

City, University of London Institutional Repository

Citation: Kloukinas, C., Saridakis, T. & Issarny, V. (1999). Fault Tolerant Access to

Dynamically Located Services for CORBA Applications. Paper presented at the Computer
Applications in Industry and Engineering (CAINE-99), 12th Int'l. Conference, 4 - 6 Nov 1999,
Atlanta, GE, US.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2901/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Fault Tolerant Access to Dynamically Located Services for CORBA

Applications

Titos Saridakisy Christos Kloukinasz Val�erie Issarnyz

Nokia Research Center
y

INRIA
z

PO Box 407 Domaine de Voluceau

FIN-00045 Nokia Group Rocquencourt BP 105

FINLAND 78153 Le Chesnay C�edex, FRANCE

Titos.Saridakis@nokia.com fChristos.Kloukinas, Valerie.Issarnyg@inria.fr

Abstract

This paper presents an e�ort that melds two facil-

ities for localizing service providers and for tolerating

failures into an assistance, which provides fault toler-

ant access to dynamically located services for object-

based applications.

1 Introduction

The CORBA standard1 eases the development of

distributed applications by providing an object-based

framework for structuring them and organizing the ad-

ditional services needed for their execution. The local-

ization service is captured by CORBA's Trading Com-

mon Object Service (COS)2. This COS allows applica-

tion objects to register their interfaces in an interface

database, and to query this database in order to obtain

a reference to objects with speci�c interfaces. How-

ever, fault tolerance functionalities are not captured

in a single CORBA COS; rather, they are scattered

among di�erent COSs (e.g. Persistent Object, Trans-

actions, Collection Service, etc.). Their coordination

leads to complicated application structure, which be-

comes even worse when the fault tolerance require-

ments refer to interactions with dynamically located

objects, because the Trading Object Service must then

be taken into account as well.

FTDA, an assistance for Fault Tolerant Dynamic

Access to services provided by application objects,

aims at keeping the application structure simple and

comprehensible. It is designed as a COS built on

top of CORBA's Trading COS and provides a suite

of fault tolerance protocols o�ering ordered, reliable

or atomic request delivery and active, semi-active, or

1http://www.omg.org/library/c2indx.html
2http://www.omg.org/library/csindx.html

passive object replication. The remainder of this pa-

per is organized as follows: Section 2 presents the de-

sign of FTDA, Section 3 discusses the implementa-

tion of FTDA, and �nally Section 4, summarizes with

our contributions and a brief comparison with related

work.

2 Fault Tolerant Dynamic Access

One has three alternatives for dealing with the fault

tolerance requirements of a CORBA application: at

the application, the middleware, and the ORB level.

The �rst one burdens the application logic and leads

to complex application structures. The third one al-

ters the CORBA speci�cations. The second alter-

native produces CORBA compliant applications with

structural complexity proportional to the bare ap-

plication logic, but requires the existence of COSs

with adequate functionalities. This section elaborates

on FTDA, a development assistance designed as a

CORBA COS, which provides a variety of fault tol-

erance protocols for �xed and for dynamically located

objects.

Fault Tolerance Protocols. In distributed applica-

tions, the failure of an object or a link may cause

the whole application to crash. Process group [1] is

a powerful concept that tolerates this kind of failures

by replacing an individual object with a group of ob-

ject's replicas. An additional mechanism, called mem-

bership, coordinates the replicas' executions and deals

with their failures, so as to make the group of replicas

behave as a single, fault tolerant object. FTDA builds

upon this concept. Assuming crash processor failures

and an asynchronous communication platform with

performance and omission failure semantics, it was de-

signed as a layered structure of group-based fault tol-

erance protocols. The structure of its layers is depicted

in Figure 1 and their functionalities are the following.

set transforms a number of objects into a set repre-

sented by a single reference; an action addressed to

the set reference must be addressed to each of the set

constituents. multicast di�uses requests to each set

constituent. ordered imposes a delivery order on re-

quests addressed to the same set reference, enforcing

the same delivery order for all set constituents. reli-

able is based on the crash processor failure semantics

and provides reliable delivery of requests addressed to

a set reference. atomic provides atomic delivery of

requests addressed to a set reference, i.e. each request

addressed to a set reference is either delivered to all set

constituents in the same relative order or it is not de-

livered at all. membership transforms a set of objects

into a process group; when a failure of a set constituent

occurs, this protocol updates the set composition, so

that the protocols related to request delivery will con-

tinue functioning without blocking. replication du-

plicates an object and uses membership to organize

the set of object's replicas into a process group, which,

thereafter, behaves as a single, fault tolerant object.

active, semi-active and passive are all built on

top of replication and provide the respective kind of

replication for the process group. active ensures that

all group members execute a delivered request and re-

turn results to its originator. Using semi-active, all

group members execute a delivered request, but only

a single one returns results. Finally, under passive, a

single group member executes a delivered request and

returns results; this member is also obliged to period-

ically checkpoint its internal state.

Membership

Reliable

Replication

Active Semi-Active Passive

Atomic

Ordered

Multicast

Set
Crash Processor

Asynchronous Communication

Omission/Performance

Figure 1: The structure of the FTDA layers
Dynamic Service Location. Some distributed ap-

plications may require the FTDA functionalities when

accessing services whose server is not known a priori.

For these, FTDA �rst employs a dynamic service local-

ization facility, similar to the Trading COS, to locate

an object o�ering the services described in the given

interface. Then, it uses the requested replication pro-

tocol for binding the object requesting the FTDA ser-

vice to the dynamically located object. Hence, FTDA

o�ers two distinct service versions for each layer in

Figure 1, one for known servers and one for dynami-

cally located servers. Due to space limitations, Table 1

presents the FTDA interface that contains only the

declaration of the services corresponding to the ac-

tive protocol. The declarations of the rest of FTDA

services are similar to this.

typedef Object Srv; typedef Object Conf;

typedef sequence <Any> InterfaceDescr;

typedef sequence <Any> PropertyDescr;

typedef struct SrvIrfc f
InterfaceDescr ServiceInterface;
PropertyDescr ServiceProperty; g Service;

exception NoSrvFound f string reason; g;
exception ExistingSrv f string reason; g;
interface FTDA f

Object ActiveDynamic(

in Service service, in short numOfReplicas, in Conf machines)

raises(NoSrvFound, ExistingSrv);

Object ActiveStatic(
in Srv srvRef, in short numOfReplicas, in Conf machines)

raises(ExistingSrv); g;

Table 1: The FTDA CORBA interface

The ActiveDynamic service may be requested by

an object, which needs active replication to guaran-

tee fault tolerant access to a service, and which does

not possess a reference to the server o�ering the given

service. ActiveDynamic takes three arguments: a de-

scription of the service to which fault tolerant access

is requested, the number of replicas required to pro-

vide su�cient fault tolerance guarantees, and an op-

tional suggestion for the deployment of the replicas.

The service description contains the interface describ-

ing the service and a property that must be satis�ed

by the server o�ering the service. The algorithm im-

plemented by ActiveDynamic is brie
y explained in

the following.

The service description parameter is passed to a

dynamic service localization facility, called Localize,

which searches a database containing the interfaces

declared by existing objects, to �nd those matching

the interface description. Localize returns the list

of matching objects, which also satisfy the requested

property, or a NoServerFound exception is raised if the

list is empty. For each element on the list, ActiveDy-

namic performs the following process. If the element

is not a server shared by all application objects, the

requested group of replicas is initialized following the

suggested con�guration, if possible, and a reference to

the object providing access to the group is returned.

The same actions are taken if the element is a shared

server, which has not been instantiated yet. In case of

an instantiated shared server, ActiveDynamic checks

whether the instantiated group has the requested num-

ber of replicas, in which case that one is returned.

Otherwise, the process is repeated with the next list

element. If the list is exhausted, an ExistingServer ex-

ception is raised, to indicate that servers o�ering the

requested service do exist, but do not provide the re-

quested fault tolerance guarantees. The ActiveStatic

service is simpler since it does not use Localize and it

only performs the aforementioned process for a single

server.

FTDA vs Existing COSs. Almost all of the func-

tionalities o�ered by FTDA are provided by, or can be

obtained by, combining existing CORBA COSs. The

creation of replicas can be handled by the Life Cy-

cle COS, the assembly of replicas into a process group

can be supported by the Object Collection COS, the

Transaction COS can be used to provide support for

reliable communication, a request ordering mechanism

can be built on top of the Concurrency COS, the Per-

sistency COS provides the stable storage needed for

the passive replication protocol, and the Trading COS

is designed explicitly for issues related to dynamic ser-

vice localization. So, a question that arises naturally

is \why bother with FTDA?" Because FTDA promotes

a clear and comprehensible application structure.

From the software reuse perspective, the fact

that the FTDA functionalities are met from existing

CORBA COSs is very encouraging. With a modular

design and the appropriate implementation of the ex-

isting COSs, FTDA needs only to add the code that

integrates the primitive fault tolerance functionalities

in a CORBA COS that provides fault tolerance sup-

port. In theory, this approach can be followed with the

existing implementations of the various COSs. How-

ever, a majority of these implementations are not de-

signed to cooperate with each other and their integra-

tion requires a signi�cant e�ort from the application

developer.

3 FTDA in Practice

To assess the practical bene�ts of FTDA, we have

implemented a prototype based only on a bare ORB,

i.e. without making use of any CORBA COS. The

original reason for not using any existing COS was to

extend the capabilities of FDFS [2], a CORBA-based

system already present in the Aster project3.

Prototype Implementation. The FTDA prototype

uses a dynamic service localization facility, called Lo-

cator, that we had previously developed for FDFS. Al-

though Locator provides services similar to the Simple

Trader level of the Trading COS, i.e. it allows servers

to register themselves and clients to query it for a par-

ticular service, the two facilities di�er in three aspects.

First, whereas Simple Trader returns interfaces of the

3http://www.irisa.fr/solidor/work/aster.html

same type or a subtype of the requested one, Loca-

tor returns interfaces compatible to the requested one.

An interface Ia is said to be compatible to an interface

Ib i� the contents of Ia are a superset of the con-

tents of Ib, when considering each interface as a set of

operations and attributes. The other two di�erences

concern the properties that must be satis�ed by the

servers in addition to the matching interface. For Lo-

cator, server properties are predicates and are always

dynamic (i.e. their values are not cached). Hence, Lo-

cator implements the Localize facility referred to in

the ActiveDynamic description in Section 2.

Besides Locator, the prototype consists of a

CORBA object o�ering the FTDA services and a run-

time library containing the protocol suite brie
y de-

scribed in the previous section. The FTDA object

receives requests for fault tolerant access to a regis-

tered service, uses Locator, if necessary, to locate it,

initializes a fault tolerant server, and returns an ob-

ject that provides access to the server. This object

acts as a client-side proxy. Similarly, each object in

the replica group constituting the fault tolerant server

is composed of two parts, the native server and the

server-side proxy.

The FTDA library functionalities are divided into

two categories: the packaging and the fault tolerance

functionalities. The latter realize the various FTDA

protocols, which provide fault tolerant access to ser-

vices independently of the service type and the request

contents. Figure 2 shows the deployment of the con-

stituents of a fault tolerant server. In the magnify-

ing glass, one may observe that a fault tolerant server

consists of a number of replicas, each being an assem-

bly of the native server (e.g. an application object),

the packaging functionalities, and the FTDA proto-

col layer. Figure 2 also depicts the procedure for us-

ing the FTDA assistance. Let us consider for exam-

ple, the case when an object requests the ActiveDy-

namic FTDA service. In step 1, the object contacts the

FTDA object, specifying the interface of the service it

wants to access and the fault tolerance guarantees it

requires. The FTDA object invokes Locator in step 2,

to obtain a list of references on servers providing the

requested interface. That list is used by the FTDA

object as described in section 2. If the fault toler-

ant server must be initiated, the FTDA object does

so in step 3. Finally, in step 4 an \access object" is

returned, which establishes a link with a server that

o�ers the requested services and satis�es the required

fault tolerance constraints. Once that link to the fault

tolerant server is established, the FTDA object is no

longer needed.

554

1

IFR

3

Fault tolerant servers

2

4

access object

1

O R B

Bare server

Packaging

Locator

FTDA

registered interfaces
Database of

FTDA protocols

Figure 2: FTDA assistance organization and fault tol-

erant server composition

Prototype Evaluation. To assess the practical ben-

e�ts of the FTDA assistance, we used it to obtain fault

tolerant �le accesses in a CORBA application, which is

a simulation of a distributed �le system [2]. The appli-

cation consists of a number of �le servers, each having

registered its interface with Locator, and a number of

clients that access �les by obtaining a �le server ref-

erence from Locator. In the non fault tolerant version

of the application, the client invokes Locator once per

di�erent �le, to obtain a reference to the �le server

that provides access to the speci�c �le. Except from

this Locator invocation, the client accesses �les in the

same way it would have done in a Unix �le system.

Modifying the client to request fault tolerant �le

accesses proved to be a fairly easy task, since FTDA

already included the Locator functionality. More pre-

cisely, the invocation of Locator is replaced by a call to

the FTDA assistance which, in addition to the argu-

ments passed to Locator, takes a few more arguments

describing the requested protocol (e.g. in the case of

ActiveDynamic, the client needs to pass as an argu-

ment the number of server replicas). FTDA performs

all necessary actions and returns an object providing

access to the, now fault tolerant, service. After that,

the client may use the service without needing to con-

tact FTDA or any other CORBA COS for fault tol-

erance related issues. This allows us to conclude that

FTDA is easy to use and it does not introduce any

complexity in the application structure, since it keeps

to a minimum the number of interactions necessary for

obtaining fault tolerant access to a speci�c service. Al-

though we are pleased with the development bene�ts

from FTDA, the performance of the prototype clearly

leaves space for improvement.

4 Conclusions

FTDA is not the �rst e�ort to provide fault tol-

erance for CORBA applications. Primitive fault tol-

erance functionalities are found scattered among the

\o�cial" CORBA COSs. However, putting them to-

gether to obtain a non trivial fault tolerance func-

tionality, like active replication, takes a considerable

programming e�ort. In addition, it alters the ratio-

nale of the application structure, since a conceptually

stand-alone application behavior is achieved through a

number of interactions with various COSs not directly

related to fault tolerance.

A number of approaches that o�er full fault tol-

erance support for CORBA applications are mainly

based on the integration of fault tolerance protocols

with the ORB [3], to extend the standard ORB func-

tionalities (e.g. see projects Electra4 and Bast5). The

inconvenience with such approaches is that they al-

ter the standard ORB capabilities currently de�ned

by OMG. In contrast, FTDA o�ers fault tolerance as

a COS, which conforms with the CORBA speci�ca-

tions where services beyond those o�ered by the ORB

should be inserted in the system architecture as COSs.

Nevertheless, providing fault tolerance functionalities

at the ORB level does not impact on the application

structure, making the delivery of fault tolerance func-

tionalities as simple as with FTDA. Additionally, an

ORB extended with fault tolerance functionalities in-

troduces, by default, much less execution time over-

head to the application. The last OMG meeting made

clear that this is an advantage signi�cant enough to

cause the revision of the ORB speci�cations in order

to provide explicit support for fault tolerance.

The basic conclusion that we have drawn from

our experience in designing, implementing and using

FTDA is that no technological break through is neces-

sary for facilitating the development of fault tolerant

CORBA applications. A careful design and implemen-

tation of well understood concepts, su�ce to provide

transparent fault tolerance services for CORBA ob-

jects. Current work on the FTDA is focused on mod-

ifying, adjusting and polishing the protocol suite.

References

[1] K. P. Birman. The Process Group Approach to Re-

liable Distributed Computing. CACM, 36(12):37{

53, December 1993.

[2] V. Issarny, C. Bidan, and T. Saridakis. Designing

an Open-ended Distributed File System in Aster.

In Proc. of the 9th Int. Conf. on Par. and Dis.

Computing Sys., pages 163{168, September 1996.

[3] S. Landis and S. Ma�eis. Building Reliable Dis.

Sys. with CORBA. Theory and Practice of Object

Systems (John Wiley), 3(1):31{43, April 1997.

4http://www.softwired.ch/people/ma�eis/electra.html
5http://lsewww.ep
.ch/bast/

