·12) –0·27% (–0·69 to 0·10)

Diet high in sugar-sweetened beverages 29·97 (22·97 to 42·54) 29·35 (21·94 to 41·88) 30·36 (22·71 to 43·05) 0·04% (–0·43 to 0·37) 0·38% (–0·22 to 0·76)

Diet low in fiber 36·87 (25·93 to 47·86) 31·43 (21·20 to 41·62) 27·62 (18·60 to 36·95) –1·00% (–1·23 to –0·81)* –1·43% (–1·78 to –1·11)*

Diet low in calcium 52·64 (43·62 to 64·79) 48·63 (38·79 to 62·22) 46·02 (35·93 to 60·32) –0·46% (–0·68 to –0·23)* –0·61% (–0·89 to –0·31)*

Diet low in seafood omega-3 fatty acids 96·35 (93·21 to 99·89) 93·13 (89·11 to 98·47) 93·52 (88·71 to 99·41) –0·10% (–0·18 to –0·01)* 0·05% (–0·07 to 0·15)

Diet low in polyunsaturated fatty acids 69·53 (49·68 to 82·70) 62·66 (37·55 to 79·83) 61·86 (35·56 to 80·13) –0·40% (–1·08 to –0·08)* –0·14% (–0·50 to 0·14)

Diet high in trans fatty acids 50·54 (43·82 to 63·48) 45·22 (38·20 to 58·98) 44·67 (37·57 to 58·75) –0·43% (–0·58 to –0·17)* –0·14% (–0·41 to 0·08)

Diet high in sodium 48·42 (32·26 to 64·13) 46·04 (28·63 to 62·81) 44·97 (27·44 to 62·14) –0·25% (–0·59 to –0·09)* –0·26% (–0·60 to –0·07)*

Intimate partner violence 22·48 (13·03 to 30·15) 22·17 (13·13 to 29·08) 22·98 (13·31 to 30·37) 0·07% (0·00 to 0·16) 0·40% (0·00 to 0·73)

Childhood sexual abuse and bullying 7·55 (4·99 to 11·23) 8·46 (5·63 to 12·84) 9·10 (6·04 to 13·85) 0·65% (0·49 to 0·79)* 0·81% (0·64 to 0·96)*

Childhood sexual abuse 8·68 (6·85 to 10·90) 8·65 (6·89 to 10·78) 9·36 (7·40 to 11·79) 0·26% (0·18 to 0·33)* 0·87% (0·60 to 1·15)*

Bullying victimisation 5·51 (2·34 to 11·04) 6·83 (3·04 to 13·36) 7·31 (3·25 to 14·34) 0·98% (0·82 to 1·28)* 0·76% (0·54 to 0·90)*

Unsafe sex ·· ·· ·· ·· ··

Low physical activity 3·34 (1·79 to 6·00) 3·43 (1·90 to 6·08) 3·54 (1·95 to 6·26) 0·20% (0·06 to 0·41)* 0·37% (–0·13 to 0·87)

Metabolic risks 14·90 (12·02 to 18·55) 19·40 (16·12 to 23·38) 22·14 (18·63 to 26·36) 1·37% (1·17 to 1·56)* 1·46% (1·26 to 1·69)*

High fasting plasma glucose 7·88 (6·96 to 8·85) 10·41 (9·43 to 11·42) 11·72 (10·56 to 12·94) 1·37% (1·27 to 1·46)* 1·32% (1·01 to 1·64)*

High LDL cholesterol 35·68 (32·92 to 38·73) 32·67 (29·73 to 35·84) 32·44 (29·49 to 35·57) –0·33% (–0·38 to –0·28)* –0·08% (–0·12 to –0·05)*

High systolic blood pressure 27·12 (25·51 to 28·87) 26·50 (24·51 to 28·46) 27·74 (25·70 to 29·72) 0·08% (–0·12 to 0·28) 0·51% (0·04 to 1·00)*

High body-mass index 11·09 (7·96 to 15·23) 16·46 (12·79 to 21·04) 19·45 (15·57 to 24·39) 1·94% (1·56 to 2·35)* 1·86% (1·55 to 2·19)*

Low bone mineral density 17·06 (12·11 to 23·39) 16·42 (11·66 to 22·72) 16·26 (11·41 to 22·60) –0·16% (–0·25 to –0·10)* –0·10% (–0·34 to 0·09)

Kidney dysfunction 20·56 (14·29 to 27·97) 22·35 (15·82 to 29·79) 22·74 (16·24 to 30·25) 0·35% (0·26 to 0·47)* 0·19% (0·13 to 0·28)*

Data in parentheses are 95% uncertainty intervals. SEVs are measured on a 0 to 100 scale, in which 100 is when the entire population is exposed to maximum risk and 0 is when the entire population is at 
minimum risk. SEVs are shown for all levels of the risk factor hierarchy. ARC=annualised rate of change. SEVs=summary exposure values. *Statistically significant increase or decrease. 

Table: Global age-standardised SEVs for both sexes combined in 1990, 2010, and 2019, and annualised rate of change between 1990 and 2019 and 2010 and 2019
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1% per year, dominating the figure: high FPG, high 
BMI, and ambient particulate matter pollution. Reductions 
in risks that currently still have large attributable burden 
are almost exclusively those inversely associated with 
rising SDI, except smoking. It might be assumed that 
effective efforts to reduce risk exposure have been 
concentrated on the world’s largest risk factors, but we 
see no discernible pattern between trends in exposure 
and attributable burden. The global trends shown in 
the table and figure 1 give a high­level view of how well 
the world is managing exposure to an extensive list 
of harmful risks, but regional and country trends can 
be markedly variable. Figure 1B shows trends for 
the largest risks in terms of global attributable age­
standardised DALY rates for countries grouped into 
quintiles of SDI in 2019. There is considerable variation 
across quintiles in trends in exposure. Notably, ambient 
particulate matter pollution exposure is increasing in 
the low SDI up to middle SDI quintiles but decreasing 
in the high SDI quintile. High FPG and high BMI are 
increasing in all quintiles, as is alcohol use. Smoking is 
declining in all SDI quintiles. Regional and national 
trends in SEVs are available in appendix 2 (table S1).

Figure 2A provides an alternative way to consider 
the link between risk exposures and overall trends in 
mortality. Removing the effect of all risk factors included 

in this study leads to large percentage reductions in 
mortality in those younger than 5 years and in the middle 
and older age groups. Risk reduction can have a slightly 
larger effect on male mortality than female mortality; in 
other words, some of the difference between male and 
female life expectancy can be explained by risk exposures. 
The percentage of age­specific mortality explained by all 
risk factors combined in 1990 is very similar to the 
share shown in figure 2A (appendix 2 table S3). Figure 2B 
shows the annualised rate of decline in risk­deleted 
age­specific mortality from 1990 to 2019. Risk­deleted 
mortality rates declined from 1990 to 2019 in all age 
groups other than in those aged 95 years and older, 
declining between 1·0% and 3·3% per year for all the age 
groups younger than 75 years, and at lower rates for 
those aged 75 years and older. The substantial declines in 
risk­deleted mortality rates are likely to be related to 
reductions in risks not included in our assessment, 
reductions in case­fatality rates, or other factors. The 
observed rates of decline for all­cause mortality for ages 
younger than 10 years and older than 65 years have been 
faster than the risk­deleted rates, suggesting reduction 
of risks included in our analysis has played a role in 
progress in these age groups, particularly in those 
younger than 5 years. Notably, risk­deleted death rates 
have declined faster than observed rates, particularly for 

Figure 1: ARC in age-standardised SEVs, globally and by SDI quintile, 2010–19
(A) Level 4 risks and occupational risks, dietary risks, and child growth failure, compared with percentage of DALYs attributable to each risk. (B) Top nine Level 4 risks by attributable DALYs. Only risk 
factors causing more than 1% of DALYs are shown in panel A. SEVs are measured on a 0–100 scale in which 100 is when the entire population is exposed to maximum risk and 0 is when the entire 
population is at minimum risk. ARC=annualised rate of change. DALYs=disability-adjusted life-years. SDI=Socio-demographic Index. SEVs=summary exposure values.
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women aged between 25 and 59 years, implying that risk 
exposure has increased in those age groups.

Global attributable burden
Figure 3A and 3B show global attributable deaths for 
females and males in 2019 for the 20 risk factors at Level 2 
of the risk factor hierarchy (appendix 2 table S3) The top 

five risks for attri butable deaths for females were high 
SBP (5·25 million [95% UI 4·49–6·00] deaths, or 20·3% 
[17·5–22·9] of all female deaths in 2019), dietary risks 
(3·48 million [2·78–4·37] deaths, or 13·5% [10·8–16·7] of 
all female deaths in 2019), high FPG (3·09 million 
[2·40–3·98] deaths, or 11·9% [9·4–15·3] of all female 
deaths in 2019), air pollution (2·92 million [2·53–3·33] 
deaths or 11·3% [10·0–12·6] of all female deaths in 2019), 
and high BMI (2·54 million [1·68–3·56] deaths or 9·8% 
[6·5–13·7] of all female deaths in 2019). For males, the top 
five risks differed slightly. In 2019, the leading Level 2 risk 
factor for attributable deaths globally in males was tobacco 
(smoked, second­hand, and chewing), which accounted 
for 6·56 million (95% UI 6·02–7·10) deaths (21·4% 
[20·5–22·3] of all male deaths in 2019), followed by high 
SBP, which accounted for 5·60 million (4·90–6·29) deaths 
(18·2% [16·2–20·1] of all male deaths in 2019). The third 
largest Level 2 risk factor for attributable deaths among 
males in 2019 was dietary risks (4·47 million [3·65–5·45] 
deaths, or 14·6% [12·0–17·6] of all male deaths in 2019) 
followed by air pollution (ambient particulate matter and 
ambient ozone pollution, accounting for 3·75 million 
[3·31–4·24] deaths (12·2% [11·0–13·4] of all male deaths 
in 2019), and then high FPG (3·14 million [2·70–4·34] 
deaths, or 11·1% [8·9–14·1] of all male deaths in 2019). 
Outside of the top five, there were large differences 
between attributable deaths in males and females due to 
alcohol use, which accounted for 2·07 million (1·79–2·37) 
deaths in males and 0·374 million (0·298–0·461) deaths in 
females in 2019. Newly included in GBD 2019, non­optimal 
temperature accounted for 1·01 million (0·880–1·15) 
deaths in males and 0·946 million (0·812–1·09) deaths in 
females. For both sexes combined, the leading Level 2 risk 
factor for deaths was high SBP, accounting for 10·8 million 
(9·51–12·1) deaths in 2019 (19·2% [16·9–21·3] of all deaths 
that year), followed by tobacco, with 8·71 million 
(8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths that 
year).

When viewed in terms of DALYs (figure 3C, D), the 
ranking of Level 2 risk factors reflects the differential ages 
of death and the contribution of non­fatal disease 
burden. Most notably, child and maternal malnutrition 
(including low birth weight, short gestation, child growth 
failure, non­optimal breastfeeding, and low intake of 
micronutrients), which has predominant health effects 
among the young, was the second leading Level 2 risk 
factor for males and leading risk factor for females in 
2019, accounting for 11·5% (95% UI 10·1–13·1) of DALYs 
for males and 11·7% (10·5–13·2) of DALYs for females. 
Tobacco was ranked first for males and seventh for 
females in terms of attributable DALYs. For both sexes 
combined, the leading Level 2 risk factor globally for 
attributable DALYs was child and maternal malnutri­
tion, at 295 million (95% UI 253–350) DALYs in 2019 
(11·6% [10·3–13·1] of all DALYs that year).

Figure 4 shows the ranking of Level 2 risk factors by 
attributable DALYs, both for SDI quintiles and the 21 GBD 

Figure 2: Change in global mortality rates after risk deletion, by age group and sex 
(A) Percentage change in age-specific mortality rates in 2019 after removing the effect of all risk factors in this 
study. (B) ARC in risk-deleted mortality rates from 1990 to 2019. ARC=annualised rate of change.
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regions. Risk factors are shaded by the trend in the 
attributable DALY rates over the past decade. In the 
low SDI quintile, the most important risk factors were 
malnutrition; air pollution; and water, sanitation, and 

handwashing. In the low­middle SDI quintile, mal nutri­
tion and air pollution were still the leading risk factors for 
attributable DALYs, but high SBP rose to third. In the 
middle to high SDI quintiles, the leading risks transitioned 
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to tobacco, high SBP, dietary risks, high BMI, and high 
FPG. The risk transition is evident across quintiles. Select 
regional patterns stand out. In the Caribbean and central 
Latin America, large increases were seen in attributable 
burden for high FPG, high BMI, high SBP, kidney 

dysfunction, dietary risks, and high LDL cholesterol. In 
seven regions, child and maternal malnutrition is the 
leading risk factor, and in another seven regions, tobacco is 
the leading risk factor. In the remainder of regions, the 
leading risk factor is high SBP (four regions), high FPG 

Figure 3: Global number of deaths and percentage of DALYs attributable to Level 2 risk factors, by cause and sex, 2019
DALYs=disability-adjusted life-years. 
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(one region), high BMI (one region), and unsafe sex (one 
region). The largest rates of increase in attributable DALYs 
have been seen for high FPG in ten of 21 regions and for 
high BMI in ten of 21 regions.

Attributable burden by age group
The pattern of risk­factor­attributable burden varied 
considerably by age and over time, as shown in figure 5, 
which includes arrows plots for all age groups combined 

Figure 4: Leading ten Level 2 risk factors for attributable DALYs by GBD region and SDI quintile, 2019
For each region and SDI quintile, Level 2 risks are ranked by attributable DALYs from left (first) to right (tenth). Risks are coloured by their annualised rate of change in all-age DALY rates from 2010 to 
2019. GBD=Global Burden of Diseases, Injuries, and Risk Factors Study. Malnutrition=child and maternal malnutrition. SDI=Socio-demographic Index. WaSH=water, sanitation, and handwashing.
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and for five broad age groups (0–9, 10–24, 25–49, 50–74, 
and 75 years and older). These figures show specific risk 
factors at Level 4 of the risk factor hierarchy. Figure 5A 
shows how risk exposure trends, underlying changes in 
disease rates, and rising mean age of populations have 

led to marked changes in risk rankings from 1990 to 2019. 
In 1990, the leading risk factors were child wasting, 
low birthweight, short gestation, and household air 
pollution, all of which have dropped substantially in 
magnitude in terms of percentage of attributable DALYs 
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and rank by 2019. The leading risks in 2019 were high 
SBP, smoking, high FPG, low birthweight, and high 
BMI. Other notable shifts include the large increase in 
percentage of attributable DALYs and rank for ambient 
particulate matter pollution, high LDL cholesterol, and 
alcohol use. Among the youngest age group (0–9 years), 
shown in figure 5B, the leading Level 4 risk factors 
were composed exclusively of malnutrition and environ­
mental risk factors. Over the 1990–2019 period, there 
were substantial reductions in the burden attributable to 
these risk factors in both absolute numbers and rates. 

The largest declines among the leading ten risks were 
for child growth failure (child underweight, stunting, 
and wasting); water, sanitation, and handwashing; 
and house hold air pollution. Large but more moderate 
declines in attributable burden occurred for short 
gestation and low birthweight, with the smallest reduc­
tion observed for ambient particulate matter pollution.

Among adolescents and young adults (aged 10–24 years; 
figure 5C), the pattern of risk factor burden was notably 
different from the 0–9 years age group, with iron 
deficiency, alcohol use, and unsafe sex ranking first to 

Figure 5: Leading ten Level 4 risks by attributable DALYs, 1990–2019
For all ages (A), 0–9 years (B), 10–24 years (C), 25–49 years (D), 50–74 years (E), and 75 years and older (F). DALYs=disability-adjusted life-years. 
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Behavioural risks
Metabolic risks

1 Alcohol use 6·7 (5·9 to 7·5) 1 Alcohol use 6·3 (5·5 to 7·3)
2 Smoking 6·6 (5·9 to 7·2) 2 High systolic blood pressure 6·0 (4·9 to 7·1)
3 High systolic blood pressure 5·4 (4·4 to 6·4) 3 High body-mass index
4 Occupational injury 3·9 (3·5 to 4·3) 4 Smoking 5·0 (4·5 to 5·6)
5 High LDL cholesterol 3·5 (3·0 to 4·1) 5 Unsafe sex 4·9 (4·1 to 6·0)
6 Household air pollution 6 High fasting plasma glucose
7 High body-mass index 7 High LDL cholesterol 3·8 (3·1 to 4·5)
8 Unsafe sex 2·8 (2·1 to 3·7) 8 Drug use 2·9 (2·5 to 3·3)
9 High fasting plasma glucose 9 Ambient particulate matter

10 Drug use 2·0 (1·7 to 2·3) 10 Kidney dysfunction 2·4 (2·0 to 2·7)

11 Kidney dysfunction 1·9 (1·7 to 2·2) 11 Occupational injury 2·3 (2·1 to 2·6)
12 Ambient particulate matter 12 Household air pollution

1 Smoking
2 High systolic blood pressure
3 Household air pollution
4 High fasting plasma glucose
5 High body-mass index
6 High LDL cholesterol 
7 Alcohol use
8 Ambient particulate matter
9 High sodium

10 Kidney dysfunction

1 High systolic blood pressure
2 Smoking
3 High fasting plasma glucose  
4 High LDL cholesterol 
5 Household air pollution
6 High body-mass index
7 Ambient particulate matter
8 Kidney dysfunction
9 Low temperature

10 Low whole grains

16·1 (14·2 to 18·0)
15·5 (14·1 to 16·7)
12·2 (10·4 to 14·4)
11·8 (7·9 to 16·0)

6·8 (5·7 to 8·0)
6·2 (4·9 to 7·7)
5·0 (4·4 to 5·7)
4·7 (4·0 to 5·3)
3·5 (2·4 to 4·8)
3·4 (1·1 to 7·1)

19·4 (18·2 to 20·6)
16·8 (14·9 to 18·7)

8·5 (6·3 to 10·7)
8·3 (7·0 to 9·8)
7·6 (4·3 to 11·6)
7·0 (5·6 to 8·5)
5·1 (4·5 to 5·7)
4·7 (3·3 to 6·3)
4·0 (1·4 to 8·0)
3·7 (3·2 to 4·2)

22·0 (18·6 to 25·3)
14·8 (13·9 to 15·7)
10·5 (7·8 to 14·4)

9·2 (6·0 to 13·2)
7·8 (5·7 to 10·2)
5·7 (3·0 to 9·2)
5·2 (3·7 to 6·8)
5·1 (4·1 to 6·1)
4·6 (3·9 to 5·3)
3·5 (1·8 to 4·4)

1 High systolic blood pressure
2 Smoking
3 High fasting plasma glucose
4 High body-mass index
5 Ambient particulate matter
6 High LDL cholesterol 
7 Alcohol use
8 Kidney dysfunction
9 Household air pollution

10 High sodium

1 High systolic blood pressure
2 High fasting plasma glucose
3 Smoking
4 High body-mass index
5 High LDL cholesterol 
6 Ambient particulate matter
7 Kidney dysfunction
8 Low temperature
9 Household air pollution

10 Low whole grains

19·5 (16·3 to 22·7)
13·5 (10·2 to 18·0)
12·3 (11·4 to 13·0)

7·3 (4·3 to 11·1)
7·2 (4·5 to 10·6)
6·7 (5·6 to 7·8)
5·9 (4·9 to 6·9)
3·4 (2·9 to 3·9)
3·1 (2·1 to 4·3)
3·0 (1·6 to 3·9)

47·7 (36·9 to 58·0)
22·6 (13·9 to 32·6)

127·2 (113·4 to 141·5)
138·4 (106·5 to 186·2)
122·5 (78·2 to 185·1)

37·8 (27·8 to 47·5)
51·2 (37·6 to 65·1)
92·8 (80·4 to 105·3)

–36·7 (–50·4 to –21·6)
31·9 (–1·6 to 51·0)

69·6 (58·6 to 80·5)
144·5 (130·1 to 158·7)

58·2 (48·9 to 69·1)
145·1 (123·1 to 180·2)

50·0 (39·2 to 58·7)
143·7 (94·6 to 211·9)
121·7 (108·6 to 134·1)

42·2 (32·5 to 53·1)
–24·5 (–41·1 to –4·8)
66·2 (57·6 to 74·6)

–28·3 (–33·6 to –23·3)
–40·3 (–44·6 to –35·5)

10·2 (3·4 to 17·0)
19·1 (0·7 to 39·5)
9·8 (–13·6 to 38·3)

–32·6 (–37·5 to –27·8)
–25·8 (–32·6 to –19·1)

–6·4 (–12·6 to –0·5)
–69·3 (–76·0 to –62·0)
–37·1 (–52·1 to –26·5)

–30·0 (–34·3 to –25·7)
1·8 (–4·8 to 7·9)

–31·9 (–35·8 to –27·3)
4·7 (–6·0 to 17·9)

–40·2 (–43·5 to –37·1)
4·1 (–18·2 to 31·0)

–8·6 (–14·2 to –3·6)
–41·8 (–45·7 to –37·6)
–67·7 (–74·9 to –59·4)
–32·3 (–35·7 to –28·8)

3·4 (2·6 to 4·3)
3·3 (1·9 to 5·2)

 2·8 (2·4 to 3·2)

1·8 (1·2 to 2·3)

5·9 (4·2 to 7·8)

4·0 (3·4 to 4·6)

2·9 (2·4 to 3·5)

1·7 (1·2 to 2·3)

 26·7 (18·0 to 35·7)
 48·4 (34·4 to 61·8)
 136·1 (95·0 to 203·5)
 1·9 (–5·7 to 9·7)
 131·3 (102·8 to 171·1)
 90·9 (76·6 to 104·3)
 41·4 (28·4 to 54·5)
 94·4 (84·5 to 106·7)
 120·4 (76·2 to 180·7)
 62·4 (49·9 to 75·0)

 –23·5 (–28·8 to –18·0)
 –15·1 (–23·0 to –7·4)
 40·5 (12·1 to 73·9)
 –42·8 (–47·1 to –38·4)
 45·1 (26·9 to 67·2)
 10·0 (1·9 to 17·8)
 –18·9 (–26·2 to –11·6)
 22·9 (16·6 to 30·4)
 29·4 (1·8 to 62·5)
 –4·2 (–11·8 to 3·1)

 –21·3 (–30·0 to –11·8)
 –34·2 (–47·2 to –21·0)

 –50·4 (–55·9 to –44·5)
 –61·9 (–69·4 to –54·2)
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(Figure 6 continues on next page)
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(Figure 6 continues on next page)
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third for attributable DALYs in this age group in 2019. 
There were declines in unsafe sex DALYs in the second 
half of the study period, but due to rapid increases 
from 1990 to 2004, there was still a 108·3% (95% UI 
78·5–140·5) increase in unsafe sex DALYs from 1990 to 
2019. The long­term consequences of short gestation and 
low birthweight also increased in importance.

In the 25–49 years age group (figure 5D), alcohol use was 
the leading Level 4 risk factor for attributable burden, 
followed by high SBP and then high BMI, smoking, unsafe 
sex, and high FPG. The number of DALYs increased for all 
the top ten risks, but age­standardised attributable DALY 
rates increased only for high BMI, unsafe sex, high FPG, 
drug use, and ambient particulate matter pollution. In the 
two oldest age groups, the set of leading risks are quite 
similar to one another, dominated by high SBP at the top, 
and followed by other metabolic risk factors including 
high FPG, high BMI, high LDL cholesterol, and kidney 
dysfunction. Smoking also contributed substantially to 
the risk attributable burden in these age groups, ranked 
second in ages 50–74 years (figure 5E) and third in ages 
75 years and older (figure 5F). In the oldest age group, 
low temperature was also one of the top ten risks, 
although age­standardised attributable DALY rates 
declined from 1990 to 2019. Sex­specific rankings by age 
group are available in appendix 2 (figures S4, S5).

National findings
The leading risk factors for attributable DALYs had 
highly varied geographical patterns, as shown in figure 6, 
which presents maps of the percentage of burden 
attributable to the top five Level 2 risk factors globally 
in 2019. The highest proportions (greater than 20%) of 
burden attributable to the leading Level 2 risk factor 
in 2019, child and maternal malnutrition, were seen 
in most of western, central, and eastern sub­Saharan 
African regions (figure 6A). In addition, rates greater 
than 20% were seen in Afghanistan, Pakistan, states in 
northern India, Yemen, and Papua New Guinea. Rates 
between 10% and 20% were seen in a diverse set of 
central American countries, states in Brazil, Tajikistan, 
Uzbekistan, Myanmar, regions of the Philippines, and 
some Indonesian provinces.

Figure 6B shows the burden attributable to the second 
leading Level 2 risk factor in 2019, high SBP. Locations 
with more than 20% of DALYs attributable to high SBP 
included Georgia and most of central and eastern 
Europe. Most countries in north Africa and the Middle 
East had between 10% and 20% of DALYs attributable to 
high SBP as did states in southern India and many parts 
of southeast Asia. The only countries with less than 
2% of all­age DALYs attributable to high SBP were in 
western sub­Saharan Africa.

Figure 6: Percentage of all DALYs attributable to the five leading Level 2 risk factors, 2019
DALYs attributable to child and maternal malnutrition (A), high systolic blood pressure (B), tobacco (C), air pollution (D), and dietary risks (E). DALYs=disability-adjusted life-years.
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The third leading Level 2 risk factor, tobacco, is shown 
in figure 6C. Locations with more than 20% of DALYs 
attributable in 2019 include countries in the Balkan 
Peninsula and two provinces in China—Liaoning and 
Heilongjiang. Most countries in Europe had between 
10% and 20% of DALYs attributable to smoking; Canada, 
most states in the USA, Russia, the rest of China, and 
many parts of southeast Asia were also in this category. 
Attributable burden remains less than 6% in most of 
Mexico, central America, and Andean Latin America. 
The burden attributable to tobacco is less than 2% in 
much of western and eastern sub­Saharan Africa.

Figure 6D shows the burden attributable to air pollution 
(ambient particulate matter, household air pollution, and 
ambient ozone pollution). No location had more than 
20% of DALYs attributable to air pollution. But a wide 
range of countries in western and eastern sub­Saharan 
Africa had attributable burden percentages between 10% 
and 15%. Similarly, nearly all locations in south Asia, 
many parts of southeast Asia, and most provinces in 
China also had the same levels of attributable burden. The 
spatial patterns of the constituent risks included in air 
pollution—particularly ambient particulate matter and 
household air pollution—were quite different (see GBD 
Compare for data), with ambient particulate matter 
pollution playing a much greater role in Asia than in 
Africa.

The fifth most important Level 2 risk factor was the 
dietary risks that are based on the joint effects of 15 diet 
quality components (figure 6E). In Bulgaria, dietary risks 
accounted for more than 20% of attributable DALYs. 
However, diet accounts for more than 10% of DALYs in 
many locations in central and eastern Europe, central 
Asia, and most of China. The lowest shares of DALYs 
attributed to dietary risks are in sub­Saharan Africa, 
particularly countries in the Sahel.

Risk-specific trends
Two­page risk­specific summaries provide detailed 
results on attri butable deaths, YLLs, YLDs, and DALYs 
for a selection of the 87 risk factors in the GBD risk 
hierarchy. These summaries include 2019 counts, age­
standardised rates, and rankings for attributable burden; 
the com position of attributable burden for leading 
causes; patterns of attributable burden over time and 
age; and age­standardised SEVs by location and SDI. 
They were written to increase the accessibility to and 
transparency of GBD estimates for each risk factor. 
Summaries for select risk factors are highlighted in print 
(pp S216–319); summaries for all risk factors can be 
found online.

Discussion
Main findings 
Our analysis of risk­attributable burden using 
30 652 sources for exposure, relative risk, and the TMREL 
showed that in 2019, 47·8% (95% UI 45·3–50·1) of global 

DALYs were attributed to present and past exposure for 
the 87 environmental, occupational, behavioural, and 
metabolic risk factors and combinations of risk factors 
included in this analysis. Overall, combined global expo­
sure to the risks included in this study has remained 
remarkably constant over the past 30 years. Risk­deleted 
mortality rates over the same period have declined, 
ranging from a 3·3% decline per year in females aged 
1–4 years to a 0·3% decline per year in males aged 
90–94 years. Despite this overall pattern, reductions in 
key risks highly correlated with SDI—unsafe water, 
sanitation, and handwashing; household air pollution; 
child growth failure; and vitamin A and zinc defi­
ciencies—have contributed to reductions in global child 
death rates. Among the most detailed major non­commu­
nicable disease risks, only tobacco smoking has declined 
steadily. At the global level in 2019, there were three risk 
factors that accounted for more than 1% of DALYs and 
were increasing in exposure by more than 1% per year: 
high BMI, ambient particulate matter pollution, and 
high FPG. There is large scope for public regulatory 
policy, community programmes, and primary care inter­
ventions on risks to have a greater effect on prevention. 
These broad global patterns mask considerable hetero­
geneity in risk levels and trends at the country level, 
reinforcing the need for country assessments and 
country­specific prevention planning.

Important risk factor trends
Some risk exposures are highly correlated with social 
and economic development, as measured by SDI. 
As countries and territories increase SDI through 
higher levels of education, particularly among women; 
increased GDP per capita; and improved access to 
modern contraceptives, we should expect progress on 
these risks. The incremental effect of campaigns, 
policies, and programmes on top of this social and 
economic development process is yet to be established 
in this analysis. Bending the development curve is 
possible, as evidenced by the abrupt accelerations in the 
decline in some risk factors, such as the recent decline 
in unsafe sanitation in India.20 Even for risks that 
are historically highly correlated with SDI, intervention 
can accelerate progress. The range of policy initiatives to 
accelerate the transition to cleaner cooking fuels is 
another example of this effort.21,22 Analysis of exemplars, 
countries with lower SEVs for these risks for their level 
of SDI or faster progress than expected for the change in 
SDI, could yield further insights.

Two risk factors that have not been highly correlated 
with SDI in the past have also seen declines in exposure 
at nearly 1% per year over the study period: tobacco 
smoking and lead exposure. Progress on exposure to 
these risks stands out compared with the increases in 
exposure to many metabolic risks and no substantial 
change for others such as diet quality. In both of these 
cases, government action through taxation and regulatory 

For GBD Compare see 
https://vizhub.healthdata.org/
gbd-compare/

For all two-page summaries see 
https://www.thelancet.com/
gbd/summaries

https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
https://www.thelancet.com/gbd/summaries
https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
https://www.thelancet.com/gbd/summaries
https://www.thelancet.com/gbd/summaries


Global Health Metrics

1242 www.thelancet.com   Vol 396   October 17, 2020

policy for tobacco smoking,23 including advertising bans 
and clean air legislation, and regulation of lead content,24,25 
have had a major effect. Tobacco interventions highlight 
how regulatory policy can lead to behaviour change. 
International efforts for tobacco control have also been 
bolstered by the Framework Convention on Tobacco 
Control.26 Despite the more than 1% per year decline in 
age­standardised tobacco smoking exposure between 
2010 and 2019, tobacco remains the third leading risk 
factor for attributable DALYs among Level 2 risks. For 
the three major and rapidly increasing risks, the role of 
taxation and regulatory policy should be examined. For 
ambient particulate matter pollution, regulation can 
clearly have a direct impact.27,28 For the nexus of high FPG 
and high BMI, regulatory strategies are less clear. We are 
failing to deal with these risks, and concerted research 
and policy efforts are needed to reverse the trends.

The marked rise of metabolic risks as a group, in 
particular high FPG and high BMI, and their large 
contribution to attributable burden is perhaps most 
disturbing. During this period of rising metabolic risk 
exposure, global cardiovascular disease age­standardised 
mortality has been declining as documented in GBD 2019 
for diseases and injuries.29 The seeming paradox could, to 
a large extent, be explained by the effect of access to care,30 
social determinants of health, cohort effects, and other 
behavioural, occupational, and environmental risks not 
quantified here. Rising metabolic risks might at some 
point overwhelm these other drivers and eventually lead to 
rising cardiovascular mortality in the future. This situation 
might have arrived in some high­income countries in 
which age­stan dardised cardio vascular disease mortality 
has plateaued or increased since 2017.31 If year­on­year 
declines in cardiovascular disease mortality come to an 
end, the effect on mortality and longevity at the global level 
could be massive. While high BMI and high FPG have 
steadily increased, high LDL cholesterol has remained 
constant over the past decade despite the expected 
correlation with BMI; this finding warrants further 
investigation and could be related to changes in diet 
quality, pharmacological intervention, or other factors. 
Although not increasing at the rate of high BMI or high 
FPG, high SBP has become the leading risk factor for 
disease burden at the global level, among the most 
detailed risks in this analysis. A range of strategies 
including primary care management and reduc tions in 
sodium intake are known to be potentially effective in 
reducing the burden of this critical risk factor.32,33

The rise of high BMI and its probable role in increasing 
high FPG needs further examination. Increased BMI can 
be traced to the combination of physical inactivity, excess 
caloric intake, and diet quality.34 At the global level, we 
find that high BMI is rising considerably faster than low 
physical activity and poor diet quality. Diet quality on its 
own is the fifth leading Level 2 risk factor for attributable 
DALYs. The effect of diet on human health goes beyond 
diet quality and should include the contribution of diet 

intake above energy requirements. Some studies sug­
gest that certain diet components are more likely to 
contribute to increased BMI than others; the mechanism 
of these effects can be complex and include effects on 
appetite, absorption, and displacement of other foods.35 It 
is currently hard to understand the role of physical 
inactivity, excess caloric intake, and diet quality in driving 
the increase in BMI. The large combined burden of 
diet quality, physical inactivity, and high BMI (11·9% 
[95% UI 9·6–14·5] of all DALYs in 2019) indicates just 
how profoundly important the nexus of diet and physical 
activity can be to current and future health. The setting 
for understanding the potential of changes in overall diet 
is to use future health scenarios to trace how public 
policies such as subsidies, taxes, information campaigns, 
and improving accessibility can affect health in each 
country. In this study, no country or territory has had a 
significant decline in the proportion of the population 
with high BMI between 1990 to 2019 or in the past 
decade. The complete failure to reduce BMI at the 
national level implies that efforts to modify the nexus of 
physical inactivity, diet quality, and excess energy intake 
might be very challenging. Tackling this diet quality and 
excess energy intake will not only be important for 
human health but has important ramifications for 
environmental sustainability.36

The two types of exposure to particulate matter with a 
diameter of less than 2·5 μm (PM2·5) have profoundly 
different relationships with socio­demo graphic develop­
ment: household air pollution is strongly related to SDI 
and tends to decrease steadily with socio­demographic 
development. By contrast, ambient particulate matter 
pollution tends to increase with industrialisation and 
then decline with air­quality management at higher levels 
of SDI.37,38 The global increases in ambient particulate 
matter pollution exposure are being driven by the middle 
SDI quintiles, as seen in figure 1B. Studies have shown 
that for ambient particulate matter pollution (ambient 
PM2·5), the main sources of exposure are residential 
energy use, industry, and power generation.39 The con­
centration of PM2·5 burden in south Asia highlights how 
the absence of national policy actions can have a major 
effect. Among the large risk factors in which exposure is 
increasing, ambient particulate matter pollution stands 
out because exposure is declining in countries with a 
higher SDI. Like tobacco and lead, regulation can have a 
profound effect on exposure to and health effects of 
ambient particulate matter pollution and does not require 
individual action.40,41 There is a clear role for global 
organisations to encourage regulatory change in middle 
SDI countries with large and increasing exposure to 
ambient particulate matter pollution. This agenda is all 
the more urgent because of the direct linkage to global 
climate change.

Because of profound global interest in the potential 
health effects of climate change, we have included high 
and low non­optimal temperatures in GBD 2019. Climate 
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change will have impacts on human health through 
many mechanisms: direct effects of temperature rise, 
humidity changes, sea­level rise, extreme weather events, 
and reduced agricultural yields and increased rural 
poverty.42,43 We have so far included only one of these 
pathways in the GBD analysis, namely the direct effects 
of ambient temperature on different disease outcomes. 
Our analysis showed that the TMREL varies as a function 
of mean annual temperature. Locations where mean 
temperature is higher tend to have higher optimal 
temperatures, probably through physical and social 
adaptation. In 2019, the burden (as measured by 
percentage of total DALYs) attributable to low temperature 
was 2·2 times greater than the burden attributable to 
high temperature. This balance does not, however, hold 
true when looking at specific locations or regions. While 
for high SDI countries, the cold­related burden is 
15·4 times greater than the heat­related burden, this 
relationship is switched for other regions, such as south 
Asia where we observed a 1·7 times greater heat­related 
burden and sub­Saharan Africa where we observed 
a  3·6 times greater heat­related burden. Rising tem­
perature will probably have a substantial effect in 
locations with less capacity to adapt to increased 
temperature, potentially exacerbating health inequalities 
across countries. The social capacity to adapt is also 
probably tied to economic development: for example, air 
conditioners in the USA have mitigated the impact of 
heat waves over the past 50 years.44 In terms of trends, 
there was a marked increase in exposure to high 
temperature from 1990 to 2010 and then a slight decline 
from 2010 to 2019; there are major annual fluctuations in 
temperature exposure on top of long­term warming 
trends, and 2010 stood out as a year with high tempe­
ratures in many regions. Our analysis does not provide a 
basis for understanding the full effects of future climate 
change, which will operate through many different 
pathways in addition to the direct effects of temperature.

In the GBD CRA work to date, we have estimated the 
burden attributable to past exposure in a given year. The 
CRA framework also laid out the important utility for 
policy making of estimating how changes in current and 
future exposure can change future levels of health; this 
concept is called avoidable burden. Most CRA work to 
date has focused on estimating attributable burden, 
even though avoidable burden is arguably more relevant 
to policy prioritisation. The dominance of work on attri­
butable burden is founded on two premises: it is very 
difficult to estimate avoidable burden as this estimate 
requires a comprehensive future health scenarios frame­
work; and attributable burden is likely to be highly 
correlated with avoidable burden. With the availability of 
a GBD­informed future health scenarios platform,45,46 the 
possibility of estimating avoidable burden is much more 
tractable. Future work on avoidable burden for each GBD 
risk factor might allow us to examine the true relationship 
between the two approaches to CRA. The relationships 

between avoidable and attributable burden can vary 
across countries; in high mortality settings, competing 
risks might mean that avoidable burden will be sys­
tematically smaller than attributable burden.

For GBD 2019 and all previous GBD CRA efforts, our 
inclusion criteria for a risk–outcome pair were based on 
the World Cancer Research Fund criteria for convincing 
or probable evidence. We also required that published 
studies, when meta­analysed together, yielded a sig­
nificant (p<0·05) relative risk for any risk–outcome pair 
meeting these criteria. To avoid risk–outcome pairs on 
the cusp of statistical significance coming in and out of 
GBD with different cycles, we introduced a threshold of 
p>0·1 to exclude a risk–outcome pair that has previously 
been included in GBD. Among the included risk–
outcome pairs, the consistency of the evidence and risk 
of bias varies considerably. The evidence linking smoking 
to lung cancer is clearly far stronger than the evidence on 
omega­3 and ischaemic heart disease. The UI of the 
mean effect does not fully capture this difference in the 
consistency of evidence or the risk of bias. A more robust 
measure needs to take into account various risks of bias 
and the unexplained variation in effect after taking into 
account these risks of bias as well as the magnitude of 
the effect size. The relative risk of lung cancer from 
smoking is very high across levels of exposure, with a 
relative risk of 3·4 at ten pack­years of smoking and a 
relative risk of 6·5 at 20 pack­years of smoking, which 
makes it far more likely to be causal than an exposure 
with a relative risk of 1·1. If we included the unexplained 
heterogeneity across studies after adjusting for risk of 
bias in the UI of the relative risks, several risk–outcome 
pairs might not meet inclusion criteria. We are working 
on developing an evidence scoring system that quantifies 
consistency and risk of bias for GBD and would allow 
readers to understand that not all risk–outcome pairs 
have the same evidence base. It would, however, be 
misleading and potentially harmful to argue that we 
should only examine the GBD risk–outcome pairs 
with the highest grade of evidence. The precautionary 
principle for public policy implies that governments have 
a duty to act on risk factors that are probably or potentially 
harmful and not only those that have overwhelming 
evidence.47 Relying only on effects on the basis of the 
highest degree of evidence will very seriously delay public 
recognition and proactive policies, which in turn would 
result in perpetuating preventable burden. We hope to 
inform both individuals and public policy makers with 
quantification of burden and strength of evidence so they 
are empowered to make sense of the available data.

Analysing relative risks to inform choices by individuals 
and choices by population health decision makers might 
legitimately have different perspectives. Some guidelines 
on systematic reviews48,49 recommend reporting absolute 
risk levels related to exposure; this method is perhaps 
appropriate for informing individual choice. For public 
policy, attributable burden might be more relevant. If a 
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risk factor is related to 1000 deaths, from a public policy 
perspective, the concentration of the risk in a smaller or 
larger group of individuals might matter less than it does 
to individuals. To provide a synthesis of the evidence for 
different users, we included estimation of the all­cause 
mortality relative risk associated with exposure levels of 
each risk factor using the global distribution of burden 
across outcomes. However, risks that cause relatively 
modest increases for individuals but are highly prevalent, 
such as air pollution, are, nevertheless, legitimate targets 
for public policy.

Substantial changes compared with GBD 2017
Compared with GBD 2017, our GBD 2019 estimates of 
the burden (as measured by percentage of total DALYs) 
attributable to diet quality in 2017 were 29·7% lower. 
These reductions stem from three major sources: 
changes in the crosswalks between alternative and 
reference methods for estimating diet intake, new 
systematic reviews and meta­regressions, and more 
empirical standardised methods for selecting the TMREL 
for protective factors. Although there were changes in 
the overall burden of diet, there were larger changes 
in the diet components themselves, particularly the 
substantial increase in the attributable burden from 
red meat and the decline in the burden attributable to 
low vegetable intake. The sources of the changes were 
the same as for diet quality overall. One of the most 
important insights from this enriched analysis is that for 
many harmful and protective factors, the relative risk 
functions tend to flatten out at higher exposure levels; 
the previous practice of imposing a log­linear functional 
form on the risk equation—widely used in the scientific 
literature—might have led to overestimation. For protec­
tive diet components (whole grains, fruit, fibre, nuts 
and seeds, omega­3, polyunsaturated fatty acids, veg­
etables, milk, and calcium), we set the TMREL to the 
85th percentile of levels of exposure included in the 
published cohort studies or randomised controlled trials. 
With further study of individuals with higher levels of 
intake, it is possible that the level of intake associated 
with the lowest risk is in fact higher than the TMREL 
set for protective diet components in GBD 2019. 12 diet 
risk–outcome pairs from GBD 2017 were excluded 
from GBD 2019 because our re­analysis with updated 
data suggested that the effects were no longer signifi­
cant. Some risk–outcome pairs, such as omega­3 and 
ischaemic heart disease, which remained in the analysis 
as the result of the new meta­regression of 21 trials and 
27 cohort studies, met inclusion criteria but future 
studies could shift the balance of the evidence to be 
excluded.

Particulate matter pollution burden in 2017 was 44·6% 
higher in GBD 2019 than in GBD 2017. The increase was 
due to the inclusion of low birthweight and short 
gestation as risk factors that are themselves affected by 
PM2·5, as well as increases in the relative risk curve for 

cardiovascular diseases, particularly stroke, due to newly 
added data and changes in fitting the exposure­response 
curves. Given the very large burden of low birthweight 
and short gestation on neonatal mortality, the inclusion 
of these intermediates has been an important change in 
our assessment. The burden of stroke and ischaemic 
heart disease attributable to kidney dysfunction increased 
between GBD 2017 and GBD 2019 after updating the 
relative risks with new data from 44 cohorts. For instance, 
the comparable estimate of the proportion of cardio­
vascular DALYs due to kidney dysfunction in 2010 
increased from 6·8% (95% UI 6·0–7·6) to 8·5% 
(6·8–10·3).

Limitations
In GBD 2019, we undertook a reassessment of dose–
response relationships and relaxed previous assumptions 
that the risk curve is log­linear. This reassessment was 
limited, however, to dietary risks, kidney dysfunction, and 
air pollution. Future reassess ments of other continuous risk 
factors that currently assume a log­linear relationship could 
materially change risk factor rankings in the future and 
could also lead to exclusion of other risk–outcome pairs.

Assessment of the joint effects of risk factors depends 
on two critical factors: the correlation of risk exposure 
and the estimation of the joint effects of groups of risks 
together. For exposure, we assumed that for each age­sex­
location­year, the estimates of the prevalence of exposure 
were independent. Previous simulation analyses under­
taken for GBD 20108 with use of US data from the 
National Health and Nutrition Examination Survey 
suggested this assumption did not materially bias our 
findings. To assess the joint effects of risk factors, we 
assumed in general that relative risks are multiplicative. 
This simple assumption has been modified to take into 
account known pathways in which one risk factor, such 
as fruit consumption, is mediated through another risk 
factor such as fibre intake. To avoid over­estimation of 
the joint effects, we computed the non­mediated relative 
risks and then assumed that non­mediated relative 
risks are multiplicative. This approach does not capture 
potential synergy between relative risks in which some 
combinations might be super­multiplicative. For some 
areas such as diet, the joint estimation is very important 
for public policy. Further, more detailed work is needed 
to strengthen the evidence base for understanding 
mediation. In particular, mediation implies necessarily 
that exposure between mediated risks is correlated. 
Factoring in that implied correlation into risk exposure 
estimation could strengthen estimates in the future.

The main limitation of our estimates of risk­
attributable burden is the availability and quality of 
primary data that underpin the analysis. Data for risk 
relationships of several risk factors, such as ambient 
ozone pollution, residential radon, occupational risks, 
child hood sexual abuse, intimate partner violence, 
bullying victimisation, and child growth failure are 
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sparse. For exposure measurement, patterns of data 
availability are non­uniform across geography and over 
time and, where available, might be based on less 
reliable modes of data collection such as self­report. In 
GBD 2019, we implemented more explicit corrections 
for bias associated with non­reference methods of 
exposure measurement that improved the estimation of 
risk exposure. Furthermore, these assessments can be 
used to guide future data collection efforts by identifying 
those populations with not only sparse but low­quality 
data based on the collection mode.

Our analysis, particularly the overall assessment of 
burden attributable to all risks combined and risk­
deleted mortality, is limited by several potentially 
important risk factors not included in this analysis. The 
most important set is likely to be social determinants of 
health such as educational attainment, poverty, or social 
exclusion. We are currently doing systematic reviews on 
educational attainment, which will be the first social 
determinant to be incorporated into future rounds of 
the GBD CRA. There is also a wide range of other 
risk factors not yet included such as nitrous oxide, heavy 
metals, environ mental noise, sleep, stress, UV radiation, 
among others. Future rounds of GBD might evaluate 
whether these risk factors meet inclusion criteria.

To date, GBD has not included Mendelian ran­
domisation studies in meta­regression. These studies 
could provide new insights on the causal connections 
between risks and outcomes.50 Not all Mendelian 
randomisation studies are appropriate for inclusion.51–53 
Future rounds of GBD will give careful consideration to 
including these studies for some risk–outcome pairs.

For harmful risks with monotonically increasing risk 
functions, we have generally assumed that the TMREL 
is 0. For protective risks such as fruit or whole grain 
intake, selecting the level of exposure that is minimum 
risk is more challenging. Extrapolating the risk function 
beyond where the available cohort studies or trials 
support the protective effect could easily lead to both 
exaggerated estimates of attributable burden and implau­
sible recom mendations on consumption. To avoid this 
exaggeration, we set the TMREL for protective risks to be 
equal to the 85th percentile of exposure in the available 
cohorts and trials. The 85th percentile is arbitrary, but 
sensitivity analysis did not suggest major changes if we 
selected the 90th or 80th percentiles.

Lastly, in most cases, we assume that relative risks as 
a function of exposure are universal and apply in 
all locations and time periods. Exceptions include 
temperature, in which the risk functions clearly depend 
on the annual mean temperature, and the relative risks 
for high BMI for breast cancer that differ in Asian and 
non­Asian populations. Our rules require that there is 
evidence of significant differences in the relative risk for 
different subgroups; to date, few cases have met this 
standard. As evidence accumulates, more location­
specific or subgroup relative risks might be identified.

Conclusion
Using the most up­to­date assessment of the data for 
exposure and relative risk, we found that global exposure 
to harmful environmental risks has been declining, with 
the notable exception of ambient particulate matter 
pollution. Environ mental risk reduction is making an 
important contribution to reductions in child mortality. In 
aggregate, there has been no real progress reducing 
exposure to behavioural risks, while metabolic risks are, 
on average, increasing every year. As a world, we are 
failing to change some behaviours, particularly those 
related to diet quality, caloric intake, and physical activity. 
Progress on reducing harm from one crucial behaviour, 
tobacco smoking, shows the power of taxation and 
regulation. The promise of prevention through risk 
modification is not being realised in adult populations 
around the world. Urgent attention on more successful 
strategies to reduce risks is needed.
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