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A B S T R A C T   

A predictive thermodynamic model is utilized for the calculation of fuel properties of oxymethylene dimethyl 
ethers (OME3–4), surrogates for gasoline, diesel and aviation fuel, as well as alcohol blends with gasoline and 
diesel. The alcohols used for these blends are methanol, ethanol, propanol, butanol and pentanol; their mixing 
ratio ranges from 10 to 50% by volume. The model is based on the Perturbed-Chain Statistical Association Fluid 
Theory (PC-SAFT) equation of state (EoS) and Vapor Liquid Equilibrium (VLE) calculations at constant tem-
perature, density and composition. The model includes the association term, with the assumption of two asso-
ciation sites (2B scheme), to enable the modeling of alcohols. The pure-component parameters are estimated 
based on the Group Contribution (GC) method of various sources, as well as a parametrization model specifically 
designed for the case of OME3–4. The results of the computational model for the density, vapor pressure and 
distillation curves at various conditions, including high-pressure, high-temperature (HPHT), are compared to 
experimental and computational data available in the literature. In the cases where no measurements are 
available for the surrogates, experimental data for the corresponding target fuel are used, taking into consid-
eration the inherent deviation in properties between real and surrogate fuel. Overall, the results are in good 
agreement with the data from the literature, with the average deviation not exceeding 12% for temperature 
(Kelvin) on the distillation curves, 10% for density and 46% for vapor pressure and the general trend being 
captured successfully. The use of different pure component parameter estimation techniques can further improve 
the prediction quality in the cases of OME3–4 and the aviation fuel surrogate, especially for the vapor pressure, 
leading to an average deviation lower than 18%. These results demonstrate the predictive capabilities of the 
model, which extend to a wide range of fuel types and pressure/temperature conditions. Through this investi-
gation, the present work aims to establish the limits of applicability of this thermodynamic property prediction 
methodology.   

1. Introduction 

While electrification is often proposed as a solution to reduce CO2 
emissions from passenger cars, it seems unlikely that this can be the case 
for heavy-duty, marine and aviation powertrains. The European Com-
mission, in the Future Transport Fuels report [1], suggests that only 
passenger cars, road freight transport and rail will be able to rely on 
electric energy and mostly for short to medium distances. This means 
that in applications like maritime heavy-duty engines, Liquified Natural 
Gas (LNG), bio- and synthetic fuels will be used primarily [2]. Several 
studies on the performance of such alternatives have been published in 

the last decades, proposing different new concepts or reviewing existing 
ones and showing promising results. 

The extended literature review of Lapuerta et al. [3] presents the 
advantages of using biodiesel as an alternative to standard diesel fuel. 
The study concludes that biodiesel can offer a great reduction in carbon 
monoxide (CO), hydrocarbon (HC), soot and particulate matter (PM) 
with only a small increase in nitrogen oxides (NOx) production. The 
work of Hoekman and Robbins [4] proposes strategies to mitigate this 
increase in NOx emissions, for example delayed ignition time and use of 
Exhaust gas recirculation (EGR). In [5] Mwangi et al. present a literature 
review on the emissions and performance of multiple oxygenated fuels, 
including diesel and biodiesel mixtures with acetone, butanol, ethanol, 
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isopropanol and water. Several studies have pointed out the positive 
effects of using fuel mixtures like diesel and ethanol or other short chain 
alcohols. These benefits are mainly the reduction of CO and soot emis-
sions [2,6,7]. Similar improvements can also be achieved in gasoline 
engines by adding alcohols to gasoline leading to a reduction of CO and 
HC emissions [8–10]. In [2] Verger et al. also mention Dimethyl ether 
(DME) and OME as promising alternatives to traditional diesel fuel, 
however outlining the need for further research on the fuel properties of 
these oxygenated fuels. A detailed understanding of the relations be-
tween the fuel properties, density and internal energy can be a key factor 
in reaching future environmental goals. The entire fuel injection process 
can be affected by thermodynamic and transport properties, leading to 
differences in the fuel/air mixing, in-nozzle cavitation, engine perfor-
mance and emission levels [3,4,11,12]. The impact of such phenomena 
has been studied by the authors’ group in previous publications [13–16] 
under the extreme conditions of modern diesel engine injectors, while 
the work reported in [17–22] deals with measurements and modeling of 
relevant fuel properties at elevated pressures and temperatures; the 
vaporization of fuel mixtures has been also investigated [16,23,24]. 

Because typical commercial fuels are composed of hundreds of hy-
drocarbons, attempts have been made to create surrogate mixtures to 

replicate the real fuel properties. The work of Mueller et al. [25,26] is a 
good example of such a method, using different parameters like mo-
lecular structure, molecular weight, ignition quality, boiling point, 
melting point, density and viscosity to create a surrogate mixture that 
replicates the properties of an ultra-low-sulfur diesel reference fuel. In 
both studies, the fuel surrogates are mixtures of a few components, 
ranging between four and nine. In [25], the proposed diesel surrogates 
are split into high and low compositional-accuracy surrogates, based on 
the number of components and the level of correlation with the target 
properties that they exhibit. These types of surrogates, both for diesel 
and gasoline, have been used in computational [16,27] as well as 
experimental studies [28], allowing a straightforward calculation of fuel 
properties and reproducibility of the study. Among the various methods 
available for calculating fuel properties over the wide range of 
pressure-temperature variation, the PC-SAFT is part of the larger Sta-
tistical Associating Fluid Theory (SAFT) EoS family and has been proven 
to be capable of calculating thermodynamic properties of pure sub-
stances and mixtures [29–33]. For the calculation of transport proper-
ties, an entropy scaling method using the residual entropy calculated by 
the PC-SAFT EoS has been proposed [34–36] and has been proven to be a 
generic as well as accurate method for pure-fuel components. The 

Nomenclature 

Abbreviations 
PR Peng-Robinson 
PC-SAFT Perturbed Chain Statistical Associating Fluid Theory 
VLE Vapor-Liquid Equilibrium 
CFD Computational Fluid Dynamics 
LNG Liquified Natural Gas 
EGR Exhaust gas recirculation 
HC Hydrocarbon 
DME Dimethyl ether 
RON Research octane number 
ULSD Ultra Low Sulphur Diesel 
HoV Heat of vaporization 
SRK Soave-Redlich-Kwong 
GC Group Contribution 
HPHT high-pressure, high-temperature 
EoS Equation of State 
QSPR Quantitative Structure Property Relationship 
CO Carbon Monoxide 
OME Oxymethylene dimethyl ethers 
PM Particulate Matter 
MON Motor octane number 
TDP Tangent Plane Distance 
LHV Lower heating value 

Symbols 
ã dimensionless Helmholtz free energy 
β vapor volume fraction 
I1, I2 integrals, functions of density 
m̄ number of segments 
kAB association volume 
η reduced density 
V volume [m3]

P pressure [Pa]
ρ density [kgm− 3]

cL regression coefficients 
Mw molar weight [g mol− 1] 
fi fugacity 
T temperature [K]
∇2fk Hessian 

x liquid phase composition 
Nd number of descriptors 
C1 abbreviation for the compressibility factor 
m number of segments per chain 
σ segment diameter 
ε/k depth of pair potential 
ghs

ii radial distribution function 
εAB/k association energy 
n number of groups 
pk direction of Newton method 
z composition 
R Gas constant [J K − 1 mol− 1] 
kij binary interaction parameter 
NA Avogadro number [mol− 1] 
XA number of molecules not bonded on site A 
ΔAiBj the association strength 
∇fk gradient 
y vapor phase composition 
DL(p̄i, p̄j) descriptors QSPR 

¯m2εσ3
d abbreviation from the PC-SAFT equations 

Subscripts 
res residual 
disp dispersion 
assoc association 
id ideal 
ini initial 
hc hard chain 
GC group contribution 
k iteration number 
j component number j 
i component number i 

Superscript 
ref reference value 
l liquid 
* feed conditions 
sat saturation value 
v vapor 
′ trial phase  
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PC-SAFT can be easily applied to different fuel components, as it re-
quires only three input parameters (m, σ, ε/k) per component and a bi-
nary interaction coefficient (kij) for each pair. Values for these 
parameters are available in the literature [29-31,33]. However, if 
parameter values are not available, the use of a GC method like the one 
presented by Sauer et al. [37] or by Tihic et al. [38] can be sufficient for 
estimating (m,σ,ε/k), while for kij the method of Gross and Stavrou [39] 
can be applied, although the level of precision in complex cases is not 
clear. Finally, for associating fuel components, two additional inputs are 
needed for each component, which again can be found in the literature 
[40] or can be estimated in a similar way [37]. Overall, the PC-SAFT 
combines precision with a wide range of applicability, making this a 
very generic EoS. Previous work from the authors’ group [16,41-44] has 
already demonstrated the predictive capability of the PC-SAFT EoS [33], 
by validating its results against a large variety of multi-component fuels, 
but also by implementing it into computational fluid dynamics solvers, 
predicting the in-nozzle flow and subsequent spray development over a 
wide range of injection and ambient conditions. Properties of 
multi-component diesel fuel surrogates have been estimated with suf-
ficient precision [45] even under HPHT conditions and by exclusively 
using GC method estimations for the input parameters. According to the 
same publication, the PC-SAFT EoS has superior performance compared 
to the widely used Peng-Robinson (PR) EoS, when calculating liquid 
density of hydrocarbons. The weakness of cubic EoS like the PR [46] and 
the Soave- Redlich-Kwong (SRK) [47], related to calculations at HPHT 
conditions, are also highlighted in [32,48-50]. A series of previous 
publications by the authors’ group [16,27,43,48,51] show that the 
PC-SAFT can offer sufficient precision when used as thermodynamic 
closure in a CFD model. The use of the PC-SAFT EoS does come with a 
substantial computational cost, especially when the EoS is directly 
implemented in the CFD solver, like in the work of Rodriguez et al. [24]. 
Alternatively, a tabulated approach can be used to mitigate the increase 
in computational time by calculating all thermodynamic properties and 
storing them inside a table in advance. This has been demonstrated in 
the work of Koukouvinis et al. [48] and Justino et al. [27] with 
pressure-temperature-composition (P-T-x) tables, as well as in the work 
of Vidal et al. [16] and Kolovos et al. [51] using two-dimensional den-
sity-internal energy (ρ-e) tables. 

However, in these publications mainly a single component fuel is 
used, while for the cases of multi- component fuels very limited exper-
imental data for validation are available. The main goal of the present 
work is to demonstrate the predictive capabilities of the PC-SAFT based 
thermodynamic model, by extending the limited validation performed 
in previous studies. A large data set for gasoline and diesel surrogates 
mixed with short chain alcohols, as well as other oxygenated fuels like 
OME and a sustainable aviation fuel surrogate is presented for the first 
time for aviation fuels and used for validation of the computational re-
sults. For the gasoline-alcohol mixtures, there are prior computational 
results using the PC-SAFT but with a pseudo-component methodology, 
not a fuel surrogate. For OME past results using the PR EoS are available, 
while for the diesel surrogates there is past work from the authors, but 
no prior work for mixtures with alcohols, for which there are no prior 
computational results. The model reported here accounts for the asso-
ciation bonds through the extended PC-SAFT, that includes the associ-
ation term [40], which allows for the thermodynamic modeling of 
multicomponent fuel surrogates containing alcohols and other associ-
ating components. 

2. Methods 

2.1. PC-SAFT formulation 

The PC-SAFT is a theoretically derived model, based on perturbation 
theory. This theory divides the intermolecular potential energy of the 
fluid into repulsive interactions and attractive interactions. In the PC- 

SAFT a reference fluid is defined to calculate the repulsive contribu-
tion. The reference fluid is composed of spherical segments comprising a 
hard sphere fluid that then forms molecular chains to create the hard- 
chain fluid. The attractive interactions, perturbations to the reference 
system, are accounted for with the dispersion term [33]. In addition to 
these two basic terms, the association term can be also included [40] to 
account for the intermolecular bonds forming between hard-sphere 
segments with association sites (proton donator and acceptor). The 
hydrogen bonds formed by the -OH group of alcohols are an example of 
self-association [52] that will be modeled in this work. 

The PC-SAFT EoS is based on Helmholtz free energy, which in turn is 
derived as the sum of the hard chain, dispersion and association con-
tributions shown in Eq. (2.1): 

ãres = ãhc + ãdisp + ãassoc (2.1)  

The hard-chain term, ̃ahc, for a mixture of nc components, is given by Eq. 
(2.2): 

ãhc = m̄ãhs −
∑nc

i
xi(mi − 1)lnghs

ii (σdii) (2.2)  

where m̄ is the number of segments for a multicomponent mixture, xi is 
the mole fraction of every component i in the fluid, ãhs, is the hard 
sphere contribution, ghs

ii is the radial distribution function of the hard- 
sphere fluid and mi is the number of segments per chain of every 
component. The dispersion term is defined by Eq. (2.3): 

ãdisp = − 2πρmI1(η, m̄) ¯m2εσ3
d − πρmm̄C1I2(η, m̄) ¯m2ε2σ3

d (2.3) 

According to [52–54] the association contribution to the Helmholtz 
free energy is an average that is linear with respect to mole fractions and 
can be derived by Eq. (2.4). 

ãassoc

RT
=

∑

i
Xi

[
∑

Ai

[

lnXAi −
XAi

2

]

+
Mi

2

]

(2.4)  

Where Mi is the number of association sites on each molecule of 
component i and XAi , the mole fraction of molecules not bonded at site A 
for component i, is given by: 

XAi =

[

1 +
∑

j

∑

Bj

ρjX
Bj ΔAiBj

]− 1

(2.5)  

Where 
∑

Bj

represents summation over all sites on the molecules of 

component j: Aj,Bj,Cj etc. Also ρj = Xjρmixture is the molar density and 
ΔAiBj the association strength. Lastly, the mixture parameters σij and εij 

which are defined for every pair of unlike segments are modelled using a 
Berthelot-Lorentz combining rule. 

σij =
1
2
(
σi +σj

)
(2.6)  

εij =
̅̅̅̅̅̅̅εiεj

√ (
1 − kij

)
(2.7)  

where kij is the binary interaction parameter. The mixture parameters 
are used for the computation of ¯m2ε2σ3

d in Eq. (2.3). For more infor-
mation on the derivation of the PC-SAFT EoS equations the reader is 
directed to the original publication of the model [33,40]. 

2.2. PC-SAFT parameter estimation 

The main input parameters needed for the PC-SAFT calculations are 
the number of segments per chain (m), the segment diameter (σ) and the 
depth of pair potential divided by the Boltzmann constant (ε/k) and they 
must be defined for each component individually. Values that have been 
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adjusted using experimental density and vapor pressure data can be 
found in the literature [30,33,40]. However, the goal of this work is to 
present a generic and predictive methodology for fuel-property calcu-
lation, thus a GC method is applied for the estimation of the input pa-
rameters. The GC method of Tihic et al. [38] is implemented in this 
work, with overall good results based on past experience. In this 
approach, the chemical structure of the molecule is divided into simple, 
first-order groups and more complex, second-order groups. The PC-SAFT 
parameters m, σ and ε/k are computed as a function of all the individual 
group contributions mi, σi and ε/ki according to the following set of 
equations: 

m =
∑n groups

i
(nimi)FOG +

∑n groups

i
(nimi)SOG (2.8)  

mσ3 =
∑n groups

i

(
nimiσ3

i

)

FOG +
∑n groups

i

(
nimiσ3

i

)

SOG (2.9)  

m ε
/

k =
∑n groups

i
(nimiε/ki)FOG +

∑n groups

i
(nimiε/ki)SOG (2.10) 

The computation of the individual group contributions relies on 
fitting of vapor pressure and liquid density data at a reduced tempera-
ture range of 0.5 ≤ Tr ≤ 0.9. 

The work of Burgess et al. [55], which is an extension of the previ-
ously mentioned method, is also used in cases where a weak perfor-
mance of the thermodynamic model is observed. While the above 
equations are also valid in this situation, the values of mi, miσ3

i and miε 
/ki for each first order group and second order group are different. The 
method of Burgess et al. [55] aims to improve the performance under 
high- and low-pressure conditions, by creating two different sets of GC 
parameters, one derived based on experimental data at low pressure 
(lower than 7 MPa) and one at high pressure conditions (7 MPa up to 
276 MPa). In this work the GC parameters corresponding to low pressure 
conditions are used since the experimental data for the C-1 surrogate, for 
which this approach is later used, are all well below 7 MPa. 

For OMEn fuel family a model developed by Schappals et al. [56] is 
also investigated as a possible solution. In this approach, the number of 
segments m in OMEn is assumed to be linearly dependent on the OME 
chain length n and the parameters σ and ε/k are considered constant. 
This is a rather simple approach, which has been developed through 
fitting of experimental vapor pressure and liquid density data, at a 
temperature range of 300–500 K and pressure of 1 bar and below. Thus, 
it serves as a good reference for comparison with the more generic GC 
method. All the input parameters of the individual components for the 
PC-SAFT formulations can be found in the Appendix Tables 4–6. 

For associating components, the bonding type must be defined. For 
alkanols, which are the main type of substances we want to study, the 3B 
and 2B bonding model is proposed by Huang et al. [53]. Since the use of 
the complex 3B could not be sufficiently justified, the simpler 2B was 
used in this work. Also, the study of Gross et al. [40] uses the 2B model 
with great success to describe substances like ethanol, methanol, pen-
tanol etc. Thus, the 2B bonding approach was selected as the most 
suitable option for this work. Two additional pure component parame-
ters, the effective association volume (kAB) and the association energy 
(εAB/k) are used for associating components. Those can also be computed 
using the GC method proposed by Tihic et al. [38]. Finally, for the 
estimation of the binary interaction parameter (kij) the method of 
Stavrou et al. [39] was used. In the proposed Quantitative Structure 
Property Relationship (QSPR) method, the kij is calculated by the 
following equation: 

kQSPR
ij =

∑Nd

L=1
cLDL

(
p̄i, p̄j

)
(2.11)  

Where Nd is the number of descriptors, DL(p̄i, p̄j) are the descriptors and 
cL are corresponding regression coefficients. The descriptors are func-
tions of the PC-SAFT molecular parameters. Since all fuel mixtures have 
no-polar components and only up to a single associating component, one 
descriptor needs to be used, which is calculated as below: 

DLJ = 1 −

[
σ3

i (εi/k)2

σ3
j
(
εj
/
k
)2

]

(2.12) 

The value of the cLJ coefficient can be found from tables in the work 
of Stavrou et al. [39]. 

2.3. VLE calculations 

The methodology presented here was developed and published by 
the authors, as reported by Vidal et al. in [42]. The vapor-liquid equi-
librium calculations are performed under constant temperature, specific 
volume, composition and are based on the unconstrainted minimization 
of the Helmholtz free energy. The choice of temperature, specific vol-
ume or density and compositions as independent variables is suitable as 
in the PC-SAFT all equations are expressed as functions of the same 
variables. More importantly, the use of density instead of pressure as an 
independent variable allows for better description of phase change. In 
the case of a single component or a multi-component mixture with very 
similar components, phase change occurs at constant pressure or almost 
constant pressure respectively, requiring a pressure-based code to 
calculate only a single point in vapor-liquid equilibrium and reducing 
the entire phase change process to one state. 

The algorithm consists of two stages, namely the stability analysis 
and the flash calculations. First, the mixture is assumed to be in a single- 
phase state and its stability is investigated through the Tangent Plane 
Distance (TPD), in a similar way to the work of Michelsen and Mollerup 
[57]. If the TDP, which can be calculated according to Eq. (2.13), is 
proven to be always non-negative the mixture can be considered stable. 
Otherwise, it is unstable and the flash calculations follow to determine 
the composition of the two-phase mixture. The existence of a 
non-negative minimum of the TPD is enough to prove that the mixture is 
stable and thus, this can be seen as a minimization problem. 

TPD =
P′ − P*

RT
+
∑nc

i=1
ρ′x′

i

(
logf ′

i − f *
i

)
(2.13) 

In Eq. (2.13), the primes refer to the trial phase and the asterisk the 
feed conditions. R is the universal gas constant, fi is the fugacity of the 
component i, P the pressure, ρ density and nc the number of components. 
For the initialization of the iterative minimization process Raoult’s law 
and Wilson’s correlation [58] are combined with the work of Michelsen 
[59] and of Mikyska and Firoozabadi [60] to obtain the expression for 
initial composition of liquid (yi) and vapor phase (xi), where zi stands for 
the total initial composition: 

xi =
ziPini

Psat
i

=
zi

Psat
i

(
∑nc

i=1

zi

Psat
i

),

yi =
ziPsat

i
Pini

=
ziPsat

i∑nc

i=1
ziPsat

i

(2.14)  

If a two-phase regime is detected during the stability analysis, the code 
proceeds with the flash calculations aiming at minimizing the Helmholtz 
Energy for a given density, temperature and composition. Through the 
flash calculations the vapor mole fraction β =

∑nc
i=1nv

i is computed and 
from there the composition (Eq. (2.15)) and density (Eq. (2.16)) of the 
liquid and vapor phase can be derived, where v stands for vapor and l for 
liquid phase. 
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xi =
nv

i

β
, yi =

nl
i

β
(2.15)  

ρv =
β

Vv, ρl =
1 − β

Vl (2.16)  

In both cases, stability and flash, the optimization problem is solved 
using Newton’s method (c.f. [61]). For the calculation of the step length 
of the Newton method, an inexact line search is performed to calculate a 
step length that satisfies the Wolfe conditions [62]. The equation that 
needs to be solved to calculate the direction (pk) is: 

∇2f kpk = − ∇f k (2.17)  

Where ∇2fk is the Hessian and ∇fk is the gradient of the objective 
function that is to be minimized. In order for the above system to have a 
solution, the Hessian must be positive definite. To ensure that the Hes-
sian is a positive definite matrix we use the modified Cholesky factor-
ization algorithm [63]. 

2.4. Sustainable aviation fuel surrogate formulation 

A surrogate fuel for alcohol-to-jet sustainable aviation fuel was 
developed in this investigation. Alcohol-to-jet, named C1 by the Na-
tional Jet Fuels Combustion Program NJFCP (POSF number 11,498), is a 
bio-derived kerosene-like fuel mainly composed by highly branched C12 
and C16 isoparaffins and with very low autoignition reactivity 
compared to standard petroleum-based kerosene. The composition and 
main properties of C1 are shown in Fig. 1and Table 1, respectively. 

The surrogate fuel for C1 is formulated following a similar approach 
to that described in [68]. An initial surrogate formulation is defined 
based on the composition of the fuel and using a palette of components 
for which detailed chemical kinetic models are available. For C1, the 
selected components were 2,2,4,6,6 pentamethyl heptane (aka 

isododecane) and 2,2,4,4,6,8,8 heptamethyl nonane (aka isocetane). 
Then, the composition of this initial surrogate is adjusted in an iterative 
process until the surrogate matches several user-specified property tar-
gets of the real fuel. In this investigation, the surrogate targets were the 
derived cetane number (for autoignition reactivity), the smoke point (for 
soot propensity), and the density, viscosity and vapor pressure (for spray 
behavior). Fig. 2 shows the density, kinematic viscosity and vapor 
pressure of C1 compared to those of the surrogate. The smoke point of 
the surrogate is estimated by a linear mass-fraction blending rule, the 
viscosity of the surrogate is estimated by the Kendall-Monroe equation, 
and the vapor pressure of the surrogate is estimated by the 
Hoffmann-Florin equation. The properties of the real fuel were obtained 
from [64] (measured values). 

A new method to predict the derived cetane number of a fuel is 
introduced in this study and used to estimate the derived cetane number 
of the surrogate. First, the mixture fraction vs. temperature distribution 
within a fuel spray is calculated at the conditions of the derived cetane 
number test (ambient temperature equal to 817 K, pressure equal to 
2.14 × 106 Pa) using a 1D spray model [65]. Then, the ignition delay 
that corresponds to each mixture fraction – temperature combination is 
obtained in a 0D closed homogeneous reactor using a detailed chemical 
kinetic mechanism from LLNL [66]. Finally, the ignition delay of the 
most reactive mixture fraction, i.e., the mixture fraction with the 
shortest ignition delay time, is correlated with the derived cetane 
number of the fuel using a correlation curve calibrated for more than 50 
fuels and binary fuel blends with known derived cetane number (shown 
in Fig. 3). The estimated derived cetane number of the surrogate, 
together with other properties, are compared against those of the real C1 
fuel in Table 1. 

3. Results and discussion 

A series of computational results are presented for liquid and satu-
ration density, vapor pressure and distillation curves of wide range of 
fuels, such as gasoline, diesel and aviation fuel surrogates, gasoline and 
alcohol blends, as well as a highly-oxygenated fuels (OME3–4). All the 
simulated gasoline fuels and mixtures with alcohols are listed in Table 2, 
including their individual components and molar composition. Table 3 
presents analog information, but for the diesel and aviation fuel surro-
gates, together with diesel/alcohol blends. 

The results are compared with experimental measurements and data 
generated by other computational models for validation. In this way, the 
reliability of the thermodynamic model can be assessed. It should be 
noted that, for simplicity, the absolute difference expressed as a per-
centage is referred to as the error or deviation in this section. 

As mentioned previously in Section 2.2, different methods to deter-
mine the input parameters of the model have been used, in cases where a 
weak performance of the thermodynamic model was seen. It should be 
noted that this is more of an investigation for the impact these models 
can have not an attempt to optimize the results based on a specific cri-
terion. The authors have designed the model with the intention to use it 
coupled with a CFD solver in future publications, thus the acceptable 
level of accuracy would be defined by the outcome of the complete CFD 
simulations. In this paper, cases with a comparatively bigger room for 
improvement were selected for the investigation of different parameter 
estimation methods. 

3.1. Distillation curves 

All the distillation curves presented are calculated according to the 
ASTM D86 standard test method [67]. Thus, a simulation of the exper-
imental procedure is performed as follows: the fuel temperature is set 
below the initial boiling point and the pressure is set equal to atmo-
spheric. Then, an incremental increase of fuel temperature is applied 
until a two-phase regime is reached, marking the start of the 

Fig. 1. Composition of alcohol-to-jet C1 sustainable aviation fuel.  

Table 1 
Main properties of alcohol-to-jet C1 and its surrogate.   

C1 ATJ FUEL SURROGATE 

Formula C12.5H27.1 C12.5H27.1 

H/C ratio 2.168 2.159 
A/Fstoich 14.902 14.966 
MW [g/mol] 178.0 177.5 
LHV [MJ/kg] 43.88 44.09 
HoV [MJ/kg] 0.35 0.278 
Heat capacity (liquid) at 20 ◦C [kJ/kgK] 1.96 1.96 
Surface tension at 22 ◦C [N/m] 0.0234 0.0222 
Flash point [ ◦C] 49.5 62.7 
Freeze point [ ◦C] − 61.0 − 60.3 
Derived Cetane # 16.0 16.4 
Smoke point [mm] 34.5 34.4  
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evaporation. In the experimental procedure, the vapor is captured, 
cooled down to 20 ◦C and its volume is measured. In the simulation, the 
computed composition of the vapor phase is used as input for a new 
calculation at 20 ◦C to compute the molar volume. The composition of 
the remaining liquid phase is used for the next step, where the tem-
perature is increased again, and new vapor and liquid phase composi-
tions are computed. This incremental temperature increase is performed 
until complete evaporation. In every step the molar vapor fraction and 
the molar volume of condensed vapor are calculated, which together 

with the total liquid volume are used to calculate the distilled volume 
fraction. 

In this section the results for blends of gasoline and short-chain al-
cohols are presented. The alcohols used are methanol and ethanol, with 
a volumetric concentration ranging from 10% to 50%. For the modeling 
of gasoline, different fuel surrogates are used depending on the available 
experimental data. All calculations are performed using the GC-PC- 
SAFT, with the pure component parameters being estimated according 
to the correlations published by Tihic et al. [38]. For the experimental 
measurements presented in Fig. 5 and Fig. 6, a reference gasoline 
(Halterman EEE) was used. The exact composition of this gasoline is too 
complicated to model and thus the E00 gasoline surrogate is used 
instead for the PC-SAFT predictions. This 3-component surrogate has 
been shown to properly replicate the properties of Halterman EEE gas-
oline [28], with some inevitable weaknesses due to the simplified 
composition. 

In Fig. 4 the distillation curves of pure E00 and EEE gasoline are 
presented, illustrating the inherent differences between the surrogate 
and the actual fuel. These should be noted as they will appear as well in 
the following graphs; however, they are limitations of the surrogate and 
not of the computational model. Fig. 4 shows that the results of the 
thermodynamic code match the experimental measurements for the E00 
surrogate. 

In Fig. 5, a comparison of PC-SAFT predictions against measurements 
for the distillation curves of E10 (ethanol mixed with gasoline at 10% v/ 
v concentration) and M10 (methanol mixed with gasoline at 10% v/v 
concentration) is presented. It can be concluded that overall, there is 
reasonable agreement between experimental data and the calculations 
of the thermodynamic code. Significant differences are only present at 
the start and the end of the vaporization process and can be attributed to 

Fig. 2. (a) Density, (b) kinematic viscosity and (c) vapor pressure of C1 fuel (measured values from [64] and the surrogate).  

Fig. 3. Correlation between derived cetane number and ignition delay of the 
most reactive mixture fraction for more than 50 fuels and binary fuel blends. 
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the use of a surrogate instead of the actual gasoline fuel in the PC-SAFT 
model. This is evident from Fig. 4, where the distillation curve of E00 
exhibits the same differences when compared to EEE gasoline, an 
overestimation of the initial boiling point at 325 K and an overall 
notable deviation above 425 K. Similar conclusions can be drawn about 
the E20 and E50 (ethanol concentration at 20% and 50% v/v respec-
tively) fuel mixtures, from Fig. 6. The inflection point has moved to a 
higher distilled volume compared to the E10 sample due to the higher 
content of ethanol, but the thermodynamic code is still able to capture 
this behavior. 

This deviation from the experimental data at the start and end of the 
vaporization process can be explained by looking into the composition 
of the gasoline fuel and the simplified surrogate. An authentic gasoline 
fuel is composed of a multitude of elements, each differing substantially 
in their boiling points. The highest and lowest boiling points among 

these components will dictate the initial and final boiling points, 
respectively. However, these extremes considerably diverge from the 
boiling points of elements found within surrogate fuels. 

The discrepancy discerned around the inflection point could be 
attributed to a suboptimal estimation of the binary interaction param-
eter kij or the use of a surrogate mixture. The kij value must be estimated 
for each pair of components, in this case corresponding to six different 
values. A small under- or over- estimation can affect the result of the 
calculations. Another explanation would be the use of a surrogate 
mixture which doesn’t consist of all the components of the original fuel. 
This could mean a slightly different interaction with ethanol/methanol 
and a small discrepancy in the predicted evaporation of the alcohol part. 

In the second set of experimental measurements the fuel surrogates 
PACE-1, PACE-8 and PACE-20 [67] are presented. All of them aim at 
replicating the properties of RD5–87, a research-grade gasoline con-
taining 10% vol/vol ethanol, representative of the majority of com-
mercial gasoline in the US [70]. PACE-1 and PACE-8 consist of 7 
individual components while PACE-20 is made up of 9 h, with the 
composition being tailored so that the surrogate fuels match 
research/motor octane numbers (RON/MON) and other combustion 
targets of RD5–87 [70]. Since the composition of these fuel surrogates is 
known, there is no need to further simplify the modeling as was done in 
the previous case. 

In Fig. 7 we see that for all cases there is very good agreement be-
tween the experimental measurements and the results of the thermo-
dynamic model. A notable difference appears only at the start of 
vaporization, where the computational model tends to overpredict the 
initial boiling point by up to 6%. This deviation is deemed acceptable, 
especially if we consider that a very similar level of accuracy is achieved 
by the Lawrence Livermore National Laboratory (LLNL) simulations 
[71]. 

In this section the results for blends of diesel and five short-chain 
alcohols are presented. The alcohols used are methanol, ethanol, prop-
anol, butanol and pentanol, with a volumetric concentration of 20%. For 
the modeling of the diesel, a fuel surrogate is needed because its exact 

Table 2 
Molar composition of all simulated gasoline fuel surrogates and mixtures.  

Compound E00 E10 M10 PACE1 PACE8 PACE20 

n-pentane 46.1% 35.9% 32.7%    
isooctane 41.3% 32.2% 29.3% 15.5% 18% 17.6% 
n-undecane 12.6% 9.8% 8.9%    
ethanol  22.1%  19.3% 19.4% 18.9% 
methanol   29.1%    
isopentane    7.8% 10.7% 13.9% 
cyclopentane    13.5% 10.8% 13% 
hexene    6.3% 5.1% 5% 
toluene      10.1% 
heptane    15.3% 13.9% 9.1% 
1,2,4-trimethylbenzene    22.3% 22.1% 9.9% 
tetralin      2.5%  

Table 3 
Molar composition of simulated diesel and aviation fuel surrogates and mixtures.  

Compound V0b V0Bþ
methanol 

V0bþ
ethanol 

V0bþ
propanol 

V0bþ
butanol 

V0bþ
pentanol 

C-1 

octadecane 23.5% 9.8% 11.9% 13.4% 15.5% 15.4%  
heptamethyl nonane 27% 11.2% 13.7% 15.4% 16.7% 17.7% 16.4% 
1-methylnaphthalene 16.1% 6.7% 8.2% 9.1% 9.9% 10.6%  
tetralin 20.9% 8.7% 10.6% 11.9% 12.9 13.7%  
1,2,4-trimethylbenzene 12.5% 5.2% 6.4% 7.1% 7.7% 8.2%  
methanol  58.4%      
ethanol   49.2%     
propanol    43.1%    
butanol     38.3%   
pentanol      34.4%  
pentamethyl heptane       83.6%  

Fig. 4. Comparison of PC-SAFT predictions against experimental measurement 
for the distillation curve of E00 gasoline surrogate. Measurements corre-
sponding to EEE reference gasoline are also presented [68]. 
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composition cannot be estimated with good accuracy. Since an Ultra 
Low Sulfur Diesel (ULSD) was used during the experimental procedure 
[72], the V0b diesel surrogate was used in the computational model. 
This specific fuel surrogate was developed by Mueller et al. [26] and in a 
previous study by Vidal et al. [45] it was found to have properties 
representative of ULSD. Also, like in the previous section, the GC theory 
model of Tihic et al. [38] is used. A comparison between the distillation 
curve of the ULSD published by [72] and V0b is done, in order to identify 
what discrepancies can be attributed to the simplification of using a 
surrogate. Looking at Fig. 8 it is evident that the distillation curve of V0b 
is not following closely the distillation curve of ULSD. While the dif-
ference in temperature remains at around 3% for a recovered volume 
under 70%, it can reach up to 10%, or 65 K, at 98% recovered volume. 
Rather than perfectly replicating the behavior of the specific diesel, the 
goal here is to achieve a similar behavior to the original diesel and study 
the influence of mixing with alcohols. 

When comparing the computational results to the experimental 
measurements of V0b, a difference of 7% or 38 K is obtained for the 
initial boiling temperature. This discrepancy slowly decreases at a 
higher distilled volume, with the final boiling temperature exhibiting 
only a 2% or 11 K difference. 

The impact of adding different alcohols into the diesel fuel can be 
seen in Fig. 9. The change in the initial boiling point as well as the in-
flection point, caused by the alcohol’s evaporation, is captured by the 
computational model in all five cases. However, with an increasing 
number of carbon atoms in the alcohol, a small discrepancy gradually 
appears around 20% recovered volume. This error at the inflection point 

reaches a maximum value of 9%, or 40 K, when using pentanol as the 
mixture component. This can be deemed acceptable, especially if we 
consider a similar uncertainty from the computational model published 
by Hernández et al. [72]. The use of a surrogate instead of the actual 
diesel fuel is responsible for the differences at higher distilled volumes, 
above 50%. This can be understood by going back to Fig. 8, where it is 
evident that, for a specific distilled volume, the measured temperature 
for the ULSD is higher than the computed temperature of the V0b sur-
rogate at the same distilled volume. 

A comparison between experimental measurements and computa-
tional results for the distillation curve of a two-component surrogate of 
the aviation fuel C-1 is presented below. C-1 is an alcohol-to-jet (ATJ) 
fuel containing highly branched dodecane and hexadecane type com-
ponents, crafted by the National Jet Fuels Combustion Program NJFCP 
[73]. The C-1 ATJ fuel was designed to represent alternative jet fuels in 
experimental procedures, with the goal of developing non-fossil-based 
jet fuel alternatives [74]. These non-conventional fuels can be a poten-
tial solution to limiting the impact of anthropogenic carbon from the 
aviation transportation sector [74]. 

The composition of the surrogate, representative of C-1 ATJ, is listed 
in Table 3 together with the other fuels presented in this work. While in 
the previous cases of gasoline alcohol mixtures the GC parameterization 
method of Tihic et al. [38] performed very well, here we see a significant 
over prediction of the temperature at all volume fractions, refer to 
Fig. 10. The error in temperature reaches a maximum value of 12% at a 
recovered volume fraction of 50% and the deviation is 10% on average. 
Thus, the GC methodology developed by Burgess et al. [55] is also 

Fig. 5. Comparison of PC-SAFT predictions against experimental measurement for the distillation curve of E10 (a) and M10 (b) [69].  

Fig. 6. Comparison of PC-SAFT predictions against experimental measurement for the distillation curve of E20 (a) and E50 (b) [69].  
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employed, significantly reducing the difference between computational 
and experimental results, achieving a maximum and average error of 4% 
and 1%, respectively. 

3.2. Density 

In this section density data as a function of temperature for OME3, 
OME4 and the surrogate of C-1 are presented and compared to the PC- 
SAFT results. Different methods for the estimation of the pure 

component parameters are employed, to investigate which options yield 
the most reliable results. Similar to the case of the distillation curve, the 
use of the GC method of Tihic et al. [38] for the surrogate of C-1 leads to 

Fig. 7. Comparison of PC-SAFT predictions against experimental measurement for the distillation curve of PACE-1 (a) and PACE-8 (b) and PACE-20 (c) [70]. The 
measurements corresponding to RD5–87 reference gasoline/ethanol mixture are also presented. 

Fig. 8. Comparison of PC-SAFT predictions for the distillation curve of the V0b 
diesel surrogate against experimental data for ULSD [72]. The measurements 
corresponding to V0b surrogate are also presented[25]. 

Fig. 9. Comparison of PC-SAFT predictions for the distillation curve of the V0b 
diesel surrogate mixed with alcohols against experimental data ULSD/alcohol 
blends [72]. The short chain alcohols used are methanol, ethanol, propanol, 
butanol and pentanol. 
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an overestimation of the liquid density and has an overall maximum 
error of 4.3%, with the average error being 4.2%, see Fig. 11. In contrast, 
using the method of Burgess et al. [55] a smaller maximum and average 
error of 1.8% and 1.2% is achieved. 

For OME3 and OME4 the saturation density is calculated using the GC 
method of Tihic et al. [38], as well as the parametrization method 

proposed by Schappals et al. [56], refer to Fig. 12a. As expected, the 
second method leads to a better estimation of the saturation density, as it 
is designed specifically for the OME chemical family. Nevertheless, even 
with the method of Tihic et al. [38] the deviation when compared to the 
PR EoS calculations of Fechter et al. [75] is about 10% at low temper-
atures (300 K) but decreases substantially above 500 K for OME3, with 
the density predicted by the PC-SAFT model remaining consistently 
higher. 

A similar trend is observed in the results for OME4 in Fig. 12b, with 
an error of 10% at low temperatures (300 K) for the method of Tihic 
et al. [38] and a significant decrease of this error above 550 K, while the 
method of Schappals et al. [56] leads to an approximately 10 times 
smaller deviation. However, it should be noted that around the critical 
point the method of Schappals et al. [56] is no longer superior, as it 
starts to produce results with a larger discrepancy compared to the curve 
of Fechter et al. [75] produced using the PR EoS. The computational 
results of Fechter et al. [75] are in good agreement with the molecular 
dynamics simulations of Kulkarni et al. [76], but cover a much larger 
temperature range. Thus, they are considered a good benchmark for 
comparison and evaluation of the computational results obtained in this 
work. 

3.3. Vapor pressure 

Experimental data for vapor pressure of the C-1 surrogate, OME3 and 

Fig. 10. Comparison of PC-SAFT predictions for the distillation curve of the 
surrogate of C-1 against experimental data. The GC method of Tihic et al. [38] 
and the of Burgess et al. [55] were used. 

Fig. 11. Comparison of PC-SAFT predictions for the density, as a function of 
temperature at atmospheric pressure, of the surrogate of C-1 against experi-
mental data. The GC methods of Tihic et al. [38] and the of Burgess et al. [55] 
were used. 

Fig. 12. Comparison of PC-SAFT predictions for the OME3 (a) and OME4 (b) saturation density against computational results of Fechter et al. [75] (PR EoS) and the 
molecular dynamics simulations of Kulkarni et al. [76]. The GC method of Tihic et al. [38] and the parametrization of Schappals et al. [56] were used. 

Fig. 13. Comparison of PC-SAFT predictions for the vapor pressure, as a 
function of temperature, of the surrogate of C-1 against experimental mea-
surements. The GC methods of Tihic et al. [38] and of Burgess et al. [55] 
were used. 
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OME4 are compared to the results of the computational model. Like in 
the previous section, different methods for the estimation of the pure 
component parameters are employed and the corresponding maximum 
and average errors are computed. For the C-1 surrogate, the methods of 
Tihic et al. [38] and Burgess et al. [55] are used, see Fig. 13. Consistent 
with prior findings, the method of Burgess et al. [55] provides the best 
match with a maximum error of 37% while the method of Tihic et al. 
[38] produces an error of up to 57%. The average error using the method 
of Tihic et al. [38] is 46% and the minimum 33%. In contrast the 
approach of Burgess et al. [55] yields an average and minimum error of 
18% and 7%, respectively. 

For OME3 and OME4, we first perform a comparison against the 
experimental measurements reported by Fechter et al. [75], as shown in 
Fig. 14. Again, the approaches of Tihic et al. [32] and Schappals et al. 
[56] are used. The maximum error of the two methods is 25% and 13% 
for Tihic et al. and Schappals et al., respectively. However, the average 
error when using the method of Tihic et al. is 8%, while it was 10% with 
the Schappals et al. method. Since the experimental measurements are 
limited to temperatures above 490 K, a second investigation is per-
formed at a lower temperature range of 320–460 K using an extended 
Antoine fit from the work of Fechter et al. [75]. This comparison is 
presented in Fig. 15. On average, the smallest difference between the 
results reported by Fechter et al. [75] and this study, about 1%, is 
achieved by using the parametrization of Schappals et al. [56], proving 
that it constitutes the most suitable choice. 

4. Conclusion 

A series of calculations were performed for the distillation curve, 
density and vapor pressure of various fuel types, namely gasoline, diesel 
and aviation fuel surrogates with multiple levels of complexity. The 
study also includes oxygenated fuels: OME and traditional fuel blends 
with short-chain alcohols. An extensive validation of the thermody-
namic model’s results was performed by comparing them against the 
experimental and computational data published elsewhere. The PC- 
SAFT pure component parameters were calculated using the GC 
method proposed by Tihic et al. [32], while in some cases the ap-
proaches of Burgess et al. [55] and of Schappals et al. [56] were also 
applied to increase the precision of the results. Overall, there is good 
agreement between the computational results of the developed model 
and the data reported in the literature. For the E00 gasoline surrogate, as 
well as its blends with ethanol and methanol, the results are found to be 
satisfactory, only with minor deviations at the initial boiling point. The 
same is true for the PACE surrogates. The diesel/alcohol mixture pre-
dictions are not as good, which can be mainly attributed to the modeling 
of the diesel fuel through the V0b surrogate. The evaporation process of 
the alcohol in the mixture is predicted successfully in all cases and the 
results exhibit the same order of precision as the computational data 
presented by Hernández et al. [72]. In the case of the surrogate for C-1, 
we conclude that the use of a more advanced GC method published by 
Burgess et al. [55] can improve the precision of the predicted density 

Fig. 14. Comparison of PC-SAFT predictions for the vapor pressure, as a function of temperature, of OME3 and OME4 against experimental measurements by Fechter 
et al. [75]. The GC method of Tihic et al. [38] and the parametrization of Schappals et al. [56] were used. 

Fig. 15. Comparison of PC-SAFT predictions for the vapor pressure, as a function of temperature, of OME3 and OME4 against extended Antoine fits by Fechter et al. 
[75]. The GC method of Tihic et al. [38] and the parametrization of Schappals et al. [56] were used. 

E. Geber et al.                                                                                                                                                                                                                                   



Fluid Phase Equilibria 574 (2023) 113888

12

and vapor pressure by up to three times. The use of Schappals et al. [56] 
parametrization method can also significantly improve the predictions 
of the model for the OME fuels. These conclusions are expected to some 
extent, since these above-mentioned models are developed to address 
flaws of older methodologies and deal with specific fuel types. The re-
sults and comparisons presented, demonstrate the predictive capabilities 
and the generic nature of the developed model, as it has been proven 
capable of dealing with a large variety of fuel types, while relying only 
on the chemical composition of each component as input for all 
computations. 
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Appendix  

Table 4 
Individual component PC-SAFT input parameters estimated with the method of Tihic et al. [32].  

Compound m σ ε/k kAB εAB/k 

n-pentane 2.69 3.77 231.20   
isooctane 3.14 4.09 249.77   
n-undecane 4.91 3.89 248.82   
Isopentane 2.56 3.83 230.75   
Cyclopentane 2.36 3.71 265.83   
Hexene 2.98 3.77 236.81   
Toluene 2.81 3.72 285.69   
heptane 3.48 3.80 238.40   
octadecane 7.44 3.95 254.90   
pentamethyl heptane 3.88 4.25 273.72   
heptamethyl nonane 5.60 4.16 266.46   
1-methylnaphthalene 3.42 3.90 338.79   
Tetralin 3.09 3.99 337.46   
1,2,4-trimethylbenzene 3.61 3.75 284.25   
OME3 5.85 3.01 220.84   
OME4 7.08 2.98 221.75   
methanol 1.52 3.23 188.90 0.035 2899.50 
ethanol 2.38 3.18 198.24 0.032 2653.40 
propanol 3.00 3.25 233.4 0.015 2276.80 
butanol 2.75 3.61 259.59 0.007 2544.60 
pentanol 3.63 3.45 247.28 0.010 2252.10  

Table 5 
Individual component PC-SAFT input parameters estimated with the method of Burgess et al. [55].  

Compound m σ ε/k 

pentamethyl heptane 5.25 3.86 224.88 
heptamethyl nonane 7.14 3.85 227.96  

Table 6 
Individual component PC-SAFT input parameters estimated by the method of Schappals et al. [56].  

Compound m σ ε/k 

OME3 4.05 3.55 260 
OME4 4.83 3.55 260  
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