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Cortés, M. Á., Santoro, A. & Omodei, E. (2024), ‘A 72h exploration of the

co-evolution of food insecurity and international migration’, arXiv preprint

arXiv:2407.03117.

xiv



Working papers

• Pires, D. L., Castagno, P., Mancuso, V. & Ajmone Marsan, M., ‘Self-

organisation of common good usage and an application to Internet services’,

submitted to PNAS.

• Pires, D. L. & Broom, M., ‘Multiplayer social dilemmas in completely mixed

populations and networks of mixing communities’, in prep.

• Pires, D.L. & Hanel R., ‘Skill transmission dynamics and the emergence of

new skills’, in prep.

xv



Abstract

The self-organisation of social behaviour is observed across populations of varying

complexity. Evolutionary game theory models such systems by describing interac-

tions between individuals as evolutionary games. This thesis leverages a wide range

of tools from evolutionary game theory to develop models of population dynamics

and advance our understanding of the evolution of social behaviour, spanning from

simple to complex social interactions and their applications.

We start by analysing fixation processes on finite, well-mixed populations. We

show that new strategies have higher probability of fixation in larger populations

for half of all pairwise games, including the widely studied Prisoner’s Dilemma,

Hawk-Dove and Stag Hunt games.

Next, we consider multiplayer social dilemmas on networks to examine the evo-

lution of cooperation under various assumptions about population structure and

individual mobility. We find that limited movement leading to community organi-

sation strongly promotes the evolution of cooperation in public goods dilemmas. In

particular, large networks of small communities prove highly effective. Comparisons

with completely mixed populations show that increased community mixing often

hampers cooperation. We also observe the robust co-evolution of cooperation and

high-mobility strategies under conditional movement. In regular networks, cooper-

ators are able to find each other while evading defectors for extended periods.

These two mechanisms for the evolution of cooperation differ fundamentally:

community structure relies on the viscosity of the evolutionary process on the net-

work, whereas conditional movement depends on the evolution of mobile assortative

behaviour. This distinction is supported by a detailed analysis of six different evo-

lutionary dynamics.

Further, we develop two new dynamic models for infinite populations, adapting

evolutionary game theory concepts to study other systems. The first examines the

xvi



Win-Stay, Lose-Shift strategy in common goods usage. We propose its implementa-

tion by mobile users accessing Internet services, supported by its good performance

in realistic stochastic simulations. This theory extends to the distribution over graz-

ing and foraging land and may be used to propose solutions to operators of public

transport or alternative technological common goods. The second model explores

productive interaction and the transmission-selection of skills. Advances in eco-

nomic complexity and evolutionary economic geography show us the impact of a

skilled workforce on industrial development and its geographic organisation. We use

this as motivation to study the evolution and co-existence skills and their synergistic

production within social systems.

Keywords: evolutionary game theory, social dilemmas, cooperation, population

structure, movement
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Chapter 1

Introduction

The self-organisation of social behaviour is observed across populations of all levels

of complexity, from microorganisms to human societies. Due to its pervasiveness

in all its diverse forms in both social and biological systems, understanding its evo-

lutionary origins is crucial. Evolutionary game theory has been instrumental in

this area, leading to the development of mathematical and computational models,

as well as experiments, that shed a light on the evolutionary origins of social be-

haviour. Although originally developed to model the natural selection of genetically

determined traits and behaviour, it has been adapted and extensively employed to

study cultural evolution, helping us understand the emergence and spread of be-

haviour within social systems. Evolutionary game theory has thus been applied

to explain the evolution of cooperative behaviour, signalling systems and language,

coordinated action, territoriality, reciprocal altruism, social norms, and more.

This thesis leverages these developments to advance theories on the evolution

of social behaviour, spanning from simple to complex social interactions. In this

context, complexity emerges from the interplay between different dimensions of so-

cial behaviour, such as cooperation under social dilemmas, multiplayer interactions,

community and network structure, and individual mobility. In this introductory

chapter, we begin by presenting an introduction to evolutionary game theory along

with the basics of the most impactful and relevant models to the work developed in

this thesis. We will introduce social dilemmas, both in pairwise interactions and in

groups, describing the decisions individuals often face between socially and individu-

ally advantageous actions, which can be framed as a choice between cooperation and

defection. There are several mechanisms that explain why cooperative behaviour is
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adopted by individuals and we set out some of the ways in which these have been

modelled. Moreover, we introduce recent advances in evolutionary game theory in

the context of structured and mobile populations, which will be used in the following

chapters. Finally, we will outline the work done in the remaining chapters of this

thesis.

1.1 Evolutionary game theory

1.1.1 Introduction to game theory

Game theory provides a framework to study decision making in the context of strate-

gic interactions. Strategic interactions are those where the outcome of the decisions

of one individual depends not only on their own decisions, but also on those of others.

These settings can be formalised as a game. This theory was originally developed

by John von Neumann, whose first publication on the topic goes as far back as von

Neumann (1928) with the translated title from German as “On the theory of games

of strategy”. His work on the development of game theory eventually led him to

co-author with Oskar Morgenstern their acclaimed book on the “Theory of Games

and Economic Behavior” (von Neumann & Morgenstern 1944).

In game theory, a game is defined by the players partaking in the interactions.

In other words, those whose decisions may affect the outcome experienced by others.

Secondly, each player has a set of actions available to them every time they have to

make a decision in a game. A strategy for a game is defined as a complete contingent

plan determining which action to take at every decision point. If a player chooses

one of the strategies available in their strategy space deterministically, we call that a

pure strategy. If they choose it following a defined probability distribution, we call it

a mixed strategy. Finally, each combination of strategies of all involved players will

have an outcome, which can be quantified by the payoff received by each player.

We consider games with a finite number of players, each with a finite number of

pure strategies available to them, and that they make their decisions simultaneously.

In these cases, the game can be directly represented in its normal form. In the

particular case of a 2-player game, typically referred to as pairwise game, the normal

form representation corresponds to a payoff matrix, leading to the coining of such

games as matrix games.

Moreover, if all players have the same strategy space, and the payoffs received
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depend only on the strategies used and not on who is using them, we may call this a

symmetric game. In this thesis, we will mainly focus on such games, both pairwise

and multiplayer (more than 2) symmetric games. For now, let us consider the payoff

matrix M of a general 2× 2 symmetric game:

A B

A a b

B c d

Table 1.1: Payoff matrix of a 2× 2 symmetric game.

We call A and B the strategies at their disposal. After each encounter, the focal

individual receives a payoff defined by this payoff matrix. Individuals using A receive

a and b respectively against individuals using A and B; while individuals using B

receive c and d respectively against individuals using A and B.

In this context, we define a mixed strategy as p = [p1, 1 − p1], where p1 is the

the probability of choosing pure strategy A, and 1 − p1 the probability of choosing

strategy B. The expected payoff received by a player using strategy p against a

player using strategy q = [q1, 1− q1] can be calculated as E[p,q] = pMqT.

Classical game theory provides tools to analyse such strategic settings, usually

under the assumption that all individuals behave rationally. The most impactful of

such concepts is that of a Nash equilibrium, originally proposed by John Nash in Nash

(1951). The Nash equilibrium is defined as a strategy profile, i.e. a combination of

strategies of different individuals, which are mutually best responses to each other.

In other words, if all individuals are choosing their respective strategy from that

strategy profile, then none of them has an incentive to deviate from it.

This concept has been key in the context of economics and political sciences,

where the assumption of rationality may be valid. However, this assumption makes it

limited not only in its application to such disciplines, but especially in its application

to the study of complex social behaviour in social and biological sciences, where a

large number of individuals and a spectrum of cognitive and rational capacities are

present. Evolutionary game theory has proved to be useful to approach such settings.
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1.1.2 Evolutionary game theory and evolutionarily stable strategies

Evolutionary game theory proposes an extension of some of the essential aspects

that define a game to study the evolution of behaviour in populations. In this

context, instead of a theory or rational decision-making in strategic environments,

we consider a population of individuals who are not necessarily rational. Similarly

to classical game theory, when individuals in this population interact, the resulting

strategy profile leads to an outcome with payoffs for all individuals involved in the

game. Each individual has an associated strategy, which might not be the result

of their conscious choice. This theory was originally developed in the context of

evolutionary biology, where strategies are often referred to as types. These are

typically referred to as evolutionary games, simply meaning that they are symmetric,

i.e. the outcomes depend only on the strategies used and not on the particular set

of individuals picked to play. For a given composition of the population the fitness

of an individual is supposed to be the average payoff received in their interactions

in the population. Based on the ideas of natural selection, fitter strategies would be

selected and therefore evolve in the population.

In 1973, John Maynard Smith and George Robert Price published their pio-

neering work on evolutionary game theory (Maynard Smith & Price 1973), where

they introduced this setup and the concept of an evolutionarily stable strategy (ESS)

as one which when adopted by a population resists invasion by any other possible

strategy. This formalised evolutionary games, inspired by the solution concept of

unbeatable strategy as introduced by Hamilton (1967) for the evolution of the sex ra-

tio. Shortly after that, the concept of ESS was further developed by Maynard Smith

(1974), and eventually led to the publication of the book “Evolution and the Theory

of Games” (Maynard Smith 1982), which was key in establishing evolutionary game

theory as a powerful tool to study the evolution of behaviour.

In symmetric matrix games, a mixed strategy p is said to be an ESS if and only

if, for all possible q ̸= p, we have:

1. E[p,p] ≥ E[q,p], and

2. If E[p,p] = E[q,p], then E[p,q] > E[q,q].

In such games, condition 1 is equivalent to the Nash equilibrium condition. However,

condition 2 adds an extra restriction, thus meaning that not all Nash equilibria of
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symmetric matrix games played by populations are necessarily ESSs. Conditions 1

and 2 are thus respectively referred to as the equilibrium and stability conditions of

a strategy.

The concept of an ESS has been extensively employed to understand the stability

of a spectrum of social behaviour by considering evolutionary games as described

above. This includes the study of aggressive territorial behaviour (Maynard Smith

& Price 1973, Maynard Smith 1974, 1982, Broom & Rychtář 2013), coordination

of social norms (Skyrms 2004, 1996) signalling and language (Maynard Smith 1991,

Maynard Smith & Harper 2003, Skyrms 2010), and, the one most relevant to us,

cooperation (Axelrod & Hamilton 1981, Axelrod 1984, Poundstone 1992).

Moreover, there are contexts where the concept of ESS can be useful, even though

individuals do not hold direct pairwise interactions. Alternatively, these are some-

times modelled as individuals playing the field games (Broom & Rychtář 2013), in

which case the fitness of an individual depends both on their strategy and (non-

linearly) on the field strategy, i.e. the aggregation of all strategies played by the

population. This is useful when thinking about the evolution of the sex ratio, and

is present in the original solution proposed by Hamilton (1967), which was key to

the later development of the ESS. In this case, it was shown that the sex ratio 1 : 1

is an ESS of the system.

Another context where these alternative games are important was in understand-

ing food competition in territorial patches. The ideal free distribution (IFD) theory,

originally developed by Fretwell & Lucas (1969) in the context of animal territorial

behaviour, predicts that individuals will distribute themselves across different re-

source patches to maximise their own benefit, assuming perfect knowledge and no

movement costs. As a result, individuals spread in a way that equalises availability

or quality across all used resources. The fact that the IFD strategy constitutes an

ESS was later proven by Cressman & Křivan (2006) considering a playing the field

game.

Even though the concept of an ESS proved to be useful, it reflected only a static

analysis of the stability of strategies in these evolutionary systems. As such, it does

not provide information as to whether the system would dynamically evolve to such

states or not.
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1.1.3 Replicator equation and population dynamics

The first model to describe the population dynamics of evolutionary games was

the replicator equation (Taylor & Jonker 1978, Hofbauer & Sigmund 1998). The

replicator equation defines changes in the frequency xi of each strategy i in the

population as follows:
dxi
dt

= xi
(
Fi − F̄

)
, (1.1)

where Fi is the fitness of strategy i and F̄ is the average fitness of the population.

This set of equations tracks the composition of the population and its dynamical

change over time. Any strategy with a fitness higher than the average fitness of the

population will tend to increase its frequency, whereas any strategy with a fitness

below the average will decrease its frequency. From the point of view of natural

selection, this is a direct outcome of the definition of fitness as reproductive success.

It was originally shown by Taylor & Jonker (1978) that if a given strategy is

an ESS, then it is necessarily an equilibrium state of the replicator equation which

is strictly stable. Furthermore, Zeeman (1980) shows that all ESSs are attractors

of the replicator dynamics, thus meaning that they have a set of initial population

composition that will converge to it. The stability properties of the equation have

been analysed in Bomze (1986) and Cressman (1990), and later summarized in

Hofbauer & Sigmund (1998).

Other sets of differential equations have been proposed with the aim of describing

alternative dynamics of how the frequency of strategies may change in a population.

The replicator-mutator equation was introduced by Page & Nowak (2002) incorpo-

rating the effect of mutations onto the replicator equation. In an attempt to describe

cultural evolution, the imitation dynamics were developed in Helbing (1992), under

which individuals selectively adopt the strategies of those with whom they meet.

Moreover, Matsui (1992) introduces the best response dynamics, under which indi-

viduals adopt the rational best response to the strategies played in the population.

Similarly, in chapter 7, we will develop an alternative population dynamics model

of interactions between skills and their transmission-selection. In that model, we will

combine aspects of evolutionary games and the replicator equation with aspects of

epidemiological modelling.
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1.1.4 Evolutionary games on finite populations

The conceptualisation of evolutionary dynamics of different behavioural types in

populations was later extended to finite populations. This was done resorting to the

(fixed fitness) Moran process introduced in Moran (1958). This stochastic process

describes the evolution of a population of size N where there is competition between

two alleles A and B with respective fitness r and 1. At each time step one of the

individuals of the population is randomly chosen to reproduce proportional to their

fitness and another one is uniformly at random chosen to die.

This process was extended in Nowak et al. (2004) by incorporating frequency-

dependent fitness into the original birth-death process, thus allowing for the study

of evolutionary games on finite populations. This model is often referred to as the

frequency-dependent Moran process (Nowak et al. 2004, Taylor et al. 2004), which

we will define in detail in chapter 2. In contrast to the replicator equation, the Moran

process with frequency-dependent fitness did not assume populations to be infinite

nor that selection acted deterministically. However, it still proved to be extensively

mathematically tractable and permitted the incorporation of new features of real

populations which could be later simulated through agent-based models.

These models introduced a new concept of evolutionary stability. An evolution-

arily stable strategy in a finite population of size N (ESSN ) is defined as a strategy

which when adopted by a population of that size, selection opposes the invasion

and fixation by any other strategy (Schaffer 1988, Nowak et al. 2004). These two

requirements respectively provide equilibrium and stability conditions of a given

strategy (Broom & Rychtář 2013). Let us think of a strategy A. Selection is said

to oppose invasion when no single mutant B holds a higher fitness than the resi-

dents of an otherwise pure population using strategy A. Selection is said to oppose

fixation when no single mutant using strategy B is able to fixate in the population

with a fixation probability, denoted ρB, larger than the one obtained under neutral

selection, denoted ρneutral = 1/N (see Taylor et al. (2004)).

Similarly to the limitations of the original ESS, simply concluding that a strategy

A is stable, i.e. ρB < ρneutral for all alternative strategies B, is not enough to

determine whether it will evolve. Here we use the definition that a strategy A

evolves if ρA > ρneutral > ρB for all alternative strategies B. This originates in the

following classification of evolutionary outcomes for games with 2 strategies A and
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B inspired from (Taylor et al. 2004):

• Selection favours A if ρA > ρneutral > ρB;

• Selection favours B if ρB > ρneutral > ρA;

• Selection favours instability if ρA > ρneutral and ρB > ρneutral;

• Selection favours bi-stability if ρA < ρneutral and ρB < ρneutral.

As the definition of an ESSN suggests, the stability of a strategy depends not

only on the game played but on the population size as well (Taylor et al. 2004).

It was also shown that of the 16 possible combinations of selection favouring or

opposing the invasion and fixation of strategists B by strategists A and vice-versa,

only 8 of those are possible evolutionary scenarios under the frequency-dependent

Moran process (Taylor et al. 2004). For strong selection, however, the evolutionary

outcomes were shown to correspond to the classical infinite population ones, first

under the frequency-dependent Moran process (Della Rossa et al. 2017), and then

under general fitness mappings (Huang et al. 2018).

Meanwhile, the literature on evolutionary games on finite populations grew sub-

stantially. This literature often focused on analysing fixation probabilities, given

their role on determining the evolutionary outcome of a system. Therefore, study-

ing fixation probabilities and their relation with other aspects of populations and

games became important to understand the evolution of social behaviour.

As such, fixation probabilities have been studied as functions of the initial num-

ber of mutants (de Souza et al. 2019), and it has been proved that each of the

8 possible evolutionary scenarios has associated to it one (and only one) of three

function shapes. In (Traulsen et al. 2006, 2007), they were studied in relation to

the initial number of mutants and intensity of selection under the pairwise compar-

ison process. They have also been extensively studied in the context of structured

populations (Broom et al. 2010, Hadjichrysanthou et al. 2011).

Fixation probabilities describe the likelihood of changing from one pure state

to another after one mutation occurs, conditional on mutations being rare enough.

Following (Fudenberg et al. 2006), under games with two or more strategies they can

be used to construct a simplified Markov chain between pure states, and allow the

computation of the long-term stationary distribution over them (Hauert et al. 2007,

Van Segbroeck et al. 2009, Santos et al. 2011, Wagner 2020). The validity of these
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approximations under rare mutations has been analysed analytically in Wu et al.

(2012) and through comparison with simulations (Hauert et al. 2007, Van Segbroeck

et al. 2009). The concerns raised over the existence of mixed stable states leading to

quasi-stationary distributions (Nasell 1999b,a, Zhou et al. 2010) have been tackled

in this context by considering higher-order approximations including those states as

configurations of interest (Vasconcelos et al. 2017).

The dependence of fixation probabilities on population size has been analysed,

for instance through the calculation of their asymptotic limits. This was initially

done by Antal & Scheuring (2006), who obtained quantitative limits for some cases,

but only qualitative ones in others, whose error was later estimated by de Souza

et al. (2019). These results were later expanded for two different limit orders of

weak selection by Sample & Allen (2017), who also corrected some borderline cases

under arbitrary values of intensity of selection.

In chapter 2, we further develop the understanding of the relation between fixa-

tion probabilities and population size for symmetric pairwise games, by providing a

systematic analysis of the different effects that can be observed in all possible games.

This chapter is based on the work published in Pires & Broom (2022).

1.2 Evolution of cooperation

Social individuals regularly face situations of conflict of interests. Some of these

situations are described as social dilemmas when there is a conflict between the

individual and the social interests. This is often framed as a choice one has to

make between defection and cooperation. A classic example of this is offered by the

use of pairwise Prisoner’s Dilemma. A later formulation of the dilemma, called the

donation game proposed that players may choose to cooperate and thus pay a cost K

to give a reward V to the other player, whereas defectors do not. Other formulations

of the donation game use parameters b and c for the reward and cost, respectively.

However, we will use V and K for consistency with the multiplayer social dilemmas

introduced later in this chapter. This game would lead to the following 2× 2 payoff

matrix:
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C D

C V −K −K

D V 0

Table 1.2: Payoff matrix of the 2× 2 donation game.

The justifiable assumption that V > K > 0 leads to the ordering of payoffs which

characterises the Prisoner’s Dilemma: V > V −K > 0 > −K. In each interaction,

individuals benefit from defecting regardless of who their opponent is (V > V −K

and 0 > −K), making defection not only an ESS, but a dominant strategy of the

game, i.e. a strategy that always provides a player with the highest payoff, regardless

of what the other player does. However, all individuals do better in a population of

cooperators than in a population of defectors (V −K > 0). This encapsulates the

conflict between individual and social interest.

Several mechanisms have been proposed in order to explain the evolution of coop-

eration, five of which are summarised in Nowak (2006) and succinctly described here.

1. Kin selection is based on the idea that genetic relatedness among individuals links

the evolutionary fate of cooperators, allowing them to derive an indirect evolution-

ary benefit from the success of their relatives. 2. Direct reciprocity suggests that

individuals may condition their behaviour on past interactions, cooperating with

those who have cooperated before. 3. Indirect reciprocity extends this principle

by incorporating reputation: an individual’s behaviour, as observed by third par-

ties, influences how others interact with them. 4. Network reciprocity posits that

structured interactions create clusters of cooperators who reinforce one another’s

success, making cooperation more viable. 5. Group selection proposes that compe-

tition between groups, rather than just between individuals, can favour cooperation

if cooperative groups outperform others.

Since then, the literature on the evolution of cooperation has expanded signifi-

cantly, leading to a deeper understanding of these mechanisms and their interplay.

In the next two sections, we focus on two of these mechanisms and how they have

been modelled.

1.2.1 Iterated games and conditional strategies

Direct reciprocity was originally proposed by Trivers (1971) as a mechanism to ex-

plain altruism between unrelated individuals. In theory, this mechanism would allow
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individuals to reciprocate altruistic actions when they face repeated encounters. In

this context, we will depart from the simultaneous one-move games we have consid-

ered so far under which cooperation is not evolutionarily stable, and enter the realm

of iterated games. In such games, individuals may act conditionally based on the

information they have on the actions of others.

The iterated Prisoner’s Dilemma was popularised by Robert Axelrod in his book

on “The evolution of cooperation” (Axelrod 1984), where he expanded on the work

done together with William D. Hamilton in Axelrod & Hamilton (1981). In their

work, they ran two series of tournaments where conditional strategies for the iterated

Prisoner’s Dilemma were tested against each other. The Tit-for-tat is a remarkably

simple strategy, where individuals always start a new interaction by choosing coop-

eration, and then simply repeat the last action of the other individual, i.e. cooperate

if the other cooperated, and defect if the other defected. This strategy won both

tournaments, thus proving itself to be robust. Additionally, it was proved that it

is an ESS of the iterated Prisoner’s Dilemma. Its success was attributed to three

factors: its willingness to cooperate, its retaliation against defection, while being

quickly forgiving after a single retaliation.

In later work, tit-for-tat was shown to perform less well when facing errors in

noisy repeated games, due to the successive series of retaliations that one single

error would lead to in a repeated encounter (Fundenberg & Maskin 1990). This

led to the proposition of variations of the original strategy, such as the generous

tit-for-tat, under which the individuals still cooperated with a small probability if

their opponent defected (Nowak & Sigmund 1992).

However, another strategy introduced as Pavlov (Kraines & Kraines 1989) and

eventually renamed Win-Stay Lose-Shift (WSLS) was soon after shown to overthrow

tit-for-tat and its variations (Nowak & Sigmund 1993, Kraines & Kraines 2000). In

this strategy, individuals use the same action if they have had a successful payoff, or

shift to an alternative option if it was unsuccessful. Successful payoffs are received

every time the other individual cooperates and unsuccessful ones every time the

other individual defects. The WSLS strategy corrects occasional mistakes much

more quickly than tit-for-tat and it is able to exploit unconditional cooperators,

thus explaining its general success. Nonetheless, similarly to tit-for-tat, the WSLS

strategy only requires the knowledge of the previous immediate outcome.

As such, the simple principle behind this strategy is much more general than
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the application to iterated games elaborated here. Its origins can be traced back

to the original ideas of Robbins (Robbins 1952) which motivated the development

of multi-armed bandit methods. These are algorithms that balance exploration and

exploitation to optimise decision-making in uncertain environments by adaptively

selecting actions based on observed rewards. Moreover, the principle is also present

in iterated interactions under which individuals have the possibility to move, where

walking away from defectors leads to the success of cooperation (Aktipis 2004). In

chapter 5, we make use of this principle to study the co-evolution of conditional

movement and cooperation in a spatial social dilemma. Finally, in chapter 6, we

extend this principle to the choice and usage of common goods when there are

multiple available options and study the resulting dynamics.

1.2.2 Evolutionary games on graphs

Another assumption that was previously used when concluding that defection is

an ESS of the Prisoner’s Dilemma was that the population was well-mixed, i.e.

everyone interacts with the same frequency with everyone else in the population

and individual fitness is thus calculated from an arithmetic average of the payoffs

obtained. This assumption is often used within evolutionary game theory. How-

ever, real populations are often observed to be structured in the sense that the

interactions between individuals are not random and distinct connections may form

(Amaral et al. 2000, Dorogovtsev & Mendes 2003, Proulx et al. 2005, May 2006).

At the same time, this feature has long been known to affect the outcome of evolu-

tionary processes (Kimura & Weiss 1964, Levins 1969, Nowak & May 1992). As a

consequence, structure was incorporated into evolutionary models of finite popula-

tions by considering individuals, originally with fixed fitness, to be represented by

nodes of an evolutionary graph (Lieberman et al. 2005). This framework, coined as

evolutionary graph theory, adapted the previous birth-death process to structured

populations by choosing an individual from the population to reproduce randomly

proportional to their fitness and, thereafter, choosing uniformly at random one of

their neighbours to die and be replaced by the offspring of the first.

This framework was soon after adapted considering evolutionary games on graphs.

In this case, the graph also represents a social interaction network, which determines

which individuals interact with each other. Therefore, the fitness of individuals on

the graph is obtained through an average of the payoffs they get playing pairwise
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games with their neighbours. Population structure was found to sustain the evolu-

tion of cooperation in large regular graphs when the benefit-to-cost ratio of coop-

eration (V/K) exceeds the number of neighbours of each individual (Ohtsuki et al.

2006). This success was associated with the viscosity of the evolutionary process

on the graph, i.e. the fact that individuals transmit their behaviour locally to their

neighbours. This makes cooperators to be more often surrounded by cooperators in

comparison to defectors, giving them an evolutionary advantage. The simplicity of

the rule consolidated population structure as one fundamental mechanism for the

evolution of cooperation (Nowak 2006).

However, the positive result wasn’t obtained for the birth-death process described

before, but for the alternative death-birth process. In the death-birth process, one

individual from the population is uniformly at random chosen to die, and one of

their neighbours is randomly chosen proportional to their fitness to reproduce and

replace the first with their offspring. This was one of the first instances where the

chosen evolutionary dynamics was observed to affect the qualitative results obtained

under evolutionary games. Nonetheless, the qualitative differences have been shown

to vanish under a generalisation of the dynamics (Zukewich et al. 2013).

Since then, some topological features of social interaction networks have been

shown to have a strong positive impact on the evolution of cooperation in the pair-

wise Prisoner’s Dilemma. These included low average degree (Ohtsuki et al. 2006),

scale-free properties (Santos & Pacheco 2005, Santos, Rodrigues & Pacheco 2006),

particularly with high clustering (Assenza et al. 2008), high degree heterogeneity

(Santos, Pacheco & Lenaerts 2006), and strong pair ties (Allen et al. 2017). How-

ever, the extension of these population structure models to multiplayer interactions

is not trivial and considering only lower-order networks with dyadic interactions is

often insufficient to represent them (Perc et al. 2013). In this thesis, we will focus

on a framework of multiplayer social dilemmas on networks, which will be used to

develop the work of chapters 3, 4, and 5.

1.3 Multiplayer social dilemmas on networks

1.3.1 Multiplayer social dilemmas

Many collective action problems that individuals face require accounting for multi-

player interactions (Hamburger 1973, Fox & Guyer 1978, Pacheco et al. 2009, Souza
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et al. 2009, Santos et al. 2015, Broom et al. 2019). Similarly to pairwise social

dilemmas, multiplayer social dilemmas can be characterised by the conflict between

choosing cooperation as a socially optimal strategy and defection as an individually

optimal strategy (Broom et al. 2019). As defined before, symmetric games are those

under which the outcomes depend only on the used strategies and not on the set of

individuals playing the game. Therefore, under symmetric multiplayer social dilem-

mas with two strategies, the payoff received by a given player depends only on their

strategy and on the number of other cooperators and defectors in their group. A

panoply of these dilemmas has been previously considered in the literature, some of

which are categorised by Broom et al. (2019). We present those dilemmas in chapter

3, where we first study them, and a subset of them is further explored in chapters 4

and 5. An alternative social dilemma is then introduced in chapter 6.

Public goods dilemmas are defined as those under which cooperation involves

the production of a reward V at an individual cost K, which is then consumed by

individuals within the group. These dilemmas have wide variations in the litera-

ture, namely to which extent the public goods are non-rivalrous or non-excludable,

whether costs are shared or independent, and even the shape of the production

function. On the other hand, commons dilemmas typically represent scenarios with

pre-existing resources, where cooperation can involve the sustainable consumption

of the resource V and defection involves an aggressive attempt to monopolise them

with cost K. A different dilemma relating to common goods is introduced in chapter

6, where instead of choosing between shared or monopolised consumption, individ-

uals choose which of a selection of available common goods they will use. This will

lead to a setting equivalent to the one studied in the IFD mentioned before.

However, considering structured populations interacting in the simplest two-

strategy symmetric multiplayer social dilemmas may be done in several different

ways. In the first accounts of evolutionary multiplayer games on networks, each

individual in an evolutionary graph is determined to interact in a group with all

their neighbours simultaneously, as well as to partake in the groups assembling

in their neighbours (Santos et al. 2008). This means that there is a higher-order

interaction network emerging from the underlying evolutionary graph, whose topo-

logical features may not be fully clear based on the simple understanding of the

original graph. It thus became necessary to develop a more transparent way to de-

scribe higher-order interactions in structured populations interacting via multiplayer
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games. This followed the general trend observed not only in evolutionary games,

but in other dynamical processes, such as diffusion, synchronization, spreading, and

social dynamics, as reviewed in Battiston et al. (2020).

Alternative formulations to multiplayer games on networks have since been de-

veloped. Evolutionary set theory originally proposed that each individual may be

part of several interaction sets which can change dynamically (Tarnita et al. 2009).

In parallel, higher-order interactions have been represented by bipartite graphs with

a set of nodes for the individuals and another set of nodes denoting potentially

interacting groups (Gómez-Gardeñes, Romance, Criado, Vilone & Sánchez 2011,

Gómez-Gardeñes, Vilone & Sánchez 2011, Peña & Rochat 2012). These have shown

that accounting for interacting groups in a different way may lead to fundamentally

different results, even when the corresponding evolutionary graph is the same, as it

is summarised in Perc et al. (2013). More recently, evolutionary dynamics on hyper-

graphs have been proposed, where each hyperlink represents an interacting group

and selection occurs within them (Alvarez-Rodriguez et al. 2021). Models of hyper-

graphs have since been use to explain radical behaviour in group decision processes

(Civilini et al. 2021), as well as explosive cooperation in multiplayer versions of the

prisoner’s dilemma (Civilini et al. 2024). See Majhi et al. (2022) for a recent more

general review of dynamics on higher-order networks. In this work we will focus on

the general and flexible framework introduced in Broom & Rychtář (2012), where

higher-order interactions in the form of multiplayer games emerge from encounters

of individuals on networks.

1.3.2 The Broom-Rychtář framework

In this thesis, particularly in chapters 3 to 5, we will extensively use the framework

introduced in its general form in Broom & Rychtář (2012), which offered a math-

ematically tractable approach to address multiplayer social dilemmas on networks.

A population of individuals is considered to be distributed over a spatial network.

Individuals may follow a given movement model. Interacting groups of individuals

emerge from their simultaneous presence on the same node of the network. Evo-

lutionary dynamics such as the original birth-death, death-birth or link dynamics

(Masuda 2009, Pattni et al. 2017), are adapted to operate under the classical as-

sumption from evolutionary pairwise games on graphs that two individuals replace

each other depending on the frequency of their interactions, in this case within the
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same group. This way, the evolutionary graph emerges from the observed interac-

tions of individuals, and not the other way around, providing a more transparent

framework to describe higher-order interactions.

In the original paper where the framework is proposed (Broom & Rychtář 2012),

movement models are described as history-independent if the population distribution

is independent of the history of the movement process, and as row-independent if

the players move independently of each other. Various movement models have been

explored so far under this framework, an overview of which is provided in Broom

et al. (2021). These have included completely independent movement (Broom &

Rychtář 2012, Bruni et al. 2014, Broom et al. 2015, Pattni et al. 2017, Schimit et al.

2019, 2022, Pires & Broom 2024), movement contingent on previous interactions

(history-dependent) (Pattni et al. 2018, Erovenko et al. 2019, Pires et al. 2023,

Erovenko & Broom 2024), and coordinated movement between individuals (row-

dependent) (Broom et al. 2020, Haq et al. 2024).

The territorial raider model was originally proposed as a model of completely

independent movement (Broom & Rychtář 2012, Bruni et al. 2014). This model

is adapted in Broom et al. (2015) to describe the local independent movement of

individuals around their home nodes, governed by one single parameter, the individ-

uals’ home fidelity (h). In the meantime, the model has been used to explore small

networks (Broom et al. 2015) and intermediate-sized complex networks with diverse

structural properties (Schimit et al. 2019, 2022). Furthermore, the territorial raider

model was extended in Pattni et al. (2017) to include subpopulations of individuals

with the same home node, and therefore equivalent position distributions.

In chapter 3, we will formally introduce this model and derive the dynamics

obtained in the limit of large home fidelity (h → ∞), under which strictly defined

communities emerge. We use that limit to explore community structured networks

and show that these provide a path for the evolution of cooperation under the

general social dilemmas presented in Broom et al. (2019). The work presented in

that chapter is based on Pires & Broom (2024). In chapter 4, we explore the opposite

limit of low home fidelity (h = 1) under complete territorial networks, showing that

this reflects what is defined in Broom & Rychtář (2012) as a completely mixed

population. We further use this as a term of comparison for the results obtained

under complete, star and circle networks with mixing communities in a subset of

the general multiplayer social dilemmas previously analysed.
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Furthermore, a Markov movement model is a particular type of history-dependent

model, where the distribution of the population on the following time step depends

only on its most recent distribution (Broom & Rychtář 2012). A particular Markov

model is proposed in Pattni et al. (2018), under which individuals move conditional

on their satisfaction with their current group composition. Several results have been

achieved in this context for complete networks in Pattni et al. (2018), and in com-

parison with star and circle networks in Erovenko et al. (2019) and with random

networks in Erovenko & Broom (2024).

In chapter, 5 we will formally define this model and expand these results by con-

sidering a set of alternative evolutionary dynamics which were introduced in Pattni

et al. (2017) for the general framework. We show that the co-evolution of coop-

eration and assortative movement between cooperators occurs under all considered

evolutionary dynamics, with no major qualitative differences observed. The evolu-

tion of cooperation is largely determined by the topology of the spatial network and

the movement costs. This shows that this mechanism for the evolution of coopera-

tion is different to the one previously observed in static networks and independent

movement models, where the dynamics chosen are highly impactful. These results

will be analysed in comparison with such models. The work presented in this chapter

is based on Pires et al. (2023).

1.4 Outline

In this section we provide an outline of the work presented in the following chapters

of this thesis. Some of this information is mentioned throughout the introduction,

and condensed here to facilitate the task of finding it to the reader.

In chapter 2, we define the frequency-dependent Moran process and how to get

the fixation probability of a single mutant on well-mixed populations where individ-

uals play pairwise, 2-strategy games. We present fixation probabilities as functions

of population size and categorise the possible shapes they can have for each of the

24 possible orderings of the entries of the payoff matrix. We prove that in nine or-

derings these functions are monotonically decreasing, similarly to what occurs under

fixed fitness. However, in 12 orderings, which included well-known games such as the

Hawk-Dove game, the Prisoner’s Dilemma, and the Stag Hunt game, we observed

that increasing population size may lead to the increase of the fixation probability
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of a single mutant for low, high and intermediate population sizes. This establishes

that evolutionary games on finite populations reveal counter-intuitive effects for the

simplest possible models, which would be overlooked in infinite population models.

This chapter is based on the work published in Pires & Broom (2022) resulting from

joint work with Professor Mark Broom.

In chapter 3, we formally introduce the territorial raider model with commu-

nities populating each node. We will derive the dynamics obtained in the limit of

large home fidelity (h→∞), under which strictly defined communities emerge. We

introduce the general social dilemmas presented in Broom et al. (2019) and show

that community structured networks provide a path for the evolution of cooperation

under all of them. We obtain analytical rules for the evolution of cooperation under

weak selection for all these dilemmas and the six different evolutionary dynamics

adapted to this framework in Pattni et al. (2017). In particular, populations organis-

ing into larger networks of local smaller sized communities systematically facilitated

the evolution of cooperation in public goods dilemmas. The work presented in this

chapter is published in Pires & Broom (2024), which resulted from joint work with

Mark Broom.

In chapter 4, we further explore the territorial raider model, focusing on the

opposite limit of low home fidelity (h = 1) under complete territorial networks.

We argue that this scenario reflects what is defined in Broom & Rychtář (2012)

as the completely mixed population for multiplayer games. This is a particular

type of well-mixed population, since in multiplayer games, contrary to pairwise

games, being well-mixed does not specify a unique population. We further apply

the general results obtained under the completely mixed population to five of the

multiplayer social dilemmas introduced in chapter 3. We use these results as a term

of comparison for the one obtained under large home fidelity in chapter 3, and new

results obtained for complete, star and circle networks with mixing communities.

This chapter is the result of a working paper done together with Mark Broom.

In chapter 5, we formally define a Markov movement model under which indi-

viduals move contingent on their satisfaction with their current group composition.

This will then be used to assess the co-evolution of cooperation with strategic mobil-

ity under complete, circle and star networks. We show that evolution of cooperation

is largely determined by the network topology and the movement costs. Once again,

we consider six different evolutionary dynamics and show that there are no signif-
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icant qualitative differences in the evolutionary outcomes observed between them.

This is set in contrast to what is observed in other models, such as pairwise games on

static social interaction networks and the territorial model in chapters 3 and 4, where

only a subset of the dynamics allow cooperation to evolve. The work presented in

this chapter is based on the work published in Pires et al. (2023), which results from

a collaboration with Professor Igor Erovenko and Mark Broom. This collaboration

highly benefited from a secondment hosted by Igor Erovenko from February to May

2022, at the University of North Carolina in Greensboro, USA.

In chapter 6, we explore the self-organisation of common good usage and con-

sumption when individuals have to choose between several available options with

limited information. We extend the WSLS strategy introduced above to such sys-

tems: since the quality of each common good decreases with the number of current

users, WSLS allows them to use a particular common good until its usage fails or

quality falls below a threshold, at which point they shift to a different option. We

show that the dynamics derived from a population of individuals using such a simple

strategy leads to a distributed, although not optimal, equilibrium. However, hybrid

systems where some individuals can store information about their previous experi-

ence and adapt their tolerance to failure may achieve an equilibrium with equalised

quality akin to the ideal free distribution. The application of the results to the

server selection problem faced in Internet services shows the potential of adapting

game-theoretic concepts to real world problems. The usage of this strategy and the

validity of the concepts can be extended to understand other systems such as pop-

ulation distribution on grazing or foraging land or propose solutions to operators of

systems of public transport or other technological commons. The work presented

in this chapter is based on a working paper done in collaboration with Dr Paolo

Castagno, Professor Marco Ajmone Marsan, and Professor Vincenzo Mancuso. This

collaboration was initiated during a research secondment hosted by Marco Ajmone

Marsan and Vincenzo Mancuso in January and February 2024 in the Opportunistic

Architectures Lab, at the IMDEA Networks Institute in Madrid, Spain.

In chapter 7, we introduce a population dynamics model of productive interaction

between skills and their transmission, incorporating elements of both epidemic and

evolutionary game-theoretic modelling. We consider individuals to form a well-

mixed population interacting through a pairwise game, where skills are transmitted

through contact, i.e. productive interactions, with a fitness-dependent transmission
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rate. We show that skills may be individually sustainable depending on their loss

rate when they originally appear in an unskilled population and on their intra-

specific skill synergy which measures the supra-linear productive complementary

of a given skill. The evolution of a new skill against a previous skill equilibrium

is dependent on its synergistic coefficient with the average equilibrium skill. We

also derive conditions for the stable co-existence of two skills. The work presented

in this chapter is based on a working paper done in collaboration with Professor

Rudolf Hanel. This collaboration was initiated during a research secondment from

April to July 2023, hosted by Rudolf Hanel at the Complexity Science Hub and the

Medical University of Vienna, Austria.
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Chapter 2

Fixation probability functions

under general pairwise games
1

2.1 Introduction

Evolutionary games on finite populations provide new tools and concepts useful to

study the dynamics of evolution. As introduced in chapter 1, a strategy is only sta-

ble in a finite population if selection opposes the successful fixation of other mutant

strategies on it. Hence, fixation processes and, in the particular, fixation proba-

bilities became a central part of understanding the self-organisation of collective

behaviour.

In chapter 1, we review how fixation probabilities can be useful in understanding

evolutionary games on finite populations and how they have been explored so far.

Taking into consideration the central importance they gained in the context of evolu-

tionary theory, this chapter analyses them systematically as functions of population

size under the simplest 2 × 2 games. As such, in section 2.2, we start by defining

the frequency-dependent Moran process and deriving the closed-form expression of

the fixation probability of a single mutant strategy in a population playing 2 × 2

games. In section 2.3, we classify the games based on the 24 possible orderings of

their payoff matrix’ entries, starting with a summary of the function shapes analysed

in the following sections and observed under each one of the games.

In section 2.3.1, we prove that nine of the games always lead to monotonically

decreasing fixation probability functions. We tested the remaining orderings and

1This chapter is based on the work published in Pires & Broom (2022), which results from a
collaboration with Professor Mark Broom.
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concluded that three additional orderings may not have any non-monotonically de-

creasing functions. These included the fixation of 6 dominated strategies, i.e. strate-

gies that always provide a player with the lowest payoff, regardless of what the other

player does, one dominating strategy, and five strategies from coordination games.

However, increasing population size may not only change whether mutants fix-

ate below or above neutrality (Nowak et al. 2004, Taylor et al. 2004), but can

correspond to actual increases of single mutant fixation probabilities. We observed

diverse fixation functions with increasing regions under the twelve remaining or-

derings. These included all six strategies from anti-coordination games such as the

Hawk-Dove/Snowdrift game (Maynard Smith & Price 1973, Broom & Rychtář 2013,

Hauert & Doebeli 2004, Doebeli & Hauert 2005), the fixation of five dominating

strategies such as defectors in the Prisoner’s Dilemma (Axelrod 1984, Poundstone

1992), and the fixation of stag hunters in the Stag Hunt game (Skyrms 2001, 2004)

(the only exception in coordination games).

In section 2.3.2, fixation functions that increased from a global minimum to a

positive asymptotic value were explored and found to be pervasive. In some anti-

coordination games (e.g. fixation of Doves) this shape was found every time the

payoff matrix led to a positive asymptotic value. These functions seem to have

passed mostly unnoticed in the past with the exception of Broom et al. (2010),

where it was briefly noted that they could be observed under the Hawk-Dove game.

We propose that they may have been hidden by the weak selection limit (Nowak

et al. 2004, Traulsen et al. 2006, 2007, Wild & Traulsen 2007), especially if this

limit was considered to be dominant over the large population one (Sample & Allen

2017).

In section 2.3.3, we show that it should be possible to see fixation increasing for

the smallest populations N = 2 under 6 different orderings: three dominating, two

anti-coordination, and one coordination game (Stag Hunt) strategy ordering. We

find three different ways this can happen – functions might increase monotonically,

or they increase up to a global maximum and then decrease to a positive asymptotic

value or to zero.

Finally, in section 2.3.4, we explore fixation functions with two extremes: de-

creasing for small populations, increasing for intermediate population sizes, and

decreasing again for larger populations. These were observed both with positive

and zero asymptotic values. The first were observed under the fixation of two dom-
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inating strategies, and the second under anti-coordination and Stag Hunt games.

These were all observed for transitions between functions with one global extreme

and other function shapes.

2.2 Fixation probability in well-mixed populations un-

der pairwise games

Let us consider a well-mixed population of individuals who interact pairwise accord-

ing to a general 2 × 2 symmetric game, and call A and B the strategies at their

disposal. After each encounter, they receive a payoff defined by the 2 × 2 payoff

matrix introduced in table 1.1 with payoffs a, b, c, and d. We consider all payoff

matrix entries to be strictly positive.

Each individual in a well-mixed population interacts on average with the same

frequency with all others. In this context, their fitness is simply the average of

the payoffs received over the encounters they have with other individuals in the

population. Considering a population with N individuals, where i individuals are

using strategy A and N − i using B, the fitness of individuals using A and B are,

respectively, the following:

fN
i =

a(i− 1) + b(N − i)

N − 1
, (2.1)

gNi =
ci+ d(N − i− 1)

N − 1
. (2.2)

However, selection may depend on factors beyond the studied game, which on

average should represent equal contributions to each individual’s fitness, irrespec-

tive of their strategy. To account for this, we use the fitness formulation proposed

in Nowak et al. (2004), which includes a parameter representing the intensity of

selection w ∈ [0, 1]:

fN
i = 1− w + w

a(i− 1) + b(N − i)

N − 1
, (2.3)

gNi = 1− w + w
ci+ d(N − i− 1)

N − 1
. (2.4)

Changing w is equivalent to performing a transformation of the original payoff

matrix. However, as this transformation does not change the original game ordering,
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we will set w = 1 for most of our analysis (leading back to equations 2.1 and 2.2),

except when intending to study the explicit effects of intensity of selection.

Selection may act in different ways on the evolutionary process, and hence the

fitness of each individual may be considered on the first (birth) event (Nowak et al.

2004, Taylor et al. 2004), on the second (death) event (Ohtsuki et al. 2006), on simul-

taneous events (Pattni et al. 2017), or to depend exponentially on both individuals’

payoffs (Traulsen et al. 2006). Here we are focusing on the birth-death process with

selection in the birth event, which is typically described as the frequency-dependent

Moran process (Nowak et al. 2004, Taylor et al. 2004). This is a process under which

it has been suggested that cooperators perform generally worse (Ohtsuki et al. 2006,

Pattni et al. 2015) when compared to the results obtained under the others.

During each step of this process, one individual in the population gives birth

proportionally to their fitness and another one dies randomly in the population.

Taking this into consideration, for each evolutionary step, the probabilities of having

the number of individuals i using strategy A increasing by one
(
PN
i+

)
, decreasing by

one
(
PN
i−

)
, or remaining the same

(
PN
i=
)
are the following:

PN
i+ =

ifN
i

ifN
i + (N − i)gNi

N − i

N
, (2.5)

PN
i− =

(N − i)gNi
ifN

i + (N − i)gNi

i

N
, (2.6)

PN
i= = 1− PN

i+ − PN
i− . (2.7)

In the first expression above, we take the product of the probability of choosing

an individual using strategy A for birth proportional to their fitness (left) with the

probability of choosing an individual using strategy B for death uniformly (right).

In the second expression we calculate the probability of the opposite choice. Finally,

in the third expression, we consider the probability that the two individuals chosen

for birth and death use the same strategy, which is complementary to the union of

the two previous events.

All the other transitions are impossible by definition of the dynamics. This

stochastic process is defined as a Markov chain, under which there are two absorbing

states: i = 0 and i = N . If the population falls into one of these, it will stay there

for the remaining evolutionary time.

To compute the probability of one single mutant A fixating in the population,
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i.e. seeing the system transitioning from i = 1 to i = N , we have to consider a

recursive relation based on equations 2.5, 2.6 and 2.7. Following Karlin & Taylor

(1975), this relation leads to a closed-form expression for the fixation probability

ρN =
1

1 +
∑N−1

j=1

∏j
k=1 γ

N
k

, (2.8)

where γNk is defined as

γNk =
PN
k−

PN
k+

. (2.9)

Applying equations 2.5 and 2.6, the term γNk reduces to the relative fitness of

residents in a population with k mutants and N total individuals. It will prove useful

to express it as an explicit function of the number of mutants k and the population

size N when w = 1:

γNk =
gNk
fN
k

=
ck + d(N − k − 1)

a(k − 1) + b(N − k)
. (2.10)

2.3 Fixation probability functions

General 2 × 2 matrix games are often defined by the ordering of the four payoff

matrix entries from table 1.1 (see e.g. Broom & Rychtář (2013), Traulsen et al.

(2007)). Even though there are 24 possible orderings, pairs of orderings having b

and c swapped as well as a and d correspond to the same game with the definition

of strategies A and B swapped. Therefore, there are a total of 12 independent

2 × 2 games, each with a pair of complementary orderings. These pairs are shown

together in table 2.1 and delimited by horizontal lines. Strategy A in each ordering

is considered the mutant and B is considered the resident.

In infinite populations, equilibria under these games are limited to three scenarios

(Maynard Smith & Price 1973, Taylor & Jonker 1978, Hofbauer & Sigmund 1998,

Traulsen & Hauert 2009). They either have one pure evolutionarily stable strategy

(ESS), one mixed ESS, or two pure ESS. These are respectively named games of

dominance, anti-coordination, and coordination, and they relate to distinct invasion

scenarios in finite populations (Taylor et al. 2004). The correspondence between

these games and the ordering of their payoffs is set in the first two columns of table

2.1. For each pair of dominance games on the table, the first ordering corresponds

to having mutant A invading B, while the second corresponds to B invading A. All
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other pairs of complementary game orderings did not follow any particular order.

However, under finite populations, evolutionary outcomes are defined not only

by whether selection favours or opposes invasion, but also by whether it does so

with fixation (Taylor et al. 2004). In the following sections, we will explore some of

the possible ways in which fixation probabilities may depend on population size in

2× 2 games. We found that there are at least 8 shapes that single mutant fixation

probability functions ρN can take:

1. Always decreasing to a positive value (DP);

2. Always decreasing to 0 (D0);

3. Decreasing until they get to a minimum and then increasing up to a positive

value (DUP);

4. Always increasing up to a positive value (UP);

5. Increasing up to a maximum and then decreasing to a positive value (UDP);

6. Increasing up to a maximum and then decreasing to 0 (UD0);

7. Decreasing to a minimum, then increasing up to a maximum, and finally de-

creasing to a positive value (DUDP);

8. Decreasing to a minimum, then increasing up to a maximum, and finally de-

creasing to 0 (DUD0).

We observed a higher diversity of fixation functions with increasing regions

mainly under anti-coordination games (e.g. Hawk-Dove/Snowdrift game), the fix-

ation of dominating strategies (e.g. defectors in the Prisoner’s Dilemma), and the

fixation of stag hunters under the game with the same name (the only exception in

coordination games). In table 2.1, we have represented both the fixation function

shapes observed under each game, and how the analytical results reflected on them.

In section 2.3.1, we prove that some orderings always have decreasing fixation prob-

ability functions, and then explore these functions (shapes 1 and 2). In section 2.3.2,

we explore functions with one global minimum (shape 3), state these are pervasive

across dominance and anti-coordination games and suggest that these might have

been concealed by the weak selection limit. In section 2.3.3, we obtain the conditions

under which it is possible to see fixation probability functions increasing for very
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small populations and explore the functions under which this happens (shapes 4, 5

and 6). Finally, in section 2.3.4, we study the settings under which fixation prob-

abilities are seen to have two extremes – a local minimum and a local maximum

– before decreasing either to a positive value (shape 7) or to zero (shape 8) and

associate these with transitions from functions with one global extreme (minimum

or maximum) to other shapes.

2.3.1 Decreasing fixation probability functions

Under the fixed-fitness Moran process (Moran 1958), increasing the size N of a finite

population always leads to a decrease in the probability that a single mutant has of

fixating on the whole population. When frequency-dependent fitness is introduced

(Nowak et al. 2004), despite this not being necessarily true, it is still observed to

happen often. To probe the 2× 2 games under which ρN+1 > ρN is always true, we

obtain Theorems 1 and 2.

Theorem 1. If the payoff matrix entries of a 2 × 2 game satisfy b < a and c ≤ d

or b ≥ a and bc ≤ ad, then the fixation probability ρN of a single mutant using A

decreases monotonically with N .

Proof. We try to prove that ρN > ρN+1 is always true under some games. We

start by comparing the closed-form expressions for the fixation probabilities recalling

equation 2.8 and focusing on their denominators:

ρN > ρN+1 ⇔
1

1 +
∑N−1

j=1

∏j
k=1 γ

N
k

>
1

1 +
∑N

j=1

∏j
k=1 γ

N+1
k

⇔

⇔
N−1∑
j=1

j∏
k=1

γNk <
N∑
j=1

j∏
k=1

γN+1
k .

(2.11)

Isolating the extra term on the sum on the right hand-side and joining the

remaining two sums of N − 1 terms, we get the following condition:

ρN > ρN+1 ⇔
N−1∑
j=1

[
j∏

k=1

γNk −
j∏

k=1

γN+1
k

]
<

N∏
k=1

γN+1
k . (2.12)

The right hand-side product is strictly positive because all values of γN+1
k are so
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as well. Then, if the following more strict condition is fulfilled

N−1∑
j=1

[
j∏

k=1

γNk −
j∏

k=1

γN+1
k

]
≤ 0, (2.13)

we will necessarily have ρN > ρN+1.

Any payoff matrix fulfilling γNk ≤ γN+1
k ∀k = {1, ..., N − 1};N ∈ {2, 3, ...}, sat-

isfies condition 2.13. Thus, single mutant fixation probabilities in such games will

necessarily be decreasing functions of N . Under the frequency-dependent Moran

process, γNk is equivalent to the relative fitness of resident strategy B as it is seen in

equation 2.10. Therefore, γNk ≤ γN+1
k leads to the following condition in that case:

ck + d(N − k − 1)

a(k − 1) + b(N − k)
≤ ck + d(N − k)

a(k − 1) + b(N − k + 1)
, (2.14)

which after some algebra becomes

(bc− ad)k ≤ (b− a)d. (2.15)

We are interested in the games that satisfy this condition for all values of k =

{1, ..., N − 1} and N ∈ {2, 3, ...}, which is equivalent to saying that

bc− ad ≤ inf

({
(b− a)d

k
: k = 1, ..., N − 1;N ∈ {2, 3, ...}

})
. (2.16)

The value of k for which the infimum occurs depends only on whether (b − a)d

is negative or positive.

1. Case b < a:

This case leads to (b − a)d < 0, and therefore the infimum on equation 2.16

occurs for the minimum value the k can assume k = 1, regardless of the value

N . Thus, the condition becomes bc− ad ≤ (b− a)d, which simplifies to

c ≤ d. (2.17)

2. Case b ≥ a:

This case leads to (b − a)d ≥ 0, and therefore the infimum on equation 2.16

occurs for the largest possible value of k, which will be k = N − 1. Since
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(b− a)d is non-negative and k unbounded, the infimum is zero. The condition

becomes

bc ≤ ad. (2.18)

All games contained in these two cases will necessarily have a fixation probability

with a decreasing function on N .

Theorem 2. If the payoff matrix entries of a 2× 2 game satisfy c ≥ d ≥ b ≥ a, or

bc ≥ ad, c + d ≥ 2b and c < d, then the fixation probability ρN of a single mutant

using A decreases monotonically with N .

Proof. As in the proof of Theorem 1, we start by comparing the closed-form expres-

sions for the fixation probabilities (eq. 2.11). We then follow an alternative path,

isolating the first term (j = 1) instead of the last one (j = N) in the sum with N

elements, and obtain the following relation:

ρN > ρN+1 ⇔
N−1∑
j=1

[
j∏

k=1

γNk − γN+1
1

j∏
k=1

γN+1
k+1

]
< γN+1

1 . (2.19)

Following the same reasoning as in the previous proof, because γN+1
1 is strictly

positive, a game meeting the more strict condition

N−1∑
j=1

[
j∏

k=1

γNk − γN+1
1

j∏
k=1

γN+1
k+1

]
≤ 0, (2.20)

will necessarily lead to ρN > ρN+1.

By the same reasoning used before, this includes all the payoff matrices that

meet γNk ≤ γN+1
k+1 and γN+1

1 ≥ 1∀k = {1, ..., N − 1};N ∈ {2, 3, ...}. The second

part of the condition had to be added to assure that the constant coefficient on the

right hand-side product did not make it smaller than the left hand-side product.

Applying the form that γNk assumes under the frequency-dependent Moran process

(equation 2.10), having γNk ≤ γN+1
k+1 and γN+1

1 ≥ 1 is equivalent to


a(c− d) ≤ (bc− ad)(N − k)

d− c ≤ (d− b)N.
(2.21)
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To fulfill these equations for all k = {1, ..., N − 1} and N = {2, 3, ...}, we get the

following condition:


bc− ad ≥ sup

({
a(c− d)

N − k
: k = 1, ..., N − 1;N = 2, 3, ...

})
d− b ≥ sup

({
d− c

N
: N = 2, 3, ...

})
.

(2.22)

Parallel to the proof of Theorem 1, the suprema in both equations depend only

on the sign of the terms a(c− d) and d− c, which are related.

1. Case c < d:

This case leads to a(c − d) < 0 and d − c > 0. There, the supremum on the

top equation in 2.22 is zero, and the one on the bottom equation occurs for

N = 2. Therefore, condition 2.22 is fulfilled if bc−ad ≥ 0 and d−b ≥ (d−c)/2,

leading to:

bc ≥ ad , c+ d ≥ 2b. (2.23)

2. Case c ≥ d:

Under this case, the suprema from equation 2.22 occur for k = N − 1 in the

top equation, and zero in the bottom one. Therefore, condition 2.22 turns into

bc− ad ≥ a(c− d) and d− b ≥ 0, which lead to:

b ≥ a , d ≥ b. (2.24)

Any game meeting these conditions will necessarily have a fixation probability

with a decreasing function on N .

Under Theorem 1, there are a total of 7 orderings of the payoff matrix values rep-

resented in table 2.1 that always satisfy the obtained condition. The first condition

includes exclusively 6 complete orderings corresponding to the fixation of strategies

from the fourth dominance game listed in table 2.1, and the two last coordination

games. The second condition is always satisfied by ordering d > b > a > c corre-

sponding to the fixation of Hare Hunters in the Stag Hunt game, and it is partially

met for subsets of other 4 dominance game orderings: b > d > a > c, d > b > c > a,

d > c > b > a and b > a > d > c.
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Under Theorem 2, the first condition in the union defines exclusively the complete

ordering c > d > b > a corresponding to the fixation process of a dominated strategy.

The second condition is only satisfied partially under the two orderings d > b > c > a

and d > c > b > a, both of which are already partially covered by the condition

from Theorem 1. Joining Theorems 1 and 2, it can be easily shown that ordering

d > c > b > a ends up covered completely by the union of both final conditions,

thus always holding decreasing fixation functions.

Additionally, if the dependence of the fixation probability on population size

were considered only for large N , the second condition in equation 2.22 would simply

lead to d ≥ b. Together with the conditions from Theorem 1, the large N conditions

would further cover the complete ordering d > b > c > a as well.

It is worth noting that both Theorems 1 and 2 were proved by analysing the

transition probability ratios γNk (eq. 2.9), which under the frequency-dependent

Moran process become the relative fitness of individuals using B (eq. 2.10). It can be

seen that increasing population size by one individual impacted fixation probabilities

in two ways: 1) added an extra term to the sum, and 2) changed ratios γNk to γN+1
k

in the already existing terms. Contrary to what happens under these orderings,

fixation probability functions might not be monotonically decreasing functions of N

if the sum of all terms in the denominator of equation 2.8 decreases with N , despite

the increase of the number of terms. As will be shown in later sections 2.3.2, 2.3.3,

and 2.3.4, this is possible under cases where adding individuals to the population

decreases the relative fitness γNk enough to compensate for the extra individuals that

one single mutant would have to replace.

Games with decreasing functions

Focusing on the games under which fixation probabilities are decreasing functions

of N , these might have either a zero or positive asymptotic limit, depending on the

values in the payoff matrix. According to (Antal & Scheuring 2006), dominance

games have a mutant strategy holding a positive asymptotic value if a > c and

b > d, otherwise this value is zero. Looking at the entries in table 2.1 corresponding

to these games, we may conclude that the first game ordering for every pair (i.e. the

dominating strategy) always holds a positive asymptotic value (DP when decreas-

ing), while the second (i.e. the dominated strategy) always holds a null asymptotic

value (D0 when decreasing).
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Decreasing fixation probability functions were observed under all dominance

game orderings, both for dominating and dominated mutant strategies. Three of

the orderings corresponding to the fixation of dominated strategies were proved to

only have decreasing functions, and the remaining three were tested for a wide choice

of values with no non-decreasing counter-examples found. On the other side, all five

dominating mutants which were not proven to hold decreasing fixation functions

were found to have examples of fixation probability functions which increased for

some value of population size, thus holding alternative shapes.

Regarding anti-coordination games, the borderline condition between having a

mutant strategy fixating positively and with null probability asymptotically was

obtained in Antal & Scheuring (2006), which depended only on the payoff values.

The original expression was then redefined in Sample & Allen (2017) based on I, the

definite integral of ln(γ(α)) evaluated between 0 and 1, which under w = 1 becomes

I = ln

(
c

c
c−d b

b
a−b

d
d

c−da
a

a−b

)
. (2.25)

The function γ(α) is the relative fitness γNk (eq. 2.10) under N →∞, which depends

only on the fraction of mutants α = k/N instead of k and N independently.

They showed that the general borderline condition should be I = 0. If the

parametrisation of intensity of selection w is considered (see eqs. 2.3 and 2.4), and

the weak selection limit taken after the large population limit in exactly this order,

condition I = 0 should become equivalent to a+ b = c+ d.

We observed that under I > 0, i.e. when the asymptotic fixation probability

is null, it is always possible to see decreasing fixation functions (D0) under these

games. Otherwise, under I < 0, i.e. when the mutant strategy fixates positively in

the asymptotic limit, the fixation of hawks under the Hawk-Dove game represented

the only one of those game orderings which could have strictly decreasing functions

for some choices of the payoff matrix. In section 2.3.2, we propose an explanation

for why fixation function shapes beyond the decreasing one have not been referred

to in most of the previous literature, with the exception of Broom et al. (2010). This

is so despite the fact they are always observed under some of these game orderings,

such as the one which represents the fixation of mutant doves under the Hawk-Dove

game.

Under coordination games, asymptotic fixation values are always null indepen-
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Figure 2.1: Summary of shapes of single mutant fixation probability functions ρN under
2 × 2 games. Figure 2.1a represents curves normalised by their positive asymptotic values
(ρ∞ = 1−d/b) for simplification, and figure 2.1b represents curves with null asymptotic values.
Results were obtained for the following payoff values: DP [80, 6, 1, 1.5], UDP [20, 3, 1.9, 1.1],
DUDP [8, 1.8, 2, 0.9], UP [10, 3, 2, 1], DUP [3, 4, 2, 1], D0 [2, 1, 3, 4], UD0 [13, 0.5, 3, 1], DUD0
[3, 2, 4, 1.235]. These payoff values were chosen to get optimal clarity of figures.

dent of the strategy considered as the mutant, as noted by Antal & Scheuring (2006).

Here we add that five of these orderings (two pairs of complementary orderings and

the one representing hare hunter fixation under the Stag Hunt game), were proven

to always have strictly decreasing fixation probabilities (D0). Regarding the other

ordering, which corresponds to stag fixation under the Stag Hunt game, there were

striking examples of alternative fixation probability functions which will be men-

tioned in sections 2.3.3 and 2.3.4.

2.3.2 Fixation probability functions with one minimum

Under some of the explored 2 × 2 games, there were alternatives to the way the

fixation probability of a single mutant depended on population size N . One common

pattern found in these functions across anti-coordination games and the fixation of

dominating strategies showed an initial plunge for small population sizes until a

global minimum of the fixation probability ρN was reached. We called Nmin to

the population size under which this happened. This was followed by a steady

increase up to a positive asymptotic value which can be computed following Antal

& Scheuring (2006).

This type of dependence was not observed under any of the 6 coordination game

orderings nor the other 6 orderings referring to the fixation of dominated strategies.

It was so because all of these fixation probabilities have null asymptotic values.

On the other hand, it was sometimes observed under the fixation of dominating

strategies, such as b > d > a > c, a > c > b > d, a > b > c > d, b > a > d > c, and
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b > a > c > d. This included the fixation of defectors under the Prisoner’s Dilemma

(see for instance [2, 4, 1.9, 2.1]). The occurrence of this dependence under this set of

games seems to be completely absent from the previous literature.

Nonetheless, it was under anti-coordination games that we found this behaviour

to be pervasive. This was present under all but one anti-coordination game orderings.

The game ordering found to be an exception (c > b > d > a) does not seem to meet

I < 0, a criterion necessary to have a positive asymptotic value and thus observe this

profile of fixation probability. On top of this, as already noted in section 3.2, four out

of these five anti-coordination game orderings did not seem to accommodate strictly

decreasing functions of population size, so it seems like the fixation probability ρN

increasing with population size N for populations larger than a value Nmin seems

to be the norm rather than the exception under these games.

Despite being pervasive under these games, which have been thoroughly studied

in the past (Maynard Smith & Price 1973, Hauert & Doebeli 2004, Doebeli & Hauert

2005, Broom & Rychtář 2013, 2012, Broom et al. 2015), this effect did not receive

much attention, with the exception of Broom et al. (2010). A significant amount of

approaches to finite games have considered the weak selection limit (Traulsen et al.

2006, Wild & Traulsen 2007, Sample & Allen 2017) and show that when selection

tends to zero fast enough (when compared to the increase of population size), we

should expect fixation probability functions to always decrease asymptotically. Mo-

tivated by this, we have looked at the impact of decreasing intensity of selection on

the fixation probability functions, represented in figure 2.2. For a fixed choice of

payoffs [a, b, c, d], decreasing the intensity of selection w pushes the population size

from which fixation starts to increase Nmin to larger values. In fact, they seem to

be approximately inversely proportional, Nmin(w) ∼ 1/w (see appendix A).

These results suggest that even if we consider an arbitrarily small value of the

intensity of selection (i.e. weak selection limit), we may still see fixation probabil-

ities increase with population size for large enough populations N > Nmin(w) (i.e.

large population limit). This should not contradict the results obtained in Sample

& Allen (2017), since in the scenario we are describing the large population limit

should dominate over the weak selection one. Additionally, because turning points

Nmin(w) become very large under weak selection, fixation probabilities could become

less representative of what happens under anti-coordination games in finite popula-

tions. Even though pure states are absorbing ones, when mutations are considered,

35



5 10 50 100 500 1000
N0.01

0.05

0.10

0.50

ρN
Dove Fixation Probability under HD with [11/12,10/12,1,6/12]

w=1

w=0.8

w=0.5

w=0.2

w=0.1

w=0.05

5 10 50 100 500 1000
N0.01

0.05

0.10

0.50

ρN
Dove Fixation Probability under HD with [11/12,10/12,1,6/12]

w=1

w=0.8

w=0.5

w=0.2

w=0.1

w=0.05

Figure 2.2: Functions of single mutant fixation probability and the effect of weak selection on
moving their minimum values (under shape DUP) to higher population sizes N . The fixation
probabilities shown were obtained for the fixation of doves under the Hawk-Dove game with
[5.5, 5, 6, 3].

the population might spend most of the evolutionary time in particular transient

states (Antal & Scheuring 2006, Vasconcelos et al. 2017), which can also be called

quasi-stationary states (Zhou et al. 2010, Overton et al. 2022, Nasell 1999b,a). In

appendix A, we show that average conditional fixation times increase polynomially

with Nmin(w) as they do with N under neutral fixation, instead of increasing ex-

ponentially as is predicted for anti-coordination games under a fixed intensity of

selection (Antal & Scheuring 2006). These results highlight why it is essential to

beware of the impact of the order in which the weak selection limit w → 0 and the

large population limit N →∞ are considered under evolutionary dynamics, as has

been clearly stated in Sample & Allen (2017).

2.3.3 Fixation probability functions increasing under small popu-

lations

Under a restricted number of games of all three types (dominance, anti-coordination,

coordination), fixation probabilities were observed to increase with population size

N for small populations. The particular case where ρ3 > ρ2 holds is an extreme

one where this may happen. However, the condition represented by that is simple

enough to allow an analytical approach.

Theorem 3. If the payoff matrix entries of a 2× 2 game satisfy c > d and a+ b >

2c(c+ d)/(c− d), then ρ3 > ρ2.

36



Proof. The fixation probability values under these population sizes are the following:

ρ2 =
1

1 + γ21
, (2.26)

ρ3 =
1

1 + γ31 + γ31 · γ32
. (2.27)

These equations lead to the equivalence

ρ3 > ρ2 ⇔ γ31 + γ31 · γ32 < γ21 ⇔ γ31 ·
(
1 + γ32

)
< γ21 . (2.28)

Applying the definition of γNi under the frequency-dependent Moran process

(equation 2.10) on equation 2.28, we get the simplified condition

a+ b > λ and c > d, (2.29)

where we have used λ, defined as

λ = 2
c (c+ d)

c− d
. (2.30)

This condition is only possible under six of the 24 possible payoff ordering. There

are twelve orderings where c > d but only in six of them is possible to have a+b > λ.

These are the ones where c > d and either a or b is the largest entry in the payoff

matrix. These orderings are itemised in the last column of table 2.1.

Condition 2.28 highlights the conflict of having one extra individual in a pop-

ulation. One more resident leads to mutants having another individual to replace.

Thus the presence of an extra term on the left hand-side of equation 2.28. In order

to observe fixation probabilities increasing from population size N = 2 to N = 3,

the relative fitness of residents needs to be much lower for higher proportions of

them in the population.

There was a total of three shapes of fixation probability functions found that

met ρ3 > ρ2. Fixation probabilities might increase monotonically up to a positive

asymptotic value (UP), they might increase up to a maximum value and then de-

crease down to a positive value (UDP), or they might increase up to a maximum and

then decrease to zero (UD0). These three shapes are represented in the summary
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presented in figure 2.1.

Three of the orderings that satisfy this condition correspond to the fixation of

dominating strategies. This means that the fixation probability’s asymptotic value

under all of these cases is positive. Under the two orderings a > c > b > d and

a > b > c > d both UP and UDP were found depending on the particular parameter

choices, while under b > a > c > d only UP was found.

Under the two anti-coordination game orderings which are able to satisfy these

conditions, the only shape found from these three was UP. Systematic checks suggest

that equation I > 0 is either not satisfied at all, or at least at the same time as

equation 2.29 under those two orderings. This means that when fixation probabilities

increase from N = 2 to N = 3 under those two orderings, we should only observe

functions with positive asymptotic fixation probabilities (i.e. UD0 should never be

observed there).

Fixation probability functions with that shape – having one maximum and then

tending to zero (UD0) – were found only for the fixation of stag hunters under the

Stag Hunt game. This is the case exhibited in figure 2.1b. As suggested by the tests

mentioned in the previous paragraphs, there seems to be no other ordering where

UD0 could be observed, therefore establishing the particularity of this game and

justifying further interest in its study.

2.3.4 Fixation probability functions with two extremes

Under orderings corresponding to games of all three types, fixation probability func-

tions ρN were sometimes observed to decrease with population size N for small

populations, have an increasing region for intermediate population sizes and finally

decrease again under large populations. These increasing regions were necessarily

delimited by two local extremes, one minimum and one maximum.

Under anti-coordination games, these regions were observed only when asymp-

totic values were null (DUD0) and occurred when the choice payoffs led to a positive

value of I very close to zero (see equation 2.25). If I > 0 then a mutant using A

has a null probability of fixation in the limit N →∞. However, close to the border

I = 0 and for small enough populations, they may fixate similarly as if they were

on the negative side. In the particular case in figure 2.3, N = 200 is enough for

I ≤ 10−3. The occurrence of two extremes and the increasing regions to which they

lead seemed to be transitional features between having the decreasing D0 (seen un-
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der a high enough positive I), and the asymptotically positive DUP (seen under a

negative I). Additionally, as we get further closer to I → 0+, we see the positive

values of ρN breaking down to zero only for larger and larger population sizes.
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Figure 2.3: Functions of single mutant fixation probability transitioning from having shape
DUP (I = 0) to D0 (I = {5× 10−3, 10−2}) through DUD0 (I = {10−4, 5× 10−4, 10−3}). Fix-
ation probabilities were obtained for games with payoff parameters [5.5, 5, 6, d] and population
size N . The values of d were calculated from each chosen value of I (eq. 2.25). Their choice
maintains the game under ordering c > a > b > d – mutant doves under Hawk-Dove game
– and reproduces the approach of limit I → 0+. The approximate values of d are, in order,
d = 4.530 (I = 0), d = 4.531, d = 4.535, d = 4.540, d = 4.581, and d = 4.631.

This shape was also observed in the context of the fixation of a stag hunters

in the Stag Hunt game when function shapes transitioned between D0 and UD0,

i.e. between always decreasing and having a global maximum (instead of a global

minimum as in the previous case). This is shown in figure 2.4.
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Figure 2.4: Functions of single mutant fixation probability transitioning from having shape
UD0 (c = 18) to D0 (c = 45) through DUD0 (c = {25, 35}). Fixation probabilities were
obtained for games with payoff parameters [50, 1, c, 2] and population size N . The values of c
were chosen as to always being under ordering a > c > d > b and allowing condition ρ3 > ρ2
(eq. 2.29) to be met only for the lowest value c = 18.

A parallel fixation probability function having an intermediate population size in-

creasing region between two extremes, but with a positive asymptotic value (DUDP)

was observed under the fixation of two dominating strategies. This can be seen both

in the summarising figure 2.1a and in figure 2.5. This shape was observed under
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orderings a > c > b > d and a > b > c > d, and seems to happen as a transi-

tion between functions with one global minimum (DUP) and functions which start

increasing up to a global maximum and then decrease to a positive value (UDP).

Those are the only two orderings that may satisfy ρ3 > ρ2 by taking the form of

UDP.
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Figure 2.5: Functions of single mutant fixation probability transitioning from having shape
UDP (a = 12) to DUP (a = 4) through DUDP (a = {10, 8, 6}). Fixation probabilities were
obtained for games with payoff parameters [a, 2, 1.8, 1] and population size N . The values of
a were chosen as to always being under ordering a > b > c > d and allowing condition ρ3 > ρ2
(eq. 2.29) to be met only for the highest value a = 12.

These results suggest that the shapes DUDP and DUD0 having two extremes

delimiting an intermediate population size increasing region occur for transitions be-

tween fixation functions with one global extreme, either a maximum or a minimum,

and other function shapes. Functions with one global extreme are characterised by

having different trends (increasing/decreasing) for small and large population sizes.

If incrementally changing the payoff matrix values switches the increasing trend to

a decreasing one, an increasing region may emerge under intermediate population

sizes.

2.4 Discussion

Understanding fixation processes and the probability of their occurrence is essential

to the analysis of evolutionary games on finite populations. In this context, Taylor

et al. (2004) observed that even if individuals are interacting via the same game,

the size N of the population where they are included could lead to different evo-

lutionarily stable strategies ESSN as defined by Nowak et al. (2004). This is an
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emerging feature of evolutionary processes under frequency-dependent fitness since

stability under the fixed fitness Moran process never depends on population size.

Here, we provided an extensive analysis of the dependence of single mutant fixation

probabilities on population size, focusing on the simplest 2× 2 games in well-mixed

populations.

We have proved that under nine game orderings, fixation probabilities should

be strictly decreasing functions. Under three other game orderings, extensive tests

were performed without finding any other form of dependence beyond this one.

Altogether, these games included the fixation of all six dominated strategies, one

dominating strategy, and almost all strategies under coordination game orderings

(five out of six).

However, a lot of interesting dependences on population size N arise in the

remaining 12 game orderings, under which single mutant fixation functions were

observed to have intervals of population sizes for which they increased with N . As

counter-intuitive as this may seem, populations having extra individuals whom a

single mutant would have to replace during fixation might actually increase that

mutant’s chances of fixating.

Under large populations, this happened when the mutant’s relative fitness was

higher under lower proportions of its type in the population, i.e. when mutants did

relatively better among residents than they did between them: d/b < c/a. In this

limit, the selection dynamics are completely characterised by the two ratios, as was

already noted by Taylor et al. (2004). Increasing population size guaranteed that

both mutants and residents interacted less frequently with residents in the initial

steps of the fixation process, and therefore the increase in the number of resident

individuals to be replaced by one mutant was compensated by the higher replacement

probabilities.

Surprisingly, fixation functions were observed to increase under cases where mu-

tants did relatively worse among residents than among themselves for large pop-

ulations. This was observed under 3 game orderings, where fixation probabilities

increased for small populations but eventually decreased to infinity. It was also

noted by Taylor et al. (2004) that payoffs b and c are the only relevant entries of the

payoff matrix under N = 2. Thus, under small populations, increasing population

size means increasing the maximum frequency of individuals of the same type that

are found in the population before fixation occurs (e.g. 0% for N = 2, 50% for
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N = 3, 80% for N = 6). Increasing population size thus increases the frequency of

interactions between equal types. Having high enough a > λ − b and low enough

d < c allowed for fixation probabilities to increase for the smallest population sizes,

even when d/b > c/a.

The confluence of all these effects in the 12 remaining orderings resulted in a high

diversity of shapes of single mutant fixation probability functions. From functions

with one minimum (DUP), to always increasing functions (UP), initially increasing

but asymptotically decreasing ones (UDP and UD0) and functions with two extremes

(DUDP and DUD0). We tried to understand under which orderings, and why, these

function shapes emerged.

Anti-coordination games, such as the Hawk-Dove (Maynard Smith & Price 1973,

Broom & Rychtář 2013) (also called Snowdrift game (Hauert & Doebeli 2004, Doe-

beli & Hauert 2005)) were shown to hold a wide variety of fixation probability

function shapes. One of the most striking observations was the pervasiveness of

functions with one minimum, a shape which was already noted in Broom et al.

(2010) under the fixation of dove strategy. In some orderings, this was the only

shape observed when asymptotic values were positive, even for arbitrarily low values

of intensity of selection. While it was shown in Sample & Allen (2017) that fixation

probabilities decrease with population size when the weak selection limit is domi-

nant over the large population limit, our results suggest that if the considered limit

order is the reverse, weak selection does not necessarily erase these non-decreasing

shapes. Additionally, when approaching the limit where fixation functions change

from being asymptotically null to having this shape with a global minimum, all anti-

coordination game orderings showed functions with two extremes. Finally, two of

these orderings also showed monotonically increasing shapes when b was sufficiently

large, i.e. when mutants benefited the most from interacting with residents.

The six game orderings associated with the fixation of dominating strategies

(Taylor et al. 2004) (also named unbeatable in the literature (Hamilton 1967, Nowak

et al. 2004)), such as defectors under the Prisoner’s Dilemma (Axelrod 1984, Pound-

stone 1992), were observed to hold monotonically decreasing functions, with one

complete ordering and subsets of some of the remaining being comprehended in the

conditions of Theorems 1 and 2. However, they were also shown to have a wide

variety of other function shapes. Functions with one global minimum were observed

under five out of the six orderings. Under three of these orderings, we observed
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monotonically increasing functions. Two of them additionally showed alternative

functions keeping an initial increase but decreasing for larger population sizes, and

also functions with two extremes when transitioning between those with a global

minimum and the previous shape. On the other side, the fixation of dominated

strategies, such as Cooperation under the same games, was proved or tested to

systematically hold monotonically decreasing functions.

In the context of coordination games, we have proved that under five out of

the six possible orderings, fixation functions were always monotonically decreasing.

However, the fixation of stag hunters (the reward-dominant strategy under the Stag

Hunt game (Skyrms 2001, 2004)) was observed to have exceptional results in this

context. If the reward for cooperation a is large enough, we observe initially in-

creasing functions that then tend to zero thus holding a maximum. This shows

that there is an optimal population size for the fixation of a single stag hunter in

those cases. Functions with two extremes were observed under these games, when

transitioning between the monotonically decreasing functions and the ones with a

global maximum, leading to fixation probabilities not varying a lot for a wide range

of population sizes.
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Chapter 3

Evolution of cooperation in

multiplayer social dilemmas

under community structure
1

3.1 Introduction

Understanding how individuals organise into social communities is of interest to var-

ious research fields due their ubiquitous presence in social systems. This is shown

by the study of networks of friendships, academic collaborations, individual inter-

ests, online discourse, and political affiliation, among other social interaction sys-

tems (Girvan & Newman 2002, Newman 2006, Porter et al. 2009, Newman 2012).

Its organisation occurs down to the smallest scale of human societies, which has

motivated looking at the small interaction groups in which we partake as a core

configuration of our social psychology (Caporael 1997). This has been further sup-

ported by experimental studies showing that small groups, and their limit of dyadic

interactions, constitute most of our social encounters (Peperkoorn et al. 2020). An-

imal groups often organise themselves into social communities as well (Krause &

Ruxton 2002). Their formation can be motivated by the fragmentation of habitats,

and its subsequent impact on ecological networks has led to the study of evolution

in metapopulations (Levins 1969, Hanski 1998). Even in the presence of migration

fluxes involving roaming great distances, animals may maintain the same commu-

nity and social ties, either by collectively coordinating their movements (Petit & Bon

1This chapter is based on the work published in Pires & Broom (2024), which results from a
collaboration with Professor Mark Broom.
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2010, Couzin et al. 2003), or by coming back to the same territorial patches where

they once settled (Ketterson & Nolan Jr 1990, Woodroffe et al. 1997, Woodroffe &

Ginsberg 1999).

The organisation of individuals into social communities significantly influences

their behaviour with one another, particularly when facing social dilemmas. As

described in chapter 1, social dilemmas have been extensively modelled using evo-

lutionary game theory. Incorporating community structure into these models has

thus far entailed considering events of two different natures: within-community re-

production and between-community migration. These models are typically referred

to as metapopulation dynamics, a classification of which has been performed in

Yagoobi et al. (2023). The distinct nature of between-community events has been

further emphasised by considering community-level events, such as group repro-

duction (Akdeniz & van Veelen 2020) or group splitting (Traulsen & Nowak 2006,

Traulsen et al. 2008), which involve the replacement of entire groups either by other

groups or by single individuals. Others have considered different intensities of selec-

tion acting on within- and between-community events (Wang et al. 2011, Hauert &

Imhof 2012). Some of these modelling features suggest inspiration from multilevel

selection to different degrees, which we intentionally avoid in our current work. Al-

though these approaches lead to the evolution of pairwise cooperation, they may rely

on the distinct nature of between-community events to do so, or even on additional

mechanisms present such as punishment strategies (Wang et al. 2011).

Furthermore, metapopulation models generally assume that communities are

connected to each other in the same way, with few exceptions to this (Akdeniz &

van Veelen 2020) as is pointed out in Yagoobi & Traulsen (2021). Nonetheless, as

reviewed in chapter 1, the topological features of interaction and spatial networks

often have a strong interplay with the evolution of cooperation. However, consid-

ering both community and network structure within a mathematically tractable

framework poses several problems.

The framework introduced in its general form in Broom & Rychtář (2012) and

reviewed in chapter 1 offers a novel approach to multiplayer social dilemmas, where

interacting groups of individuals emerge from their simultaneous presence on the

nodes of a spatial network. In particular, we propose the use of the territorial

raider model to study evolutionary dynamics in network- and community-structured

populations with multiplayer interactions. We start by formally defining this model
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in section 3.2, which will be used not only in this chapter, but also on chapter 4.

In section 3.3, we introduce the limit of high home fidelity, where communities

exhibit asymptotically low mobility. We derive the evolutionary process arising

in this limit for the six introduced dynamics and derive exact expressions for single

mutant fixation probabilities under any network of communities. The analysis in this

section is substantiated by the work in section B.1 of the appendix. In section 3.4,

we show that the simple balance between within-community fixation and between

community replacements determines whether cooperation evolves. We obtain the

contributions under weak selection of the two types of events to fixation probabilities

for 10 multiplayer social dilemmas. These findings are complemented by the content

in section B.2 of the appendix. In section 3.5, we use this balance to derive the rules

of multiplayer cooperation under the general multiplayer social dilemmas. In section

3.6, we analyse in detail one particular game, the Charitable Prisoner’s Dilemma,

and draw a comparison with some of the results obtained in the widely explored

pairwise donation game. Finally, in section 3.7, we connect our findings to the

relevant literature on multiplayer social dilemmas, metapopulation dynamics, and

mobile structured populations.

3.2 The territorial raider model

The general framework introduced in Broom & Rychtář (2012) has been used to

study the interplay between population structure, movement and multiplayer inter-

actions. Here, we focus on the territorial raider model, a model of fully independent

movement, which was generalised in Pattni et al. (2017) to account for subpopu-

lations or, as we will refer to them, communities. We start by defining structure

and the movement rules of this model. We then revisit the general approach to

social dilemmas outlined in Broom et al. (2019), and finish by presenting the set of

evolutionary dynamics defined in Pattni et al. (2017).

3.2.1 Network structure and territorial movement

A population is composed of N individuals In = I1, ..., IN . Individuals are positioned

on a spatial network with M places Pm = P1, ..., PM , which has a set of edges

connecting them. Even though the terms “graph” and “network” are often used

interchangeably in the literature, here and in the following chapters we follow the
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same terminology used in Schimit et al. (2019). The term graph will only be used for

the underlying evolutionary graph representing the replacement structure between

individuals, and network will be used to refer to the network of places.

Under fully independent movement models, the position of each individual is

independent both of where they were previously and of where other individuals will

be (Broom & Rychtář 2012). Therefore, the probability that an individual In is in

place Pm is generally defined by pnm. Under the territorial raider model used in

this chapter, each node of the network represents the home of a community of Q

individuals. The probability distribution of their positions is defined as the following:

pnm =


h/(h+ dn), if home of In is Pm,

1/(h+ dn), if home of In is connected to Pm and it is not Pm,

0, otherwise,

(3.1)

where h is the home fidelity parameter, and dn is the degree of the home node of

individual In. This movement model is governed by a single parameter h yet allows

for different movement propensities governed by the opportunities available to each

individual, reflecting basic characteristics of local limited mobility present in animal

populations based on territorial behaviour (Ketterson & Nolan Jr 1990, Woodroffe

et al. 1997, Woodroffe & Ginsberg 1999) as well as human social systems. Alternative

models could be used, some of which would lead to exactly the same results, as it is

briefly discussed in the next section. We use the version of the territorial raider model

under which each node of the network is home to a community of Q individuals,

and thus M denotes the number of communities and N = MQ. The probability

distribution of positions under the territorial raider model is represented in figure

3.1. Communities have been referred to in previous models as subpopulations (Pattni

et al. 2017) or demes (Hauert & Imhof 2012). The below definitions are valid for

any distribution pnm of a fully independent movement model.

A group of individuals G has probability χ(m,G) of meeting in node Pm, which

is given by:

χ(m,G) =
∏
i∈G

pim
∏
j /∈G

(1− pjm). (3.2)

The fitness of each individual In is obtained through the weighted average of the

payoffs Rn,m,G received in each place Pm and each group composition G they can

be in. We further introduce w, the intensity of selection as defined in Nowak et al.
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Figure 3.1: Representation of a small community network under the territorial raider model.
At each time step, individuals initiate their movement from their home node, and can either
remain there or move to any of the adjacent nodes, returning to their home node prior to
the next time step. In this figure, we represent the resulting probability distribution for the
community in the centre of the network.

(2004), which measures the extension to which the outcomes of the game contribute

to the fitness of individuals:

Fn = 1− w + w
∑
m

∑
G:n∈G

χ(m,G)Rn,m,G . (3.3)

We bring attention to an alternative notation used in the literature, where a

background payoff defined as R is introduced. This alternative notation has been

used in movement models (Broom et al. 2015, Pattni et al. 2017, Erovenko et al.

2019, Pires et al. 2023) and it will be used in chapter 5. The background payoff is

typically included within the effective reward received in each interaction, which we

denote R′
n,m,G = Rn,m,G +R. This leads to the following adjustments to the fitness

of individuals:

F ′
n =

∑
m

∑
G:n∈G

χ(m,G)R′
n,m,G . (3.4)

In the present and the following chapter (chapters 3 and 4), we will use intensity

of selection w, as this is revealed to be more practical when inspecting the weak

selection limit. Nonetheless, the second approach leads to a simple rescaling of the

fitness F ′ = 1
wF when R = 1−w

w , which has no impact on the evolutionary dynamics

introduced later. In chapter 5, we used the second notation with a rescaling of the

parameters that would be equivalent to using the first notation setting the intensity

of selection w = 0.5.
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3.2.2 Multiplayer social dilemmas

We consider the multiplayer social dilemmas studied in Broom et al. (2019). Indi-

viduals have two strategies available to them: to cooperate (C) or to defect (D). In

these dilemmas, payoffs can be represented as Rn,m,G ≡ RC
c,d (≡ RD

c,d) when the focal

individual In is a cooperator (defector), as they are determined by the type of the

focal individual and the number of cooperators c, and defectors d in their current

group. We present the payoffs received under each social dilemma in table 3.1, where

V represents the value of the reward shared, and K the cost paid by individuals in

the group. In public goods dilemmas, cooperation involves the production of a re-

ward V at a cost K, which is consumed by individuals within the group. In contrast,

commons dilemmas typically represent scenarios with pre-existing resources, where

cooperation can involve, among other things, the sustainable consumption of the

resources. In the HD dilemma, the only commons dilemma we study here, coop-

erators evenly share the reward V , while defectors attempt to consume it entirely,

Multiplayer Game RC
c,d RD

c,d

Charitable Prisoner’s
Dilemma (CPD) (Broom et al. 2015)


c− 1

c+ d− 1
V −K c > 1

−K c = 1


c

c+ d− 1
V c > 0

0 c = 0

Prisoner’s Dilemma (PD)
(Hamburger 1973)

c

c+ d
V −K

c

c+ d
V

Prisoner’s Dilemma with Variable
production function (PDV) (Archetti & Scheuring 2012)

V

c+ d

∑c−1
n=0 ω

n −K,w > 0
V

c+ d

∑c−1
n=0 ω

n, w > 0

Volunteer’s Dilemma (VD)
(Diekmann 1985) V −K

{
V c > 0

0 c = 0

Snowdrift (S)
(Archetti & Scheuring 2012) V − K

c

{
V c > 0

0 c = 0

Threshold Volunteer’s
Dilemma (TVD) (Archetti & Scheuring 2012)

{
V −K c ≥ L

−K c < L

{
V c ≥ L

0 c < L

Stag Hunt (SH)
(Pacheco et al. 2009)


c

c+ d
V −K c ≥ L

−K c < L


c

c+ d
V c ≥ L

0 c < L

Fixed Stag Hunt (FSH) (Pacheco et al. 2009)


V

c+ d
−K c ≥ L

−K c < L


V

c+ d
c ≥ L

0 c < L

Threshold Snowdrift (TS)
(Souza et al. 2009)


V − K

c
c ≥ L

−K

L
c < L

{
V c ≥ L

0 c < L

Hawk–Dove (HD)
(Broom & Rychtář 2012)


V

c
d = 0

0 d > 0

V − (d− 1)K

d

Table 3.1: Payoffs obtained by a focal cooperator RC
c,d or a focal defector RD

c,d in a group with
c cooperators and d defectors playing general social dilemmas. Social dilemmas are referred to
in the text by the acronyms introduced in this table.
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either winning it occasionally or losing it to other defectors while incurring a cost

K.

3.2.3 Evolutionary dynamics

We follow an approach grounded on evolutionary graph theory (Lieberman et al.

2005). The population has a corresponding evolutionary graph represented by the

adjacency matrix W = (wij), with wij denoting the replacement weights which

determine the likelihood of individual Ii replacing Ij in an evolutionary step. In

contrast with the original formulation of evolutionary pairwise games on graphs, the

interaction structure between individuals is an emerging feature of the model. We

follow the procedure used in Pattni et al. (2017), under which replacement weights

are determined by the fraction of time any two individuals spend interacting within

the network. They spend their time equally with each of the other individuals in

their groups, and time spent alone contributes to their self-replacement weights.

This leads to the following definition:

wij =


∑
m

∑
G:i,j∈G

χ(m,G)
|G| − 1

, i ̸= j,

∑
m

χ(m, {i}), i = j.

(3.5)

Let us consider that the population goes through an evolutionary process oper-

ating on the strategies C and D used by each individual. This is modelled in discrete

evolutionary steps, during which individuals may update their strategies. The prob-

ability that, at a given step, the strategy of an individual Ii replaces that of Ij is

denoted by the replacement probability τij . This probability may depend in different

ways on the fitness of individuals, thereby incorporating selection into the process,

and on the replacement weights, thereby capturing their interaction structure. We

recall the dynamics outlined in Pattni et al. (2017), and their respective replacement

probabilities τij are summarised in table 3.2. The evolutionary dynamics are classi-

fied as birth-death (BD) if an individual is first selected for birth and then another

one for death; death-birth (DB) if the reverse order of events is considered; and link

(L) if an edge of the evolutionary graph is directly chosen. Under each of these,

selection can act either on the birth (B) or the death (D) event. The combination

of these two factors leads to 6 different evolutionary dynamics which are referred to
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by the letters used for their dynamics followed by the letter referring to which of the

events selection acts on, e.g. BDB means that we chose birth-death dynamics with

selection acting during birth, while LD means that we choose a link with selection

acting on the death end. These codes are used in table 3.2 where we present the

resulting birth and death, or replacement probabilities.

Evolutionary dynamics and replacement probabilities

BDB bi =
Fi∑
n Fn

, dij =
wij∑
nwin

DBD dj =
F−1
j∑

n F
−1
n

, bij =
wij∑
nwnj

DBB dj = 1/N , bij =
wijFi∑
nwnjFn

BDD bi = 1/N , dij =
wijF

−1
j∑

nwinF
−1
n

LB τij =
wijFi∑

n,k wnkFn
LD τij =

wijF
−1
j∑

n,k wnkF
−1
k

Table 3.2: Definition of birth probabilities (bi(j)) and death probabilities (d(i)j), or of final
replacement probability (τij), for six distinct evolutionary dynamics. The indices denote the
individuals Ii giving birth and Ij dying. In instances where the replacement probability is not
explicitly stated, it can be derived by multiplying the respective birth and death probabilities.

We consider both the fitness and replacement weights of individuals to be com-

puted based on a weighted average of their interactions within their environment, as

has been widely done both in pairwise games (Ohtsuki et al. 2006, Santos & Pacheco

2005, Santos, Rodrigues & Pacheco 2006, Santos, Pacheco & Lenaerts 2006, Allen

et al. 2017), and multiplayer games (Santos et al. 2008, Pattni et al. 2015, 2017). Al-

ternatively, these could have been calculated using different sampling assumptions,

such as considering those two quantities to be obtained from two independent single

interaction samples (Schimit et al. 2019, 2022). In those cases, there might be other

effects emerging if the sampling used to calculate both quantities is correlated, as

was shown in Hauert & Miekisz (2018).

The probability of fixation for a single mutant cooperator (defector) in a popu-

lation with the opposing strategy is defined as ρC (ρD). Selection is said to favour

the fixation of cooperation if ρC > ρneutral. The neutral fixation probability is

equal to ρneutral = 1/N = 1/(MQ). Moreover, cooperation is said to evolve if

ρC > ρneutral > ρD, which is equivalent to stating that overall selection favours

cooperation, as elaborated on chapter 1. Fixation probabilities can be calculated

under the general fully independent movement models resorting to the proceeding

explained in Broom et al. (2015) and Pattni et al. (2017). However, in the results

section, we will focus on limits where fixation probabilities assume closed-form ex-
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pressions.

3.2.4 Summary of parameters used in the territorial raider model

The general model introduced has several free parameters, which we present in table

3.3. Note that some of the other parameters considered are not free, since they

depend on the parameters presented here, e.g. N = M × Q. The results obtained

in this chapter consider different limits of the free parameters. The limit of large

home fidelity was considered throughout the whole set of results. In particular, the

results presented in section 3.3, substantiated by section B.1 of the appendix, are

valid under large home fidelity for arbitrary values of the remaining parameters. In

section 3.4, we analyse the expansion of fixation probabilities within the additional

limit of weak selection, the results of which are complemented by section B.2 of the

appendix. In sections 3.5 and 3.6, three successive limits are considered: high home

fidelity, weak selection and large networks of communities. In section B.3 of the

appendix, we analyse the extent to which these rules are valid outside of the limits

of large networks and weak selection.

Overall, we note that some of the limits are interdependent, and that therefore

the limit of large home fidelity should be interpreted as being h/M → ∞ and the

limit of weak selection as w · (MQ) → 0. The results presented are obtained for

general values of community size Q, and general payoff parameters V , K, L and ω.

Notation Meaning

M Number of communities
Q Community size
h Home fidelity
w Intensity of selection
V Social dilemma reward
K Social dilemma cost
L Threshold of cooperation
ω Reward factor used in the PDV

Table 3.3: Free parameters of the territorial raider model.

3.3 Evolutionary dynamics under high home fidelity

Let us consider the previously introduced model in the limit of high home fidelity

h→∞. In this section, we describe the evolutionary process arising from this limit
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across the six introduced dynamics and derive exact expressions for single mutant

fixation probabilities under any network of communities. The analysis in this section

is substantiated by the work in section B.1 of appendix.

3.3.1 Fitness approximation

Consider a connected network comprising M places and an arbitrary topology. Each

place is home to a community of size Q with movement following the territorial raider

model (see figure 3.1). In the asymptotic limit of high home fidelity h→∞, individ-

uals interact mostly within their community. The fitness of each individual depends

mainly on the rewards RC
c,d and RD

c,d received within each community of c cooper-

ators and d defectors, higher-order terms on h−1 dependent on the composition of

the remaining communities. We define the asymptotic value of the fitness of a focal

cooperator and defector as respectively the following:

fC
c,d = 1− w + wRC

c,d, (3.6)

fD
c,d = 1− w + wRD

c,d. (3.7)

In this limit, it is possible to obtain a closed-form expression for the fixation

probability of a single mutant. The fixation process under each of the six introduced

dynamics corresponds to a nested Moran process involving the fixation of a single

mutant on its community and the fixation of that community in the population.

A part of this process is represented in figure 3.2. The probabilities obtained are

presented in the next subsections (see section B.1 of appendix for formal derivations).

3.3.2 Fixation probabilities under BDB, DBD, LB and LD dynam-

ics

In the context of high home fidelity, replacement events within the same community

happen at an asymptotically larger rate than events between different communities.

As such, fixation probabilities ρC and ρD are obtained by multiplying the probability

of the original mutant fixating within its community, denoted as rC or rD, by the

probability of the community achieving fixation in the whole population. We note

that these probabilities are identical under the BDB, DBD, LB and LD dynamics

because the transition probability ratios that characterise the process are identical
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Figure 3.2: Fixation process in a population of connected communities under the asymptotic
limit of high home fidelity. For simplicity, let us consider the scenario where one mutant coop-
erator emerges in a population of defectors. The new strategy will fixate within the community
where it originated with a probability of rC . The state attained has homogeneous communi-
ties and may change only through the occurrence of a between-community replacement. This
involves either a cooperator replacing a defector from an adjacent community or the reverse,
with probabilities proportional to their respective communal fitness fC

Q,0 and fD
0,Q. Each of

those events may be followed by the within-community fixation of the new type, with respec-
tive probabilities rC and rD. If within-community fixation is unsuccessful, it will result in
the restoration of the previous number of homogeneous communities of cooperators. However,
if within-community fixation is successful, it will respectively increase or decrease by one the
number of communities of cooperators in the network. The transition probability ratio Γ (see
equation 3.10) between these two possible state transitions is constant and can be obtained
from this diagram. The represented probabilities are the same under BDB, DBD, LB and
LD dynamics. Under DBB and BDD dynamics, within-community fixation probabilities are
computed from equations 3.18 and 3.19, and the transition probability ratio is obtained from
equation 3.20.

at any given state of the population.

Within-community fixation is equivalent to a frequency-dependent Moran pro-

cess where the fitness of individuals corresponds to its asymptotic value in isolated

communities as defined in equations 3.6 and 3.7. Fixation probabilities for cooper-

ators and defectors are determined as follows:

rC =
1

1 +
∑Q−1

j=1

∏j
c=1

fD
c,Q−c

fC
c,Q−c

, (3.8)

rD =
1

1 +
∑Q−1

j=1

∏j
d=1

fC
Q−d,d

fD
Q−d,d

. (3.9)

Upon reaching a state with homogeneous communities, one of two state-changing

events may unfold. In one scenario, a cooperator replaces a defector from an adja-

cent community, with probability proportional to its communal fitness fC
Q,0. Subse-
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quently, the new cooperator may fixate within that community with a probability of

rC . Alternatively, a defector may replace a cooperator from a different community,

proportionally to fD
0,Q, and the new defector may fixate within the new community

with a probability of rD. The fixation process of one community on the entire popu-

lation is equivalent to a fixed fitness Moran process, where the transition probability

ratio is as follows (see a visual representation in figure 3.2 and a formal derivation

in section B.1.1 of appendix):

Γ =
fD
0,Q · rD

fC
Q,0 · rC

. (3.10)

Please note that the ratio between the two within-community fixation probabilities

can be considered in its following simplified form (Nowak et al. 2004, Sample &

Allen 2017):

rD

rC
=

Q−1∏
c=1

fD
c,Q−c

fC
c,Q−c

. (3.11)

The fixation probability of a single mutant cooperator or defector in a population

of the opposing type is respectively the following:

lim
h→∞

ρC = rC · PMoran

(
Γ−1

)
= rC · 1− Γ

1− ΓM
, (3.12)

lim
h→∞

ρD = rD · PMoran (Γ) = rD · 1− Γ−1

1− Γ−M
. (3.13)

when Γ ̸= 1. Otherwise, limh→∞ ρC = rC/M and limh→∞ ρD = rD/M .

The high home fidelity limit reveals this nested Moran process characterised

by frequency-dependent fitness at the lower level and an equivalent fixed fitness

of communities at the higher level. This emerges naturally from a simple individ-

ual selection process which operates within communities and between individuals

of distinct communities with the frequency of replacements coupled with how often

individuals interact in the same group. We note that fixation probabilities are in-

dependent of the topology of the network, i.e. the set of edges linking the homes

of different communities. The number of communities M , their size Q, and the

multiplayer game played by individuals are enough to determine the evolutionary

outcome of the process. The same results could be obtained from alternative move-

ment models under the limit of isolated communities of the same size, as discussed

in the appendix. Given the general nature of equations 3.12 and 3.13, they can be

used to assess the viability of cooperation under social dilemmas in any network of
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communities.

Social dilemmas are characterised by the conflict between cooperation as a so-

cially optimal strategy and defection as an individually optimal strategy (Peña et al.

2016, Broom et al. 2019). Given this definition, we should expect the first to excel

in between-community replacements and the second at within-community fixation.

The balance between these two factors is present at each step of the higher level

(community) fixation process, as is represented in figure 3.2. Condition ρC > ρD is

met in the following circumstances:

fC
Q,0

fD
0,Q

>

(
rD

rC

)1+ 1
M−1

. (3.14)

This condition is more easily met when the size of the network is increased. Under

M → ∞, it becomes equivalent to Γ < 1, further implying that ρC > 1/N > ρD

and that there is one and only one stable strategy. This shows that the definition of

Γ encapsulates the balance between the socially and individually optimal strategies,

and is enough to determine the outcome of the evolutionary process under large

networks.

Failure of cooperation in the CPD under BDB, DBD, LB and LD dy-

namics

Under the CPD with BDB, the effective fitness Γ of the between-community process

can be obtained using equation 3.10. Replacing rD/rC with the simplified ratio

between the two probabilities from equation 3.11, we obtain the following explicit

expression for Γ:

Γ =
fD
0,Q

fC
Q,0

·
Q−1∏
c=1

fD
c,Q−c

fC
c,Q−c

. (3.15)

We split the denominator and numerator of the previous product into two prod-

ucts and apply the definition of rewards under the CPD (see table 3.1), thus obtain-

ing the following:

Γ =
1− w

1− w + w(V −K)

∏Q−1
c=1 1− w + w

c

Q− 1
V∏Q−1

c′=1 1− w + w

(
c′ − 1

Q− 1
V −K

) . (3.16)

We note that an extension of the products in the numerator and denominator to
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c = 0 and c′ = Q respectively, would include the extra terms multiplied by each of

the products. Doing that, together with the change of variable c = c′− 1, we obtain

the following:

Γ =

∏Q−1
c=0 1− w + w

c

Q− 1
V∏Q

c′=1 1− w + w

(
c′ − 1

Q− 1
V −K

) =

∏Q−1
c=0 1− w + w

c

Q− 1
V∏Q−1

c=0 1− w + w

(
c

Q− 1
V −K

) =

=

Q−1∏
c=0

1− w + w
c

Q− 1
V

1− w + w

(
c

Q− 1
V −K

) .

(3.17)

We have that Γ > 1 for any choice of payoff parameters, intensity of selection,

and community size. This means that the fixed fitness Moran probability will always

be lower than 1/M . At the same time, we note that rC < 1/Q because under the

CPD, cooperators have strictly lower rewards than defectors in the same group.

Therefore, when we consider the BDB or equivalent dynamics under the CPD with

high home fidelity, cooperators never fixate above the neutral probability 1/(MQ)

for any community number and size, network topology, and payoff parameter choices.

3.3.3 Fixation probabilities under DBB and BDD dynamics

The DBB and BDD dynamics lead to different quantitative results as transition

probability ratios in the resulting Markov chain are different from the previous four

dynamics. Fixation probabilities are obtained in a parallel way to the ones presented

in 3.12 and 3.13, using the following corrected values of within-community fixation

probabilities rC and rD, and transition probability ratios Γ:

rCDBB/BDD =
1

1 +
∑Q−1

j=1

∏j
c=1

fD
c,Q−c

fC
c,Q−c

·

(
1 +

fC
c,Q−c − fD

c,Q−c

TDBB/BDD(c,Q− c)− fC
c,Q−c

) ,

(3.18)

rDDBB/BDD =
1

1 +
∑Q−1

j=1

∏j
d=1

fC
Q−d,d

fD
Q−d,d

·

(
1 +

fD
Q−d,d − fC

Q−d,d

TDBB/BDD(Q− d, d)− fD
Q−d,d

) ,

(3.19)

ΓDBB/BDD =

(
fD
0,Q

fC
Q,0

)2

·
rDDBB/BDD

rCDBB/BDD

, (3.20)
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with TDBB/BDD denoting the total weight-fitness correction factors under those two

dynamics, which are positive as evident in their definition:

TDBB(c, d) = c · fC
c,d + d · fD

c,d, (3.21)

TBDD(c, d) = d · fC
c,d + c · fD

c,d. (3.22)

There are two main distinctions between these equations and those derived in

the previous section for the remaining dynamics. On one side, both DBB and

BDD amplify between-community replacement events, owing to the squaring of the

communal fitness ratio in 3.20. At the same time, they suppress within-community

selection, as can be concluded from the additional coefficients multiplied by the

fitness ratio in equations 3.18 and 3.19. The condition ρC > ρD leads to

fC
Q,0

fD
0,Q

>

(
rDDBB/BDD

rCDBB/BDD

) 1
2(1+

1
M−1)

, (3.23)

where the right-hand side is closer to 1 than that of equation 3.14, thus benefiting

cooperation.

3.4 The limit of weak selection

In this section, we analyse the expansion of fixation probabilities within the addi-

tional limit of weak selection, which unveils simple contributions of within-community

fixation processes and between-community replacement events. We further analyse

these contributions under the general social dilemma section. These findings are

complemented by the content in section B.2 of the appendix.

3.4.1 Fixation probabilities under weak selection

Further considering the weak selection limit w → 0, the fixation probabilities pre-

sented in section 3.3 can be expanded, leading to the following equations (see section

B.2 of the appendix for more details):

ρC ≈ 1

MQ
+

w

2

[
1

Q

(
1− 1

M

)
∆CD +

(
1 +

1

M

)
δC −

(
1− 1

M

)
δD
]
, (3.24)
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where

∆CD = RC
Q,0 −RD

0,Q = −∆DC , (3.25)

δC =
∂rC

∂w

∣∣∣∣
w→0

=
1

Q2

Q−1∑
c=1

(Q− c)
[
RC

c,Q−c −RD
c,Q−c

]
, (3.26)

δD =
∂rD

∂w

∣∣∣∣
w→0

=
1

Q2

Q−1∑
d=1

(Q− d)
[
RD

Q−d,d −RC
Q−d,d

]
. (3.27)

Equation 3.24 comprises three terms which are defined in equations 3.25–3.27.

The term ∆CD embodies the contribution of between-community events and corre-

sponds to the difference between payoffs of communal cooperators and communal

defectors. The sign of this term is determined by which of the two strategies is

socially optimal. The terms δC and δD represent the contributions originating from

the within-community fixation process of cooperators and defectors, respectively.

Considering ρD leads to the swapping of superscripts C and D on these three terms.

The expansion assumes a different form under the DBB and BDD dynamics,

both of which result in the following equation:

ρCDBB/BDD ≈
1

MQ
+

w

2

[
2
1

Q

(
1− 1

M

)
∆CD +

(
1− 1

Q− 1

)(
1 +

1

M

)
δC+

−
(
1− 1

Q− 1

)(
1− 1

M

)
δD
]
.

(3.28)

This reflects the aspects highlighted in the previous section about the impact

of these dynamics. We observe the amplification of between-community selection

by a factor of 2, and the suppression of within-community selection by a factor of

1− 1/(Q− 1).

Each of the three contributing terms present in equations 3.24 and 3.28 shows

a correction coefficient related to the finiteness of the network, which naturally

vanishes under M → ∞. Increasing the network size magnifies the relative impact

of between-community replacement events on the fixation probability. At the same

time, it increases the impact of the within-community fixation of residents but makes

the within-community fixation of mutants relatively less significant than it is in

smaller networks. In the limiting case where there are only two communities (M =

2), this last term exhibits a finite network correction coefficient three times larger

than that of the within-community fixation of residents. This is so because the

fixation of the original mutant in its community takes an increased importance in
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the overall process.

Increasing the size of communities decreases the impact of between-community

contributions under both dynamics. Simultaneously, it amplifies the impact of

within-community contributions under DBB and BDD dynamics. From equation

3.28, we conclude that under the smallest communities (Q = 2), the expansion of

fixation probabilities under DBB and BDD dynamics is reduced to a single term

depending on ∆CD, and within-community fixation terms vanish. In a mixed sub-

population of one cooperator and one defector, both types have the same probability

of being chosen first and the resulting replacement event is then certain to occur.

Therefore, within-community fixation probabilities are equal to 1/2 for both types,

regardless of the payoffs received by individuals. This remains true under stronger

selection as was noted in Pattni et al. (2017).

3.4.2 General social dilemmas under weak selection

Consider the general social dilemmas defined in table 3.1. We calculate the values of

each of the three contributions ∆CD, δC and δD under all of the dilemmas introduced

there, and present them in table 3.4.

Multiplayer Game ∆CD δC δD

CPD V −K −Q− 1

2Q

(
K +

V

Q− 1

)
Q− 1

2Q

(
K +

V

Q− 1

)
PD, VD V −K −Q− 1

2Q
K

Q− 1

2Q
K

PDV
V

Q

1− ωQ

1− ω
−K −Q− 1

2Q
K

Q− 1

2Q
K

S V −K/Q − 1

Q
(HQ − 1)K

Q− 1

Q2
K

TVD, SH

{
V −K Q ≥ L

−K Q < L
−Q− 1

2Q
K

Q− 1

2Q
K

FSH


V

Q
−K Q ≥ L

−K Q < L

−Q− 1

2Q
K

Q− 1

2Q
K

TS

{
V −K/Q Q ≥ L

−K/L Q < L


− K

Q2

(
Q(HQ−1 −HL) +

L+ 1

2

)
Q ≥ L

−Q− 1

2Q

K

L
Q < L


1

Q2

K

2
(2Q− L− 1) Q ≥ L

Q− 1

2Q

K

L
Q < L

HD
Q− 1

Q
K

Q− 1

Q2

((
Q

2
− 1

)
K − V

)
1

Q

((
HQ − 1

)
V −

(
Q+ 1

2
−HQ

)
K

)

Table 3.4: Value of fixation probability expansion terms under weak selection for each social
dilemma. The terms denote the contributions of between-community events (∆CD), within-
community fixation of cooperators (δC) and defectors (δD). Their definitions can be found in
equations 3.25, 3.26, and 3.27.

The values of ∆CD can be trivially obtained based on the calculation of the re-

wards among communal cooperators and communal defectors. The values of δC and

δD are often simple to calculate because payoff differences between cooperators and

defectors in mixed communities are constant under most social dilemmas. The only

dilemmas under which this is not as trivial are the S, the TS and the HD dilemmas,
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under which we had to include the harmonic series defined as the following:

HQ =

Q∑
i=1

1

i
. (3.29)

Under all public goods dilemmas, the term ∆CD is positive when cooperation

is the socially optimal strategy. This happens when the reward for cooperating is

sufficiently high, provided communities have a size capable of producing the reward.

In the same dilemmas, the terms δC and δD exhibit negative and positive signs,

respectively, due to defection being a dominant strategy.

Under the HD dilemma, the contribution ∆CD remains positive regardless of

reward value. The contributions δC and δD can be negative and positive for high

V/K, positive and negative for low V/K, and both positive for intermediate V/K

when Q > 2. These patterns reflect that cooperation is always socially optimal in

this dilemma, while within a fixed group it maintains anti-coordination properties.

We will observe that cooperation can evolve under sufficiently large V/K, irre-

spective of the number of communities M , their size Q (provided it allows them

to produce a reward), and how they are connected. This is true even in the lim-

iting case of two arbitrarily large communities. For all public goods games apart

from the CPD, this can be concluded based on the fact that the contribution of

between-community events can be made arbitrarily large by increasing V , while the

remaining contributions remain constant. We cannot conclude the same for the CPD

at this point, as the remaining contributions (δC and δD) hold negative dependences

on V . However, a more detailed analysis in the following sections will reveal that

those conclusions remain true under the DBB/BDD dynamics. In parallel, under

the HD dilemma, cooperation can evolve under sufficiently low V/K irrespective of

the number and size of communities, and their connections. This comes from the

positive linear dependence that all three contributions have on the value of K.

Moreover, based on equations 3.24 and 3.28 and the particular values their terms

hold under each public goods dilemma, we conclude in section B.3.1 of the appendix

that decreasing the size of the network has a detrimental effect to cooperation under

all public goods dilemmas. Smaller networks systematically lead to stricter con-

ditions for the evolution of cooperation in public goods dilemmas. Conversely, no

consistent trend emerges in the HD dilemma.

Summing the expansions obtained for the fixation probabilities of cooperators
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and defectors, we arrive at the following equation:

ρC + ρD ≈ 2

MQ
+

w

M
(δC + δD), (3.30)

where, under the DBB/BDD dynamics, an additional coefficient 1 − 1/(Q − 1) is

included in the second term on the right-hand side. It is worth noting that when

the difference between the payoffs of cooperators and defectors in the same group

is constant, the contributions of the within-community fixation processes of coop-

erators and defectors to equations 3.24 and 3.28 are symmetric, i.e. δC = −δD.

For such dilemmas, there is always one and only one stable strategy under weak

selection. This is true for all social dilemmas discussed here, except for the S and

the TS with Q > L + 1, where bi-stability is possible (δC + δD < 0), and the HD

dilemma, which allows for mutual fixation and therefore instability of both strate-

gies (δC + δD > 0). As established in section 3.3, under M → ∞ there is one and

only one stable strategy, determined by the value of Γ. This is in agreement with

the fact that, for the remaining dilemmas, the second term on the right-hand side of

equation 3.30 vanishes under large networks. We conclude that both weak selection

and a large number of communities often lead to simple dominance cases. Based

on these findings, we emphasise that in all public goods dilemmas, if the fixation of

cooperators is favoured under weak selection or large networks, then the fixation of

defectors won’t be (and vice versa). In the next section, we will extend our analy-

sis, systematically presenting the conditions under which cooperation evolves for all

social dilemmas.

3.5 The rules of cooperation under general multiplayer

social dilemmas

In this section, we further extend our analysis of general multiplayer social dilemmas.

Cooperation evolves successfully, i.e. ρC > ρneutral > ρD, for larger numbers of

communities if

∆CD > Q(δD − δC). (3.31)

This rule is obtained considering that the first-order term of the weak selection

expansion in equation 3.24 has to be positive. The equation above is valid under the

BDB/DBD/LB/LD dynamics, whereas for the DBB/BDD dynamics, a multiplying
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Multiplayer Game
Evolution of cooperation under

BDB/DBD/LB/LD DBB/BDD

CPD ∅ V/K > (Q− 1)

PD, VD V/K > Q V/K >
Q

2

PDV V/K >
1− ω

1− ωQ
Q2 V/K >

1− ω

1− ωQ

Q2

2

S V/K > HQ V/K >

(
HQ −

1

2

Q

Q− 1
HQ−1

)

TVD, SH

{
V/K > Q Q ≥ L

∅ Q < L

V/K >
Q

2
Q ≥ L

∅ Q < L

FSH

{
V/K > Q2 Q ≥ L

∅ Q < L

V/K >
Q2

2
Q ≥ L

∅ Q < L

TS

{
V/K > HQ −HL + 1 Q ≥ L

∅ Q < L

V/K > 1/2

[
1 +

(
1− 1

Q− 1

)
(HQ −HL)

]
Q ≥ L

∅ Q < L

HD V/K <
Q− 1/Q−HQ−1

HQ−1
V/K <

Q− 1

Q− 2
(Q− 2/Q)−HQ−1

HQ−1

Table 3.5: Rules for the evolution of multiplayer cooperation under networks of communities.
We assume a large number M of communities and that they are composed of at least two
individuals (Q ≥ 2). These conditions guarantee that ρC > ρneutral > ρD. We denote the
harmonic series as HQ =

∑Q
i=1 i

−1. Under Q = 1, the derived conditions are the following:
cooperation never evolves under the CPD, TVD, SH, FSH, and TS (assuming that L ≥ 2),
cooperation evolves for V/K > 1 under the PD, PDV, VD and S, and both strategies are
neutral under the HD. These results are valid under arbitrary values of w and M , and they
are the same under all six dynamics.

factor (1/2)(1− 1/(Q− 1)) is added to the right-hand side of the equation.

We systematically computed the terms ∆CD, δC and δD under each of the gen-

eral social dilemmas approached, which were summarised in table 3.4. Applying

their values to condition 3.31 and its DBB/BDD-corrected version, we obtain the

conditions under which cooperation evolves for each of the social dilemmas studied

here, for all community sizes Q and the six evolutionary dynamics, and present them

in table 3.5. Cooperation can evolve under all of the social dilemmas approached for

at least some of the explored dynamics. We opted to show the rules obtained under

a high number of communities to allow a systematic analysis of the dilemmas, as

obtaining them for arbitrary values of M was attainable but often intricate. These

limits were considered in a particular order: first h → ∞, then w → 0, and finally

M →∞. The order of these limits is relevant, given that different orders can lead to

distinct fixation probability expansions and conditions for the evolution of coopera-

tion (Sample & Allen 2017), as well as generate or erase surprising finite population

effects as it was seen in chapter 2. In section B.3 of the appendix, we analyse the

validity of the simple rules presented here when these limits are relaxed.
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The results presented in this table suggest that social dilemmas split into distinct

groups. Non-threshold public goods dilemmas such as the PD, the VD, the S, and

the PDV allow cooperators to evolve under any community size if the reward-to-cost

ratio V/K surpasses a critical value dependent on Q. This value is the same under

the PD and the VD, but lower under the S and the convex PDV (w > 1), and higher

under the concave PDV (w < 1). The CPD presents a distinct landscape, where

cooperation only evolves under the DBB and BDD dynamics. The critical value of

the reward-to-cost ratio in this dilemma is the highest of all non-threshold public

goods games. We will analyse this dilemma in the following section.

Threshold dilemmas such as the TVD, the SH, the FSH, and the TS have a

critical value of the reward-to-cost ratio, above which cooperation evolves, only if

the size of communities is at least of the same size as the public goods production

threshold (Q ≥ L). Otherwise, cooperation can never evolve regardless of the value

of V/K. The TVD and the SH lead to the same conditions, which coincide with the

PD and the VD when Q ≥ L. The TS leads to lower critical values of the reward-

to-cost ratio, and the FSH leads to higher values. We further note that the critical

values obtained under the FSH when Q ≥ L are simply the ones obtained under the

PDV with ω → 0. Critical values under threshold games generally don’t depend on

L, although their existence does. The exception to this is the TS dilemma, under

which a larger production threshold decreases the critical value of the reward-to-cost

ratio when communities are large enough to produce rewards.

The HD dilemma, which unlike the others is a commons dilemma, behaves dis-

tinctively from all of the remaining dilemmas. The reward-to-cost ratio has to be

lower than a critical value for cooperation to evolve. It is clear that in this case,

high rewards are detrimental to the evolution of cooperation.

We note that the critical value of the reward-to-cost ratio under public goods

dilemmas always increases with the size of communities and regardless of the used

evolutionary dynamics. This allows us to provide the visual representation from

figure 3.3 with the areas under which cooperation evolves for community sizes up to

a given value. Additionally, as mentioned in section 3.4, considering lower values of

M always leads to stricter conditions for the evolution of cooperation. This reinforces

the conclusion that populations organised into large networks of small communities

lead to a larger region of the parameter space under which cooperation evolves. This

is so because cooperators hold an advantage in between-community reproduction

64



events (intensified under large M), but they are disadvantaged in within-community

fixation processes (minimised under small Q).

Figure 3.3: Regions under which cooperation evolves for each public goods dilemma under
networks of communities. Each coloured region covers the values of the reward-to-cost ratio,
i.e. V/K, under which cooperation evolves for a given set of community size values which are
stated in the legend. These regions are obtained from the rules for the evolution of cooperation
presented in table 3.5. Under low enough values of V/K, all dilemmas have uncoloured regions,
as no community size allows the evolution of cooperation. We opted for not showing the areas
of the S and the TS dilemmas with higher values of V/K (starting from the ellipsis), as coloured
regions quickly decreased in size: at V/K = 3, cooperation evolves for any Q ≤ 231 under the
S and Q ≤ 377 under the TS when L = 2.

In this context, the HD dilemma has key differences compared with the pub-

lic goods dilemmas. Under this game, cooperators hold an advantage in between-

community reproduction events for any payoff parameters. Regarding within-community

fixation processes, defectors hold an advantage in small communities, but coopera-

tors are the ones doing so in larger communities. However, there is a second over-

lapping effect which is described in section 3.4: increasing the size of communities

decreases the impact of between-community reproduction and increases the impact

of within-community fixation. Under the BDB dynamics, the second effect is not

strong enough and the first effect dominates: communities with larger size always

lead to higher critical values below which cooperators fixate, therefore benefiting

them. However, under the DBB/BDD dynamics, both effects interplay and each

dominates at a different scale of community sizes. Cooperators always evolve when

Q = 2 because fixation depends only on between-community reproduction. When

increasing the community size to Q = 3, 4, the emerging critical values below which

cooperation evolves decrease with community size because of the increased impor-

tance of within-community fixation beneficial to defectors in those community sizes.

However, for larger values of Q ≥ 5, cooperation evolves for larger regions of V/K
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when increasing Q because within-community fixation starts benefiting cooperators.

Comparing the critical values obtained between the different evolutionary dy-

namics, we note that the DBB and BDD dynamics always extend the values of V/K

for which cooperation successfully fixates when compared to the remaining dynam-

ics. They therefore have lower critical values in all public goods dilemmas and higher

critical values in the HD dilemma. We note the extreme case of the CPD, under

which cooperators never evolve under the BDB and equivalent dynamics, but find

an evolutionary way under the DBB and BDD dynamics. These results can be ex-

plained by the fact that these dynamics when compared to the remaining, amplify

the impact of between-community replacement terms (where cooperators succeed

relative to defectors), and suppress within-community selection terms (where defec-

tors succeed).

3.6 The Charitable Prisoner’s Dilemma and pairwise

cooperation

The CPD is a particular game of interest among public goods dilemmas. Under the

CPD, cooperators do not benefit from their own contributions to public goods. This

assures not only that individuals have equal gains from switching, but also that the

gains are the same for all group sizes. In other words, the cost K is the effective cost

that a cooperator pays for not defecting, regardless of group composition and size.

This game is thus a social dilemma regardless of how large the reward is and the size

of the interacting group (Broom et al. 2019). Other games have equal gains from

switching, but the gains vary with group size. One such game is the PD, which was

introduced in Hamburger (1973), under which the cost of cooperating is K − V/Q,

and therefore may not even present a social dilemma under some payoff choices and

group sizes (Broom et al. 2019).

Table 3.5 shows that cooperation evolves in the CPD when V/K > (Q − 1).

Given our particular interest in it, we present here the condition for the evolution

of cooperation obtained under the CPD when a finite number of communities M is

considered:

V/K > (Q− 1) ·
1− 2

MQ

1− 2(Q−1)
MQ

. (3.32)

This rule quantifies the detrimental effect that considering a lower number of larger
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communities (lower M and higher Q) has on the evolution of cooperation. At the

same time, it materialises a fundamental result: cooperation can evolve provided

rewards are high enough, for any given community size and number, and regardless of

the connections between them. This was already concluded for the remaining public

goods dilemmas. This is a remarkably general result that works for the smallest

networks of two communities under which cooperation evolves if V/K > (Q− 1)2.

A parallel result was attained in Allen et al. (2017) by considering the pairwise

donation game in an evolutionary graph which is split into M cliques of Q individ-

uals each. Individuals within the same clique are considered to have unit-weighted

edges and there is an arbitrary set of infinitesimal edges between individuals of dif-

ferent cliques. The vanishing edges act to isolate the individuals within each clique,

guaranteeing that cooperation can always evolve in the pairwise donation game if

V/K is high enough.

The rules obtained under the CPD are parallel not only to the clique structures

explored in Allen et al. (2017) but also to the results obtained in Ohtsuki et al. (2006)

for large regular networks. They showed that cooperation can evolve under the DBB

dynamics if the reward-to-cost ratio is larger than the average number of neighbours

each individual has on an interaction network. We note that in our model and the

particular limit of large home fidelity, each individual regularly interacts with Q− 1

others and that this is exactly the critical value of the reward-to-cost ratio under

the DBB dynamics. However, the results obtained here for networked communities

allow cooperation to evolve under the smallest networks when the corrected rule

presented in equation 3.32 is met, thus going beyond the large network assumption.

At the same time, when interacting via the CPD, cooperators can never evolve

if the evolutionary dynamics considered are the BDB/DBD/LB/LD dynamics, as

shown in section 3.3.2 for arbitrary values of intensity of selection and number of

communities. This had been already hypothesised in Pattni et al. (2017) for the

general formulation of the territorial raider movement model, similar to what was

observed in previous evolutionary pairwise games on graphs models (Ohtsuki et al.

2006). However, we note that this feature of the BDB dynamics is a singular case

when stochastic combinations of different types of dynamics are considered, as was

shown in Zukewich et al. (2013).

The CPD can be seen as a multiplayer extension of the pairwise donation game

and as such, the two games may lead to analogous results. More generally, the
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exploration of higher-order interactions leads to different interacting structures and

evolutionary outcomes (Perc et al. 2013), even in other cases where the multiplayer

game considered is a natural extension of its pairwise version. However, in the par-

ticular limit studied here, individuals always interact within their own communities

which are all of the same size. Therefore, the average payoffs obtained in a well-

mixed community playing the pairwise donation game are the same as the payoffs

obtained in a group of fixed size repeatedly playing the CPD. This is no longer the

case when lower home fidelity values are considered, and new higher-order differences

are expected to arise in that context.

3.7 Discussion

In the present chapter, we use the territorial raider model previously approached

(Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019, 2022), a fully indepen-

dent movement model which is described by one single parameter, the home fidelity

of individuals. The general framework originally proposed in Broom & Rychtář

(2012) can be thought of as a natural extension of evolutionary games on graphs

to multiplayer interactions, under which replacement events between individuals in

the population occur proportionally to how often they interact. We focus on the

limit of high home fidelity, under which individuals interact mostly within their com-

munity with the rare occurrence of cross-community group interactions. We derive

the evolutionary dynamics in this limit, which is revealed to be a nested Moran

process resembling metapopulation models where migration is coupled with selec-

tion (these are classified in Yagoobi et al. (2023)) but asymptotically rare as it is

considered in Hauert & Imhof (2012). Therefore, we show that metapopulation dy-

namics of multiplayer interactions can be derived from the basic assumptions dating

back to evolutionary graph theory. This derivation is achieved without considering

between-community events to be of a different nature through the introduction of

migration (Hauert & Imhof 2012, Yagoobi et al. 2023), group splitting and replace-

ment (Traulsen & Nowak 2006, Traulsen et al. 2008, Akdeniz & van Veelen 2020),

or two or more levels of intensity of selection (Wang et al. 2011, Hauert & Imhof

2012). The same results could be obtained from alternative movement models under

the limit of isolated communities of the same size, as discussed in the appendix.

In this context, we show that whether a strategy evolves or not depends on the
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advantage it holds against other strategies in two contexts: when in homogeneous

groups and when in within-community fixation processes. Multiplayer social dilem-

mas involve the existence of a conflict between cooperating as a socially optimal

strategy and defecting as an individually optimal strategy (Peña et al. 2016, Broom

et al. 2019). Therefore, we obtain a general condition for the evolution of coopera-

tion which translates into a simple balance between its advantages in homogeneous

communities and its disadvantages over within-community fixation processes.

Applying this balance to the multiplayer social dilemmas explored in Broom

et al. (2019), we obtain simple rules for the evolution of multiplayer cooperation

in community-structured populations. These depend on the reward-to-cost ratio,

and the number and size of communities. Cooperation evolves under all social

dilemmas for any given number of communities, as long as there are at least two, that

they are large enough to produce rewards (when applicable), and that the rewards

are high enough in public goods dilemmas or low enough in the HD dilemma (a

commons dilemma focused on the fair consumption of pre-existing resources). In

public goods dilemmas, cooperation evolves more easily when the costs of production

are shared (the S and the TS dilemmas – see Santos et al. (2008) and Archetti &

Scheuring (2012) for an account of this), when the reward production function is

supralinear (the PDV), and when individuals benefit from their own production (all

public goods dilemmas, except for the CPD). However, finding that cooperation can

evolve under the CPD in any community-structured population was remarkable by

itself, given that this dilemma does not have any of the above characteristics and

extends some of the strictest properties of the pairwise donation game to larger group

sizes. Other characteristics of public goods dilemmas could be assessed in the future

by considering asymmetric reward contributions and productivities (quantified as

each individual’s reward-to-cost ratio) (Wang et al. 2023), or even different mobility

distributions and costs (Bara et al. 2024).

Moreover, the general results derived are not restricted to public goods dilemmas.

The multiplayer HD game revealed an entirely different landscape when compared

to its pairwise equivalent, the S dilemma. The differences between the two types of

multiplayer dilemmas highlight that the considerations taken when extending pair-

wise games to higher-order interactions may reveal fundamental differences between

them. These differences materialise here in the distinction between dilemmas fo-

cused on production (public goods dilemmas) and fair consumption of a pre-existing
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resource (commons dilemmas). Furthermore, the use of the general rule obtained

for the evolution of cooperation can be extended to the study of systems where

evolutionary games have been employed, such as in AI monitoring (Alalawi et al.

2024), disease evolution and spread (Morison et al. 2024), environmental governance

(Couto et al. 2020), and healthcare investment (Alalawi et al. 2020).

Remarkably, the derived dynamics did not depend on how communities were

connected, with the community effects overwriting other potentially overlapping

structural effects. It was observed in Broom et al. (2015) that high home fidelity

led to a simple fixed fitness Moran process independent of topology in the territorial

raider model with Q = 1, which is simply a particular case of the more general

nested Moran process we derived in this chapter. For general home fidelity values,

it was shown in Schimit et al. (2019, 2022) that temperature and average group size

can be good predictors of fixation probabilities in the HD dilemma and the CPD, for

a wide selection of topologies. Interpreted in that light, our results show that when

strict subpopulation temperature (defined in Pattni et al. (2017) as the sum of all

replacement weights of an individual outside their community) is asymptotically zero

(i.e., no interactions outside the community) and the size of the network of places

is fixed, the success of the fixation process is determined by the size of communities

and independent of other topological features. This is in contrast with the models

under which network topology plays a key role, such as evolutionary games on static

pairwise graphs (Santos & Pacheco 2005, Ohtsuki et al. 2006, Allen et al. 2017) and

satisfaction-dependent movement models (Erovenko et al. 2019, Pires et al. 2023)

explored in chapter 5.

Public goods dilemmas consistently lead to the evolution of cooperation down

to lower values of the reward-to-cost ratio when a larger number of smaller commu-

nities is considered. This is in line with what is observed in alternative community

and deme models (Hauert & Imhof 2012, Hauert et al. 2014, Pattni et al. 2017),

and multilevel selection models (Traulsen & Nowak 2006, Traulsen et al. 2008, Ak-

deniz & van Veelen 2020). The only exception to this is presented by multilevel

public goods games when punishment is introduced, in which case larger communi-

ties are beneficial for cooperation (Wang et al. 2011). It was shown in Allen et al.

(2017) that networks of isolated clusters interacting via the pairwise donation game

also favour cooperation more frequently under smaller clusters and larger networks.

Furthermore, strong isolated pairs were shown to be a strong predictor of coopera-
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tion in any evolutionary graphs (Allen et al. 2017). Therefore, fragmentation into

smaller social communities or groups might be one of several key mechanisms at

the origin of cooperative behaviour observed around us. This is further supported

by experimental studies which show that, in smaller groups, altruistic interventions

occur more often (Fischer et al. 2011), and free riding is less common (Steven J.

Karau & Kipling D. Williams 1993). Perhaps this helps explain why interactions in

smaller groups, particularly in groups of two individuals, are consistently observed

to be more prevalent in a wide range of human social interactions (Peperkoorn et al.

2020).

The results presented in this chapter were obtained within the limit of high

home fidelity, under which communities become asymptotically bounded interact-

ing groups. A relaxation of this limit is expected to lead to several key differences.

Firstly, we would expect an increase in the rate at which between-community events

happen, tied to the occurrence of group interactions between individuals of different

communities, and therefore to the blurring of the interacting boundaries between

them. In the pairwise donation game, considering less isolated clusters leads to

stricter conditions for the evolution of cooperation (Allen et al. 2017). Even though

a similar trend has been observed in the CPD in some small networks (Broom et al.

2015, Pattni et al. 2017), this should not be extrapolated to larger networks and all

topologies as interacting groups have variable size and the dilemma no longer has an

equivalent pairwise representation. In that case, the group structure underlying the

multiplayer interactions depends not only on the size and number of communities

but also on how the home nodes of each community are connected. Accounting

for interacting groups in a different way may therefore lead to fundamentally dif-

ferent results, even when the underlying social structure remains very similar or

the same (Gómez-Gardeñes, Romance, Criado, Vilone & Sánchez 2011, Gómez-

Gardeñes, Vilone & Sánchez 2011). Parallel approaches to higher-order interactions

show surprisingly high cooperative states under a class of multiplayer extensions

of the Prisoner’s Dilemma (Civilini et al. 2024). Similar effects may emerge under

communities with blurred boundaries, namely when considering dilemmas with non-

rivalrous public goods and/or shared costs, such as the Snowdrift dilemma, given

their propensity to evolve cooperation under high group size variance (Archetti &

Scheuring 2012, Santos et al. 2008, Gómez-Gardeñes, Vilone & Sánchez 2011). A

preliminary study of these effects will be done towards the end of chapter 4.
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Chapter 4

Multiplayer social dilemmas in

completely mixed populations

and networks of mixing

communities
1

4.1 Introduction

Models of evolutionary pairwise games often assume well-mixed populations, in the

sense that interactions between individuals are equally likely, due to the tractability

this confers to them. Two examples of this are the replicator equation introduced in

chapter 1, and the frequency-dependent Moran process introduced in chapter 1 and

later studied in chapter 2. The results obtained in those contexts can be used as

a term of comparison for the analysis of evolutionary outcomes on structured pop-

ulations. Well-mixed populations are a well defined concept in evolutionary games

when only pairwise games are considered. However, under multiplayer interactions,

there is a wide range of populations where individuals may be indistinguishable. It

is thus useful to have a clear understanding of the appropriate population against

which we can compare the results obtained in structured populations with multi-

player interactions, namely those of chapter 3.

A generalisation of a well-mixed population for multiplayer interactions is one

where in a group of a given size, all possible group compositions have the same

1This chapter is based on a working paper done in collaboration with Professor Mark Broom.
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probability of occurring (Broom & Rychtář 2012). This assures that individuals are

indistinguishable apart from their strategy. Under independent movement models

such as the one studied in chapter 3, one way to guarantee this is by considering

that all players have the same probability distribution over the places of the network

(Broom & Rychtář 2012). This additionally means that all individuals have the same

replacement weights apart perhaps from the self-replacement weights, as stated in

Schimit et al. (2019). However, the broad definition can be fulfilled under an arbi-

trary group size distribution. Particularly, it can be fulfilled under several different

modelling assumptions in the territorial raider model. One of them is a complete

network where each node is home to exactly one individual and the home fidelity

(h) is arbitrary. Another example would be a network with any set of links between

the nodes, where the whole population is based in the same home node, again with

arbitrary home fidelity. These models lead to well-mixed populations with different

group size distributions. Alternative independent movement models can be easily

conceptualised, and general group size distributions can also be introduced ad hoc

(Broom et al. 2019), as long as group compositions are random.

A stricter concept of a completely mixed population is introduced in Broom &

Rychtář (2012). A population following an independent movement model is said to

be completely mixed, if not only individuals but also all places in the network are

indistinguishable. This means that all individuals have the same uniform probability

distribution over the places of the network. This will lead to a unique population

with a particular group size distribution.

In this chapter, we will explore the concept of completely mixed population and

show that it can be obtained in the territorial raider model by considering complete

networks with h = 1. In section 4.2, we will start by deriving this and some of

the characteristics of the population, such as group size distribution. In section

4.3, we will obtain expressions for the fixation probability of a single mutant in

general well-mixed populations with multiplayer interactions under the six different

evolutionary dynamics explored so far. We will further consider the expansion of

the fixation probabilities in the limit of weak selection. In section 4.4, we will

apply the results obtained to five multiplayer social dilemmas previously analysed

in chapter 3, and obtain conditions for the evolution of cooperation in completely

mixed populations. These results will then be used as a benchmark to which the

rules obtained in chapter 3 will be compared. In section 4.5, we extend our analysis
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of the five multiplayer social dilemmas for broader home fidelity values and network

topologies in the territorial raider model. Finally, in section 4.6, we summarise these

results and discuss them in light of the remaining literature on multiplayer social

dilemmas.

4.2 Completely mixed populations

Consider a population with N individuals distributed over a complete network with

M places following the territorial raider model introduced in chapter 3. In the next

sections we will focus on the emerging dynamics when home fidelity is h = 1 under

the territorial raider model in complete networks. In this context, all individuals

have the same probability pnm = p = 1/M of being in any place in the network.

Each individual spends as much time in their home node as in any of the remaining

nodes of the networks. As such, this leads to a completely mixed population. In this

context, the fitness and replacement weights will be the same regardless of whether

we have individuals split equally between communities with the same size, or one

community with N individuals and the remaining ones empty. We will thus treat Q

not as the community size, but instead more generally as the density of individuals

over the connected places of the complete network Q = N/M .

Figure 4.1: Equivalence between territorial raider model on complete network with h = 1 and
completely mixed population. On the left, the territorial raider model in a complete networks
with 4 places and communities of size 3. Under h = 1, this model is equivalent to a completely
mixed population, i.e. a well-mixed population where individuals assemble in random groups
of size following a binomial distribution with parameters N = M×Q = 12 and p = 1/M = 1/4.
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4.2.1 Group size distribution, replacement weights and tempera-

ture

In this context, the size of the groups formed in any of the nodes of the network

follows a binomial distribution with parameters N and 1/M , i.e. B (N, 1/M). This

way, if at a given moment, a node of the network is chosen at random, the observed

group has a mean size of N/M = Q. However, from the point of view of each indi-

vidual, the number of other individuals in their current group will follow a binomial

distribution with parameters N−1 and 1/M , i.e. B (N − 1, 1/M). This way, the ex-

perienced group size of individuals will have a mean of 1+(N−1)/M = Q+1−1/M .

We call w1 the replacement weights between the different individuals in a well-

mixed population, and w0 the self-replacement weights. In particular, in a com-

pletely mixed population, the self-replacement weights correspond to the probability

of being alone:

w0 =

(
1− 1

M

)N−1

, (4.1)

which in the limit of large populations and networks with asymptotic density Q =

limN→∞ limM→∞(N/M) becomes:

w0 → exp(−Q). (4.2)

Therefore replacement weights between different individuals simply correspond

to the probability of not being alone divided by the remaining individuals:

w1 =
1− w0

N − 1
=

1

N − 1

(
1−

(
1− 1

M

)N−1
)

(4.3)

Temperature is defined in Lieberman et al. (2005) as the sum of all replacement

weights of a vertex. Under the current model, as pointed out in Broom et al. (2015),

this can be interpreted as excluding self-replacement weights, therefore depending

on the graph structure and the parameter h. In completely mixed populations, this

is equal to the following:

T = 1− w0 = 1−
(
1− 1

M

)N−1

(4.4)
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4.2.2 Fitness under completely mixed populations

As reported in the previous sections, when h = 1 in complete networks, each individ-

ual has an equal probability p = 1/M of being in any place Pm of the network. We

denote FC
Nc,Nd

and FD
Nc,Nd

as the fitness of cooperators and defectors in populations

with Nc cooperators and Nd defectors. These can be defined the following way:

FC
Nc,Nd

= 1− w + w · πC
Nc,Nd

, (4.5)

FD
Nc,Nd

= 1− w + w · πD
Nc,Nd

. (4.6)

depending on the average payoffs received by cooperators πC
Nc,Nd

and defectors πD
Nc,Nd

in such populations, which can be obtained by calculating the probability of any

other cooperator and defector being in the same place as the focal individual. The

number of other cooperators c and defectors d in the focal individual’s group follow

two binomial distributions. This way, the fitness can simply be calculated in the

following way:

πC
Nc,N−Nc

=

Nc−1∑
c=0

(
Nc − 1

c

)
pc(1− p)Nc−1−c

N−Nc∑
d=0

(
N −Nc

d

)
pd(1− p)N−Nc−dRC

c+1,d,

(4.7)

πD
N−Nd,Nd

=

N−Nd∑
c=0

(
N −Nd

c

)
pc(1−p)N−Nd−c

Nd−1∑
d=0

(
Nd − 1

d

)
pd(1−p)Nd−1−dRD

c,d+1.

(4.8)

4.3 Fixation probabilities under well- and completely

mixed populations

4.3.1 Fixation probabilities

Individuals of the same type in a well mixed population are indistinguishable and

therefore hold the same replacement weights and fitness values in the population.

Therefore, the state of the population can be described by the number of individuals

using each strategy, all states with the same number of individuals using each type

will lead to the same transition probabilities. We can thus describe the fixation

process of a single mutant on a population of residents based on a biased random

walk. This allows us to use the closed form equation given in Karlin & Taylor (1975)
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for the fixation probability of one mutant cooperator in a population of defectors

and the reverse as respectively the following:

ρC =
1

1 +
∑N−1

j=1

∏j
Nc=1

FD
Nc,N−Nc

FC
Nc,N−Nc

, (4.9)

ρD =
1

1 +
∑N−1

j=1

∏j
Nd=1

FC
N−Nd,Nd

FD
N−Nd,Nd

. (4.10)

We note that these probabilities are identical under the BDB, DBD, LB and LD

dynamics because the transition probability ratios that characterise the process are

identical at any given state of the population.

The DBB and BDD dynamics lead to different quantitative results as transition

probability ratios in the resulting Markov chain are different from the previous four

dynamics. Fixation probabilities are obtained in a parallel way to the ones presented

in 4.9 and 4.10, using the following corrected expressions:

ρCDBB/BDD =

=
1

1 +
∑N−1

j=1

∏j
Nc=1

FD
Nc,N−Nc

FC
Nc,N−Nc

·
(
1 +

(w0−w1)(FD
Nc,N−Nc

−FC
Nc,N−Nc

)
w1TDBB/BDD(Nc,N−Nc)+(w0−w1)FC

Nc,N−Nc

) ,

(4.11)

ρDDBB/BDD =

=
1

1 +
∑N−1

j=1

∏j
Nd=1

FC
N−Nd,Nd

FD
N−Nd,Nd

·

(
1 +

(w0−w1)
(
FC
N−Nd,Nd

−FD
N−Nd,Nd

)
w1TDBB/BDD(N−Nd,Nd)+(w0−w1)FD

N−Nd,Nd

) ,

(4.12)

with TDBB/BDD denoting the total weight-fitness correction factors under those two

dynamics, which are positive as evident in their definition:

TDBB(Nc, Nd) = Nc · FC
Nc,Nd

+Nd · FD
Nc,Nd

, (4.13)

TBDD(Nc, Nd) = Nd · FC
Nc,Nd

+Nc · FD
Nc,Nd

. (4.14)
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The DBB and BDD dynamics introduce a correction term into the fixation prob-

ability as it can be seen by comparing equations 4.11 and 4.12 with equations 4.9

and 4.10. As the denominator in the correction coefficient is always positive, the

correction coefficient amplifies differences between transition probability ratios if

w0 > w1, or suppresses them if w1 > w0.

In the particular case of a completely mixed population, the condition w0 > w1

is met if: (
1− 1

M

)N−1

>
1

N
, (4.15)

which under large populations and networks simply corresponds to:

N > exp(Q). (4.16)

This means that for any given density Q = limN→∞ limM→∞(N/M), there is always

a population size above which w0 > w1. Lower densities lead more easily to w0 >

w1, and higher densities, typically require exponentially larger populations to do

so. In those cases, individuals spend more time with themselves than with any

other particular individual thus leading to the amplification of differences between

transition probabilities in completely mixed populations.

In another example, namely well-mixed populations where individuals have pair-

wise interactions, the DBB and BDD dynamics lead to the same fixation probabilities

as the other dynamics if self-replacements are considered to occur at the same rate

as other replacements under neutral selection, i.e. w0 = w1. If self-replacements are

not possible, i.e. w0 = 0, then the DBB and BDD dynamics suppress the differences

between transition probabilities.

Finally, the limit of large home fidelity was considered in the territorial raider

model for communities of the same size in chapter 3. In that limit, even though the

overall population is deeply structured, its communities are asymptotically isolated,

and become well-mixed, interacting repeatedly within the same group of size Q. In

that case, individuals are never alone, thus leading to w0 = 0 and w1 = 1/(Q −

1). That is the reason why it is reported that selection is suppressed in within-

community events under the DBB and BDD dynamics under h→∞, a key point in

explaining why cooperation evolves under all dilemmas in those dynamics, but not

in the remaining dynamics.
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4.3.2 Fixation probabilities under weak selection

We consider the expansion of the equations obtained from fixation probabilities

under weak selection. In order to do so, we consider that w ·N → 0 and therefore

we can represent fixation probabilities in the following form:

ρC ≈ 1

N
+

∂ρC

∂w

∣∣∣∣
w→0

· w, (4.17)

ρD ≈ 1

N
+

∂ρD

∂w

∣∣∣∣
w→0

· w, (4.18)

where the zeroth order term is the fixation probability under neutral selection, which

can also be denoted as ρneutral = 1/N .

The first-order expansion terms are obtained by deriving the fitness in relation

to w and simplifying those expressions to get the following:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
Nc=1

(N −Nc)
[
πC
Nc,N−Nc

− πD
Nc,N−Nc

]
, (4.19)

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
Nd=1

(N −Nd)
[
πD
N−Nd,Nd

− πC
N−Nd,Nd

]
=

=
1

N2

N−1∑
Nc=1

Nc

[
πD
Nc,N−Nc

− πC
Nc,N−Nc

]
.

(4.20)

Performing the same expansion for the DBB and BDD dynamics, we observe

that the first-order term would simply have a correction coefficient added to it:

∂ρ∗DBB/BDD

∂w

∣∣∣∣∣
w→0

=

(
1 +

w0 − w1

w1N + (w0 − w1)

)
· ∂ρ

∗

∂w

∣∣∣∣
w→0

, (4.21)

which under large completely mixed populations simply becomes 1 + exp(−Q).

The correction coefficient only impacts the evolutionary dynamics by amplify-

ing/suppressing fixation. It does not affect the sign of the first-order term of the

expansion, and thus the DBB and BDD dynamics have no impact on the conditions

for cooperation to evolve explored in the following section.
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4.4 Cooperation and social dilemmas in completely mixed

populations

4.4.1 General social dilemmas in completely mixed populations

We consider a selection of the social dilemmas studied in Broom et al. (2019). These

multiplayer games represent different dilemmas regarding the production of public

goods with different characteristics or even the consumption of pre-existing com-

mons. We apply the equations 4.7 and 4.8 obtained for completely mixed popula-

tions to five different social dilemmas, and obtain the results presented in table 4.1.

The derivation of these equations is done in appendix C.1.

Game πC
Nc,N−Nc

πD
Nc,N−Nc

CPD
Nc − 1

N − 1

[
1−

(
1− 1

M

)N−1
]
V −K

Nc

N − 1

[
1−

(
1− 1

M

)N−1
]
V

PD
M

N

[
1−

(
1− 1

M

)N
]
V +

Nc − 1

N − 1

[
1− M

N

(
1−

(
1− 1

M

)N
)]

V −K
Nc

N − 1

[
1− M

N

(
1−

(
1− 1

M

)N
)]

V

VD V −K

[
1−

(
1− 1

M

)Nc
]
V

S V − M

Nc

[
1−

(
1− 1

M

)Nc
]
K

[
1−

(
1− 1

M

)Nc
]
V

HD
M

Nc

(
1− 1

M

)N−Nc

·

[
1−

(
1− 1

M

)Nc
]
V

M

N −Nc

[
1−

(
1− 1

M

)N−Nc
]
(V +K)−K

Table 4.1: Exact average payoff obtained under multiplayer social dilemmas in completely
mixed populations.

The fitness of both cooperators and defectors under the CPD and the PD depends

linearly on the frequency of the types in the population. This means that both

multiplayer games in completely mixed populations have equivalent pairwise games

in well-mixed populations. In the CPD, the fitness of defectors is larger than that

of cooperators for any positive values of V and K. In the PD, defectors have larger

fitness if V/K is larger than a critical value. Even though both games are motivated

as extensions of the pairwise Prisoner’s Dilemma to multiplayer interactions, they

hold significantly different results. This comes directly from the fact that cooperators

benefit from their own contributions in the PD, contrary to what happens in the

CPD.

The VD, S and HD hold different results, as the type with larger fitness depends

not only on the payoff parameters V and K, but also on the state of the population,

i.e. the number of cooperators Nc. Therefore, they may allow for mutual invasion of
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the two types or no invasion from either type. We compare the invasion scenarios as

they are defined in Taylor et al. (2004), considering V > 0 and K > 0, and obtain

the following results, simplified for large N :

• CPD - Defectors are always dominant;

• PD - Defectors are dominant when V/K <
1

1− exp (−Q)
, and Cooperators

are dominant when V/K >
1

1− exp (−Q)

• VD - Defectors are dominant when V/K < 1, mutual invasion occurs when

1 < V/K < exp(Q), and Cooperators are dominant when V/K > exp(Q);

• S - Defectors are dominant when V/K < 1, mutual invasion occurs when 1 <

V/K <
exp (Q)− 1

Q
, and Cooperators are dominant when V/K >

exp (Q)− 1

Q
;

• HD - Mutual invasion occurs when V/K <
Q− 1 + exp(−Q)

1− (Q+ 1) exp(−Q)
, and Defec-

tors are dominant when V/K >
Q− 1 + exp(−Q)

1− (Q+ 1) exp(−Q)
;

In Public Goods Games apart from the CPD, low enough rewards lead to the

dominance of defectors, whereas high enough rewards lead to the dominance of co-

operators. Under the VD and the S there is an additional regime of mutual invasion

for intermediate reward values, thus potentially leading to mutual fixation and the

instability of both strategies. Under the HD, cooperators are never dominant, with

mutual invasion occurring for low rewards, and defectors becoming dominant for

large enough rewards.

The CPD and PD are games of dominance, where therefore the evolutionary

dynamics considered don’t change the evolutionary outcomes and the dominant

strategy is always the one which fixates with probability higher than the neutral

one. However, under the VD, the S and the HD, we observe values of parameters for

which mutual invasion occurs. In those cases, it is not trivial which of the strategies

fixates on the other, as it is stated in Taylor et al. (2004) for pairwise games in

well-mixed populations. In these cases, choosing the DBB or BDD dynamics might

also move the boundaries under which each strategy fixates successfully. To further

study these boundaries, we take into consideration the weak selection limit.
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4.4.2 Rules of cooperation under large completely mixed popula-

tions

We apply the average payoff functions obtained in section 4.4.1 for five social dilem-

mas onto the fixation probability equations presented in section 4.3.2. We further

consider the limit of large populations (N → ∞) in large networks (M → ∞), de-

noting the asymptotic density of individuals as Q = limN→∞ limM→∞(N/M) and

the weak selection limit valid w · N → 0. This simplifies the first-order terms in

the expansion of fixation probabilities. Namely under the VD, S and HD, under

which mutual invasion occurs, it allows us to obtain the conditions for ρC and ρD to

be larger than the neutral value fixation probability ρneutral. These conditions are

summarised in table 4.2, as well as the evolutionary scenarios they may lead to. The

derivation of these conditions is done in appendix C.2. We recall the classification

of the evolutionary outcomes introduced in chapter 1:

• Selection favours cooperation if ρC > ρneutral > ρD;

• Selection favours defection if ρD > ρneutral > ρC ;

• Selection favours instability if ρC > ρneutral and ρD > ρneutral;

• Selection favours bi-stability if ρC < ρneutral and ρD < ρneutral.

Game ρC > ρneutral ρD > ρneutral Selection favours

CPD Never Always Defection

PD V/K >
Q

1− exp (−Q)
V/K <

Q

1− exp (−Q)
Defection, Cooperation

VD V/K >
Q/2

1− 1− exp (−Q)

Q

V/K <
Q2/2

1− exp (−Q)(Q+ 1)
Defection, Instability, Cooperation

S V/K >

L1(Q)− 1 +
1− exp (−Q)

Q

1− 1− exp (−Q)

Q

V/K <
Q− 1 + exp (−Q)

1− exp (−Q)(Q+ 1)
Defection, Instability, Cooperation

HD V/K <

Q

2
− 1 +

1− exp (−Q)

Q

1− exp (−Q) · (L2(Q) + 1)
V/K >

Q

2
+ 1− L1(Q)− 1− exp (−Q)

Q

L1(Q)− (1− exp (−Q))
Cooperation, Instability, Defection

Table 4.2: Conditions for the evolution of multiplayer cooperation under large completely
mixed populations with asymptotic density Q.

In some of these conditions, the functions L1(Q) and L2(Q) were used, which

are defined based on the limit of the difference between the harmonic series, i.e.
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HN−1 =
∑N−1

i=1 1/i, and two other geometric-harmonic series:

L1(Q) = lim
M→∞

HM×Q−1 −
M×Q−1∑

i=1

(
1− 1

M

)i

i

 , (4.22)

L2(Q) = lim
M→∞


M×Q−1∑

i=1

(
1− 1

M

)−i

i
−HM×Q−1

 . (4.23)

These two functions are both zero for asymptotically low density Q, i.e. L1(0) =

L2(0) = 0, and both increase with Q, thus being positive functions. L1(Q) increases
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Figure 4.2: Evolutionary outcomes obtained for different values of the reward-to-cost ratio
V/K in large completely mixed populations with asymptotic density Q. The figure was built
based on the critical values from the conditions in table 4.2.
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sublinearly with Q, and takes, for example, values L1(1) ≈ 0.80, L1(2) ≈ 1.32,

L1(3) ≈ 1.69, and L1(20) ≈ 3.57. L2(Q) increases supralinearly with Q, and takes,

for example, L2(1) ≈ 1.32, L2(2) ≈ 3.68, L2(3) ≈ 8.26, and L2(20) ≈ 2.56 × 107.

However, the result of exp (−Q) · (L2(Q) + 1) is 1 for Q = 0 and decreases mono-

tonically to zero as Q increases. The geometric-harmonic series used here also come

up in Haq et al. (2024) when the HD game is explored in complete territorial net-

works with arbitrary h for the particular case where each node hosts one individual

(Q = 1).

The rules for the evolution of cooperation in table 4.2 can be intricate, so we use

them to represent the areas under which selection favours cooperation, instability,

or defection in figure 4.2, for different values of the density Q and the reward-to-cost

ratio. We do not represent cases of bi-stability as these were not found. Under large

populations and networks, the conditions depend only on the asymptotic value of the

ratio Q = N/M , which we named the density of the population, corresponding to

the community size under large home fidelity used in chapter 3, or the subpopulation

size used in other approaches (Pattni et al. 2017).

Cooperation can never evolve under the CPD in completely mixed populations.

However, in the remaining PGGs, i.e. the PD, the VD, and the S, it always has a

chance of evolving if the value of the reward-to-cost ratio is larger than a critical value

determined by the density of the population. In the HD, it does so if the reward-

to-cost ratio is lower than a critical value. The critical values of V/K increases in

the four PGGs and in the HD game. This assures that higher density of individuals

hinders the chances of cooperation evolving under PGGs, but affects them positively

under the HD.

In figure 4.2, the critical value of V/K under the Prisoner’s Dilemma starts at

1 for asymptotically low density Q → 0 and increases approaching from above the

value of Q for larger densities. In this game, V/K > Q means that in groups of

up to size Q, the share of the reward reaped by a cooperator is larger than the

cost paid by them. Since cooperators benefit from their contributions to the public

good, cooperation thus evolves only when a large share of the interactions in which

individuals partake do not represent a dilemma.

In the Volunteer’s Dilemma, the critical values start at 1 as well, but a gap opens

between successful fixation of cooperators and the failed fixation of defectors. Even

though cooperators fixate successfully for rewards of approximately Q/2 for larger
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densities, defectors only fail to fixate for rewards of approximately above Q2/2. The

region of instability increases its size quadratically. Defection becomes unstable

more easily, but cooperation very rarely becomes stable. This is so because under

high density of individuals, 1) a small number of cooperators are advantageous in

populations of defectors because they always get a full reward contrary to defectors;

and 2) a small number of defectors are advantageous in populations of cooperators

because they often get the rewards from cooperators without paying a cost.

In the Snowdrift game, the critical values start at 1 once more, and there is a

gap opened which is narrower than under the VD. For large densities, cooperators

fixate successfully for rewards growing sublinearly on Q and defectors become un-

stable for rewards close to Q. This results are better than those obtained under all

previous dilemmas. This is due cooperators always benefiting from the full reward,

which increases their chances of fixating on defectors, as seen in the VD. However,

here they pay a lower cost if other cooperators are present in the group as well,

therefore making their own populations much more resistant to invading defectors,

when compared to the VD.

Finally, in the Hawk-Dove game, defectors try to monopolise the rewards by

resorting to costly aggression. Therefore, if the reward-to-cost ratio is high enough,

defectors hold an advantage because their aggressive behaviour pays off. The critical

values of the rewards increase with Q, because in larger groups, it is more likely that

several defectors will be present in the same group, thus leading to higher costs of

fighting and lower chances of monopolising the reward, improving the chances of

cooperators evolving.

4.4.3 Comparison between community-structured and completely

mixed populations

The results obtained in this context can be used as a benchmark to which we can

compare the results from structured populations. The completely mixed population

emerges naturally from considering the territorial raider model in complete networks

with h = 1. Another interesting limit of this model is the one obtained for any net-

work when h→∞, which has been explored extensively in chapter 3. In that work,

the emerging dynamics are shown to be a nested Moran process, where individuals

first fixate at within-community level, after which communities may fixate in the

whole population. Furthermore, conditions for the evolution of cooperation were
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obtained there for 10 different social dilemmas, including the 5 multiplayer dilem-

mas studied here. This makes it natural for us to explore the results obtained under

community structure in comparison to those under completely mixed populations.

We restrict our comparison to integer values of density Q ≤ 2, where the community

structure results are valid.

First of all, cooperation evolves under the CPD in community-structured popu-

lations when the DBB and BDD dynamics are considered, whereas it never does in

completely mixed populations. This highlights that community structure can indeed

be a powerful promoter of cooperation, allowing for cooperation to evolve in dilem-

mas which are particularly challenging and have no chance of evolving cooperation

in mixed populations. In the remaining games, cooperation may evolve in com-

pletely mixed populations. However, there are gaps between the parameter regions

for which cooperation evolves under completely mixed and community-structured

populations.

Under the PD, only one strategy fixates successfully at a time. The critical

reward-to-cost ratio V/K above which cooperators fixate successfully under com-

pletely mixed populations is larger than Q but approaches that value for larger den-

sities. This can be compared to Q and Q/2 obtained under community-structured

populations for different dynamics. Community structure always leads to a wider

parameter region where cooperation fixates successfully. When communities become

larger, the critical values obtained in the BDB, DBD, LB, and LD dynamics under

the two organisations of populations converge to the same value Q. In those dy-

namics, cooperation can only evolve if cooperators have a direct individual benefit

in cooperating. However, comparing the two structures under the DBB and BDD

dynamics, the gap between the two critical values is considerable and maintained for

large Q (values become Q and Q/2). This is explained by the fact these dynamics

are sensitive to the viscosity of evolutionary processes on structured populations, as

originally seen in Ohtsuki et al. (2006) and further analysed in chapter 3 for this

multiplayer game framework.

In the remaining games VD, S, and HD, it’s possible to observe both cooperators

and defectors fixating successfully on populations of the opposing type–see instabil-

ity regions on figure 4.2. In comparison, under weak selection and large networks

of community-structured populations, there is always one single strategy fixating

successfully on the other.
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Under the VD, community-structured populations allow for the evolution of co-

operation if V/K > Q for the BDB and equivalent dynamics. This value is therefore

in the instability region of completely mixed populations, between Q/2 and Q2/2

under large densities. Under these dynamics, community structure widely stabilises

cooperation when Q < V/K < Q2/2, but it might instead stabilise defection when

Q/2 < V/K < Q. However, under the DBB and BDD dynamics, community struc-

ture guarantees the evolution and stability of cooperation if V/K > Q/2, which

covers the whole region of evolution of cooperation and instability, and part of the

region of defection under completely mixed populations (see for example Q = 2 and

V/K = 1.5).

Under the Snowdrift game in community-structured populations with the BDB

and equivalent dynamics, the critical value of the reward-to-cost ratio is the sum of

the harmonic series with Q terms. Similar to the VD, this value falls on the insta-

bility region of completely mixed populations, meaning that community structure

sometimes stabilises cooperation but other times defection in comparison to com-

pletely mixed populations. However, under the DBB and BDD dynamics, the critical

value obtained under community-structured populations always falls on the region

of evolution of defection of completely mixed populations, thus having a parallel

effect to that noted under the VD.

Overall, these results follow the general trend under public goods dilemmas that

the DBB and BDD dynamics are much more sensitive to the viscosity of evolutionary

processes on structured populations than the remaining dynamics studied. Commu-

nity structure under the latest set of dynamics always reduced the areas under which

defectors fixated successfully, but sometimes at the expense of decreasing the areas

under which cooperators fixated successfully. However, community structure under

DBB and BDD dynamics always extended the areas under which cooperators fixated

successfully together with reducing those under which defectors did.

Under the Hawk-Dove game, the relation between critical values is not entirely

consistent. Under the BDB and equivalent dynamics, community structure starts

by reducing the size of the region of V/K where cooperation evolves when Q = 2,

and moves on to fall on the instability region for Q ≥ 3. Under the DBB and BDD

dynamics, community structure starts by assuring that cooperators evolve regardless

of V/K under Q = 2. For Q = 3, the critical reward-to-cost ratio falls on a finite

value on the defection area of completely mixed populations, and finally for Q ≥ 4
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it falls on the instability area.

4.4.4 Fair comparisons

In Broom & Rychtář (2012), a comparison between the results under a well-mixed

and a structured population model is defined as a fair comparison if the mean group

size under both is the same. This proposed way of evaluating evolutionary outcomes

in structured populations mainly aims at eliminating the potential overlapping ef-

fects of emerging differences in experienced group size which might be affecting

fixation probabilities, thus isolating the effects of population structure.

As elaborated on section 4.2, the average group size experienced by each indi-

vidual in the completely mixed population is 1 + (N − 1)/M . In the limit of large

populations in large networks, this simply becomes Q+ 1. This says that in a large

population, the experienced mean group size of individuals is one unit larger than

the mean number of individuals per place. To perform a fair comparison of the re-

sults obtained under large home fidelity, where mean experienced group size would

simply be equal to the density Q′ due to no variance, we compare them instead with

completely mixed populations with lower density Q = Q′ − 1, which would have

mean experienced group size Q′. The two populations of same size N = N ′ will

be embedded on networks of different sizes M and M ′, both large but holding the

relation M = M ′
(
1 + 1

Q

)
.

This means that the gains obtained by cooperators in community structure de-

scribed in the previous section would be slightly attenuated under the PD, VD and

S, as lower Q = Q′ − 1 instead of Q = Q′ would lead to broader regions of the

evolution of cooperation. Due to this, under fair comparisons, the impact of the

structure itself was quite low, with the change in experienced average group size

doing most of the work. In some fair comparisons, community structure was even

detrimental to the evolution of cooperation, namely when the BDB dynamics are

considered. This is true for the PD for all values of Q, and for the VD and S under

Q = 2. The CPD never evolves under the BDB dynamics in both structures, so no

fair comparison between the rules is performed in that context. Under the DBB dy-

namics, community structure always represents an improvement for all PGGs, CPD

included. In the HD game, lower Q decreases the chances of cooperation evolving

in completely mixed populations, which therefore accentuates the positive results

obtained in community structure when a fair comparison is considered.
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4.5 Evolution of cooperation on networks of mixing com-

munities

In this section, we evaluate the results of fixation processes for wider values of home

fidelity and different network topologies. In figure 4.3, you can observe the fixation

probabilities of cooperators (left) and defectors (right) for different social dilemmas

(rows).

As noted in chapter 3, under large home fidelity all topologies converge to the

same asymptotic fixation probability, even though the rate of convergence can be

particularly slow under the CPD in complete networks. Overall, we observe that

structure becomes relevant under lower values of h, therefore leading to the diver-

gence of fixation curves in different topologies. Lower home fidelity hurts cooperation

under the CPD, dropping its fixation probability to zero under all topologies, but

not for the remaining dilemmas. In the VD and S games, even completely mixed

populations (h = 1 in complete networks) allow cooperators to fixate successfully.

We observe that in the four PGGs, cooperators do better in star and circle

networks than in complete ones for values h > 1. The star and circle networks have

lower average degree, i.e. 2 × (1 − 1/M) and 2 respectively, than the complete,

i.e. M − 1, thus leading to a rescaling of the probabilities of staying within their

community. Therefore, scenarios with higher subpopulation temperature (Pattni

et al. 2017), i.e. probability of interacting with individuals outside their community,

might be overall detrimental to the communal cooperation effects noted in chapter

3. This is also what happens when no subpopulations are considered (Q = 1), in

that case because lower temperatures translate into individuals being mainly alone

and cooperators doing better (still never evolving) because defectors cannot take

advantage of them (Schimit et al. 2022).

Under all PGGs apart from the CPD in star networks with lower home fidelity,

cooperators do worse, associated with the fact that under h < 1, groups tend to

assemble in the centre and thus increase the average experienced group size. Low

average group size has been shown as another good determinant of cooperation under

PGGs (Schimit et al. 2019, 2022), similar to what we observe here accounting for

communities. This effect is particularly present in spatial networks with high node

degree variance where large groups assemble in the hubs of the network (Schimit

et al. 2019, 2022) and there is a general loss of the beneficial effects of highly local
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Figure 4.3: Fixation probabilities of cooperators (left) and defectors (right) under five differ-
ent social dilemmas (rows) for different values of home fidelity h. Each coloured line represents
a different topology of a network of size M = 6, and communities of size Q = 2. The process
used was the DBB dynamics, and payoff parameters are w = 0.4, V = 2, and K = 1. Two
cases of interest are the 1) completely mixed populations, i.e. complete network h = 1, and 2)
community-structured population, i.e. all topologies under h → ∞.
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populations seen in chapter 3.

The results obtained under Hawk-Dove game show that low mixing of groups is

beneficial to cooperators. This occurs both when h→∞ in all networks and h→ 0

in the star network. Moreover, in chapter 3, we reported that cooperators benefit

from being in larger communities when there is no mixing, which might explain why

they thrive the most under extreme low fidelity in star networks. In all networks

when h ≈ 1 there is high mixing of individuals and those benefits are lost.

Figure 4.4 shows the results obtained in different possible organisations of pop-

ulations of size 12 under this framework. This includes communities of size 2 dis-

tributed over 6 nodes and communities of size 3 distributed over 4 nodes of complete,

star and circle networks.

It is clear that under PGGs, cooperators fixate successfully for wider values of h

in larger networks (M = 6) of smaller communities (Q = 2). This was already noted

for the limit of large home fidelity explored in chapter 3. In the particular case of

the CPD, cooperators never get to evolve when M = 4 and Q = 3 for this choice

of parameters. Under large home fidelity, cooperation evolves if the reward-to-cost

ratio respects the following condition: V/K > (Q − 1) · (1 − 2
MQ)/(1 − 2(Q−1)

MQ ).

Under Q = 2 and M = 6 this is equivalent to V/K > 1. Under Q = 3 and M = 4,

this is equivalent to V/K > 2.5. This explains why under V = 2 and K = 1 we

observe cooperation succeeding in one of the community-organised populations, but

not on the other. Here, we further observe that the beneficial effect of organising

into smaller communities is generally maintained for lower home fidelity values.

Moreover, it can be observed in figure 4.4 that both cooperators and defectors

fixate on each other for the same values of the parameters under wide intervals of

h. This is generally not observed in the CPD and the PD, but is overall present in

the VD, the S, and HD games. These results agree with the previous mathematical

analysis of completely mixed populations under weak selection, where such cases

were possible only in these three games.

4.6 Discussion

In our work we have started by elaborating on the concept of completely mixed

populations and associating it to the territorial raider model in a complete network

with home fidelity set as h = 1. We derive some of the characteristics of these
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Figure 4.4: Fixation probabilities under complete (left), star (centre), and circle (right)
networks for five different social dilemmas (rows). Fixation probabilities of cooperators (blue
lines) and defectors (red lines) are shown in the same plots for different values of home fidelity
h and two cases with equal population size: one with network size M = 6 and community
size Q = 2 (circle markers), and another one with network size M = 4 and community size
Q = 3 (triangle markers). The process used was the DBB dynamics, and payoff parameters
are w = 0.4, V = 2, and K = 1.
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populations for general values of population size and number of places and asymp-

totic density Q = N/M , which relates to community size under large home fidelity

used in chapter 3, or the subpopulation size used in other approaches (Pattni et al.

2017). Our analysis of such populations culminates in the derivation of the fixation

probability of a new type on them, and its application to analyse the evolution of

cooperation under five different social dilemmas.

We conclude that cooperation does not evolve under the Charitable Prisoner’s

Dilemma in completely mixed populations. However, it does so under certain con-

ditions in the remaining dilemmas. This is typically formalised based on the critical

value of the reward-to-cost ratio above which cooperators evolve under PGGs, and

the one below which they evolve under the HD game. This critical value increases

with the value of the density of the population, thus meaning that cooperators are

favoured by lower densities in PGGs and higher densities under the HD. Completely

mixed populations allow scenarios of evolutionary instability of the two strategies

in three different games, with special prevalence under the Volunteer’s Dilemma.

We compare the general rules of cooperation under community structure ob-

tained in chapter 3 to the ones obtained here, and note that it overall benefits the

evolution of cooperation under all dilemmas. However, we observe that this ef-

fect is often limited under the BDB, DBD, LB, and LD dynamics, especially when

the effect of different average group sizes is removed by performing a fair compar-

ison. In exceptional cases, this leads to the evolution of cooperation being more

limited under a community-structured population than in its fair comparison equiv-

alent completely mixed population. Similar differences between dynamics have been

noted under other approaches to population structure models (Ohtsuki et al. 2006,

Pattni et al. 2017, Pires & Broom 2024), including the one explored in chapter 3,

thus suggesting that these dynamics are not sensitive to the viscosity of evolutionary

processes in structured populations. At the same time, this does not happen for al-

ternative proposed mechanisms for the evolution of multiplayer cooperation, such as

the co-evolution of assortative behaviour amongst cooperators through conditional

movement, as it will be seen in chapter 5.

The evolution of cooperation under PGGs benefits from the organisation of pop-

ulations into lower density systems. This is observed both by looking at the rules

from table 4.2, obtained under completely mixed populations, but also for different

network topologies and for general values of home fidelity in figure 4.4. Low subpop-
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ulation temperature, i.e. low mixing between communities and low average group

size are good indicators of the evolution of cooperation, similarly to what has been

noted in Schimit et al. (2019) where communities are not considered (instead con-

sidering only Q = 1 in the territorial model). However, we are left with the question

whether there is a good unique measure that accounts for both these factors. In the

future, we would like assess this question in further depth by considering a wider

range of network structures with various community sizes Q > 2 and home fidelity

values.
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Chapter 5

Co-evolution of cooperation and

conditional movement on

networks
1

5.1 Introduction

The fundamental framework of multiplayer games on networks introduced in chapter

1 and used as a basis for the territorial raider model explored in chapters 3 and 4 is

highly flexible. In its context, several types of movement models have been studied,

a review of which is provided in Broom et al. (2021) together with an analysis

of their robustness and applicability. In this chapter, we will focus on a Markov

movement model, i.e. a model under which the next positions of individuals depend

only on the current population distribution. We use the conditional movement

strategy introduced in Pattni et al. (2018), under which individuals move with higher

probability if they are not satisfied with their group composition.

This rule is similar to the principle behind the Win-Stay, Lose-Shift strategy

introduced in chapter 1, which was shown to be evolutionarily successful in iter-

ated pairwise games (Nowak & Sigmund 1993, Kraines & Kraines 2000). In Aktipis

(2004), the principle was shown to be successful in pairwise interactions under which

individuals have the possibility to move. This was coined the “walk-away” strategy,

under which individuals always cooperate but move if their interactive partner de-

fects, also successful in groups playing public goods games (Aktipis 2011). Still in

1This chapter is based on the work published in Pires et al. (2023), which results from a collab-
oration with Professor Igor Erovenko and Professor Mark Broom.
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the context of cooperation between individuals, the co-evolution of conditional move-

ment rules has been shown to be successful (Hamilton & Taborsky 2005, Le Galliard

et al. 2005).

Therefore, we propose the use of the Broom-Rychtář framework and, in partic-

ular, the stochastic conditional rule introduced in Pattni et al. (2018) to explore

the evolution of multiplayer cooperation in mobile and structured populations. As

introduced in chapter 1, it is shown in Pattni et al. (2018) that complete networks

sustain the co-evolution of cooperation and assortative behaviour, allowing coop-

erators to find and stay with each other in groups until they are found by defec-

tors. Exploring circle and star networks, it is shown in Erovenko et al. (2019) that

non-complete topologies can be detrimental to the evolution of cooperation under

movement, potentially due to the negative impact of a lower clustering coefficient

and a higher degree centralisation, i.e. high variance in degree centrality, on the

assortative behaviour described above. Alternative evolutionary dynamics such as

the ones adapted to this framework in Pattni et al. (2017) and formally defined in

chapter 3 haven’t been explored in this context. However, the results from both

evolutionary pairwise games on graphs (Ohtsuki et al. 2006) and multiplayer games

under independent movement explored in chapters 3 and 4 show that the chosen

evolutionary dynamics can be determinant of the evolution of cooperation.

In this chapter, we propose to assess the influence of choosing different evolu-

tionary dynamics on the interdependence between multiplayer cooperation, network

topology, and assortative behaviour. In section 5.2, we provide a formal definition

of the model used. In section 5.3, we develop a systematic analysis of the results

obtained under complete, circle and star networks for all six evolutionary dynamics

presented in Pattni et al. (2017). This is done for both rare and non-rare interac-

tive mutations, respectively in subsections 5.3.1 and 5.3.2. Overall, we show that

the evolution of cooperation is primarily dependent on network topology and that

qualitative evolutionary outcomes are generally robust to the choice of evolutionary

dynamics. In section 5.3.3, we discuss the new topological effects which haven’t been

previously observed in Erovenko et al. (2019). Finally, in section 5.4, we summarise

and analyse the main distinction between these results and those of evolutionary

games on graphs (Ohtsuki et al. 2006) and multiplayer games under independent

movement observed in chapters 3 and 4. We further explore the quantitative similar-

ities and differences between the results obtained under each evolutionary dynamics.
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5.2 The Markov movement model

The work accomplished in this chapter is based on the modelling framework proposed

in Broom & Rychtář (2012). In this section, we will focus primarily on the relevant

aspects to the Markov model considered. Some of these aspects will be similar

to those introduced for the territorial raider model in chapter 3. Similarly, the

framework comprises three main features which we will expand on in the following

subsections: (1) network structure and Markov movement; (2) the multiplayer game;

and (3) the evolutionary dynamics.

5.2.1 Network structure and Markov movement

We start from the same basic framework as in chapters 3 and 4. Let us consider a

population composed of N individuals, with the nth individual labelled In. Each

individual is positioned in a network with M places, the mth place being labelled

Pm. The network has a set of edges between its nodes, which in this model will

be relevant to define the possible moves individuals can make on it. Here, we will

consider the three topologies analysed in Erovenko et al. (2019): complete, star, and

circle networks of different sizes. These three types of structures exhibit high degrees

of symmetry, resulting in extreme clustering coefficients and degree centralisation

values, both of which are critical measures in network analysis.

Although the terms “graph” and “network” are often used interchangeably in

the literature, we will adopt the terminology used in Schimit et al. (2019) and in

the previous chapters. Specifically, we will use the first to refer to the evolutionary

graph that emerges from the replacement weights between individuals. On the other

hand, the second will be used to refer to the network of places described above.

Contrary to what we considered in the previous chapters, each node in the net-

work is home to exactly one individual, which leads to the equality M = N . Let

pn,t(m) be the probability that an individual In is at place Pm at time t. In the

context of general history-dependent movement, this probability distribution is con-

ditional on the past positions of all individuals in the network (Broom & Rychtář

2012), denoted as Mt′ = [Mn,t′ ]n=1,...,N , at all values of time t′ < t. However, we are

considering a Markov movement model, under which the probability is dependent

only on the positions at which individuals were in the previous discrete time step, i.e.

t′ = t− 1. To make this dependence explicit, we define the probability distribution
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introduced above as the following:

pn,t(m|mt−1) = P(Mn,t = m|Mt−1 = mt−1). (5.1)

We follow the same movement model used in previous studies (Pattni et al. 2018,

Erovenko et al. 2019). Each individual begins the exploration phase at their home

node, from which they will go through T time steps, which we call the exploration

time, before going back to their home nodes. At each time step t, individual In

evaluates the group Gn in which they were at time t − 1. Groups are defined as

functions of the positions at the previous time stepmt−1 and denoted asGn(mt−1) =

{i : mi,t−1 = mn,t−1}. The probability that individual In remains in the same place

depends on their group’s composition, as described by the following equation:

hn(Gn(mt−1)) =
αn

αn + (1− αn)S
βGn(mt−1)\{n}

, (5.2)

where S is a sensitivity parameter, αn is the staying propensity of individual In

and β is the attractiveness of the group. The staying probability increases with the

staying propensity which may hold a value between 0 and 1. Decreasing S results

in a greater impact of the group-dependent term on the staying probability. The

attractiveness of the group with whom individual In has interacted is obtained from

the sum of the attractiveness of all other individuals in that group:

βGn(mt−1)\{n} =
∑

i∈Gn(mt−1)\{n}

βi, (5.3)

where βC = 1 and βD = −1 are the attractiveness of cooperators and defectors

respectively.

Based on this definition, the probability pn,t(m) that individual In is at place

Pm at time t depends only on the place where the individual was in the previous

step mn,t−1, and the group they were interacting with at that time Gn(mt−1). This

probability assumes the following form:

pn,t(m|mn,t−1, Gn(mt−1)) =


hn(Gn(mt−1)) m = mn,t−1,

1− hn(Gn(mt−1))

d(mn,t−1)
m ̸= mn,t−1 ∧ l(m,mt−1) = 1,

0 l(m,mt−1) > 1,

(5.4)
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where d(mn,t−1) represents the degree of the node where In was located at time

t− 1, and l(m,mt−1) represents the shortest path between the two positions in the

network.

We note that in this model, if an individual decides to move, then it moves to

a neighbouring location randomly with uniform probability. In other words, the

only decision an individual makes is whether to stay at the current location. See

Erovenko & Rychtář (2016), Erovenko (2019), Weishaar & Erovenko (2022) for a

different approach, where individuals sample all potential future locations and move

strategically based on the expected payoff in each such location.

5.2.2 Multiplayer game

At every time step of the exploration phase, individuals participate in a multiplayer

game with the group present in the same node of the network. This interaction

results in the reward Rn,t received by individual In at time t. We use the public

goods game described in Pattni et al. (2018) and Erovenko et al. (2019), which is also

known as the Charitable Prisoner’s Dilemma (Broom et al. 2019). This multiplayer

social dilemma is introduced and explored in the previous chapters 3 and 4. In this

game, cooperators in a group pay a cost of K to contribute V to a public good, which

is then equally split among all other members of the group, including defectors.

In this chapter, we consider all individuals to receive a background reward of R.

Since a rescaling of the fitness of individuals will lead to the same stochastic process,

we rescale all payoffs by R, using the scaled variables of the reward v = V/R and

the cost k = K/R. In terms of representation, this is the same as considering R = 1,

v = V and k = K. As previously noted in chapter 3, this is equivalent to using

intensity of selection of w = 0.5. The payoff received by the individual in the group

Gn is thus defined as follows:

Rn,t(Gn(mt)) =



1− k +
|Gn(mt)|C − 1

|Gn(mt)| − 1
v if In is a cooperator and |Gn(mt)| > 1,

1− k if In is a cooperator and |Gn(mt)| = 1,

1 +
|Gn(mt)|C
|Gn(mt)| − 1

v if In is a defector and |Gn(mt)| > 1,

1 if In is a defector and |Gn(mt)| = 1,

(5.5)

where |Gn| is the total number of individuals and |Gn|C the number of cooperators

99



in the group. In the simpler independent movement model of chapters 3 and 4, the

group composition was described in simpler terms by the number of cooperators

c and defectors d (see CPD in table 3.1). This would lead to the same payoffs

represented above. A distinctive feature of this public goods game is that cooperators

do not benefit from their own contributions (Broom et al. 2019), which reduces the

likelihood of cooperation evolving, similar to what is observed in the original pairwise

Prisoner’s Dilemma. Amongst all the public goods dilemmas explored in chapters 3

and 4, this one held the strictest conditions for the evolution of cooperation.

At the beginning of the exploration phase (t = 0), all individuals start with

null fitness, and the payoffs Rn,t received at each time step t will accumulate over

time. The fitness contribution fn,t to an individual’s fitness at time t is calculated

as follows:

fn,t(m,Gn(mt)|mn,t−1) =


Rn,t(Gn(mt))− λ m ̸= mn,t−1,

Rn,t(Gn(mt)) m = mn,t−1,
(5.6)

where λ denotes the movement cost, rescaled by the background payoff R.

Fitness contributions are evaluated at each time step during the exploration

phase until the time T is reached. Consequently, the total fitness Fn,t(mt) of each

individual at time t can be computed by summing the T most recent contributions

up to that time:

Fn,t(mt) =

t∑
t′=t−T+1

fn,t′(mk|mk−1). (5.7)

Upon completion of the exploration phase, the fitness of individuals is calculated

and they are considered to go back to their respective home nodes. Thereafter,

we consider an update of the population state, based on the evolutionary process

described in the following subsection.

5.2.3 Evolutionary dynamics

We consider the state of the population to be updated after individuals complete an

exploration phase, accumulate their fitness, and return to their home nodes. During

an update, one individual reproduces and another one is replaced by the first. We

adopt the approach initially proposed in Lieberman et al. (2005) for populations in

pairwise interaction networks, and later extended in Pattni et al. (2017) for general

evolutionary games on networks. We recall the definition of an evolutionary graph,
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where each node represents an individual, and the adjacency matrix represents the

replacement weights that determine the possible replacement events.

We calculate the replacement weights based on the time individuals spend to-

gether one exploration time step after being at home (Pattni et al. 2018, Erovenko

et al. 2019). We assume that individuals spend equal fractions of time with mem-

bers of the same group, and only spend time with themselves when they are alone.

The time spent between two individuals Ii and Ij under the set of positions of the

population M = m is denoted ui,j , and depends only the group Gi(m) meeting

with Ii under those positions:

ui,j(Gi(m)) =



1

|Gi(m) \ {i}|
i ̸= j ∧ j ∈ Gi(m),

0 i ̸= j ∧ j /∈ Gi(m),

1 i = j ∧ |Gi| = 1,

0 i = j ∧ |Gi| > 1.

(5.8)

The replacement weights are denoted as wi,j,t and are considered at a time t

that is multiple of T . The positions of individuals at home are defined as mt−T .

Replacement weights correspond to the average time spent between individuals Ii

and Ij when they are one movement time step away from home. Thus, their values

can be obtained using the following equation:

wi,j,t =
∑
m

ui,j(Gi(m))p(m|mt−T ). (5.9)

After defining the underlying evolutionary graph, we are now in a position to

consider the stochastic update rules of the evolutionary dynamics. At each time

step of the evolutionary process, an individual Ii will reproduce and replace an

individual Ij with probability of replacement τij . The probability of selecting any set

of individuals for reproduction and replacement will depend on both the fitness and

the replacement weights of all individuals in the population. Previous approaches

to Markov movement models have focused on the birth-death process with selection

acting during birth (BDB). In the present chapter, we use the set of six dynamics

defined in chapter 3. These are referred to as the BDB, DBD, DBB, BDD, LB,

and LD dynamics. See section 3.2.3 of that chapter for more details on how the

probability of replacement depends on the fitness and replacements for each of the
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six evolutionary dynamics. In particular, table 3.2 shows the probabilities of birth

(bi(j)) and death (d(i)j), or the final probability of replacement (τij) for any pair of

individuals Ii and Ij for each of the evolutionary dynamics.

Consider a population consisting of individuals with complex strategies that

include both an interactive and a movement component. The interactive compo-

nent determines whether an individual cooperates (C) or defects (D) during in-

teractions in the public goods game presented. The movement component is de-

fined by their staying propensity denoted as αn, which takes one of the values

{0.01, 0.1, 0.2, ..., 0.8, 0.9, 0.99}, similarly to what was considered in previous works

(Pattni et al. 2018, Erovenko et al. 2019). This leads to a total of 22 possible complex

strategies.

We assume the timescale in which mutations occur to be much larger than that

of replacement events. Under this assumption, the evolutionary processes described

above lead to dynamics of fixation, where at most two strategies are present in

the population at any given time. Thus, it becomes essential to analyse fixation

probability values, i.e. the probability that one individual using a mutant strategy

will fixate in a population with a distinct resident strategy. We will consider two

mutation scenarios. In the first scenario, mutations of the interactive component

of strategies are much rarer than those of the movement component. In the second

scenario, mutations of both strategy components occur at the same rate.

Rare interactive strategy mutations

In this scenario, mutations in movement strategies occur at a higher rate than those

in interactive strategies. For each interactive strategy, there exists an optimal staying

propensity towards which the population evolves. The optimal staying propensity

of defectors is always the maximum value of α, which is 0.99 since there is no benefit

in moving when everyone defects. As for cooperators, its value can be determined

by computing fixation probabilities between all cooperator strategies. The strategy

with the optimal staying propensity cannot be invaded by any other strategy with

a probability higher than the neutral fixation rate of 1/N . Fixation probabilities

can be obtained by running simulations starting with one single mutant individual

subject to the evolutionary dynamics described above. The simulation ends either

in a successful fixation, where all individuals use the mutant’s strategy, or an un-

successful one, where all individuals use the resident’s strategy. By running this
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simulation for nt trials, the fixation probability can be computed from the fraction

of those trials ending in successful fixations.

We assume that populations evolve towards the optimal staying propensity of

their interactive strategy, after which interactive strategy mutations become rele-

vant. We calculate the fixation probabilities of mutant cooperators against resi-

dent defectors using their optimal propensity, and consider the mutant cooperator

strategy with the highest fixation probability, denoted ρC , as the fittest mutant.

Similarly, we obtain the fixation probability of the fittest mutant defector against

resident cooperators, denoted ρD, by performing parallel computations. We then

compare these two probabilities against the neutral fixation probability of 1/N . We

classify the evolutionary outcome based on the principle elaborated in chapter 1 and

already used in the previous chapters, restated here:

• Selection favours cooperation if ρC > 1/N > ρD;

• Selection favours defection if ρD > 1/N > ρC ;

• Selection favours instability if ρC > 1/N and ρD > 1/N ;

• Selection favours bi-stability if ρC < 1/N and ρD < 1/N .

Non-rare interactive strategy mutations

When mutations of both the interactive and movement components of strategies

occur at the same timescale, a successful strategy will face individuals of both types

of interactive strategies throughout the evolutionary process. Thus, the optimal

staying propensities of cooperators and defectors are determined by comparing their

fixation probabilities on mixed populations. We consider a mixed population of N/2

cooperators and N/2 defectors for simplicity. Cooperators will have one optimal

movement strategy for each of the possible defector complex strategies, and vice

versa. We define the mutually-optimal propensities as those where none of the

interactive types increases their probability of fixation in the mixed population by

unilaterally changing their movement strategy.

To find the pair of mutually-optimal strategies, we calculate the fixation prob-

abilities of cooperators and defectors starting from the mixed population for all

combinations of staying propensities. We find the equilibrium pair by starting with

any strategy, and iterating over the fittest mutant of the opposing interactive type,
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until we find a fixed point of the mutually-optimal pair. We classify the evolutionary

outcome of the process based on the fixation probabilities, denoted ρCN/2 and ρDN/2,

of the two equilibria strategies starting from the mixed population:

• Selection favours cooperation if ρCN/2 > 1/2 > ρDN/2;

• Selection favours defection if ρDN/2 > 1/2 > ρCN/2;

• Selection is neutral if ρCN/2 ≈ 1/2 and ρDN/2 ≈ 1/2,.

5.3 Results

In this section, we analyse the outcomes of comprehensive systematic simulations

of the Markov movement model outlined earlier. Our focus is on identifying the

variations caused by different evolutionary dynamics. For this purpose, we use two

types of plots. The first type illustrates the evolutionary outcomes for different value

combinations of population size (N) and movement cost (λ). The second displays

the numerical value of the fixation probabilities for cooperators and defectors as the

movement cost varies.

For the plots that depict the regions where each evolutionary outcome prevails,

we will employ the following colour-coding scheme:

• Blue indicates that selection favours cooperation;

• Orange indicates that selection favours defection;

• Grey indicates that selection favours bi-stability or is neutral;

• Yellow indicates that selection favours instability.

It is important to note that the colour-coding scheme is used for both mutation

scenarios, even though the non-rare interactive mutation scenario does not feature

the yellow colour.

The plots with evolutionary outcomes presented here differ slightly from those

in Erovenko et al. (2019) for the same dynamics. In the work done in this chapter,

we have implemented a 2σ rule to manage stochastic uncertainty, which has been

applied to both mutation scenarios. We assume that the mutant fixation probability

exceeds the neutral one only if the simulated fixation probability exceeds the neu-

tral fixation probability by at least two standard deviations. This means that for
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the rare interactive strategy mutations scenario the threshold is 1/N + 2σ, and for

the non-rare interactive mutations scenario the threshold is 1/2 + 2σ. This mostly

impacted the complete network as the region where selection favours defectors be-

came slightly smaller. The estimations of the standard deviation in each case are

provided in Erovenko et al. (2019). They are based on 100,000 simulation trials for

each combination of parameters in the rare interactive mutations case and 10,000

simulation trials in the non-rare interactive mutations case. The thick grey lines

around the neutral fixation probability value on the fixation probability plots show

the ±2σ area of stochastic uncertainty.

We present these plots in sections 5.3.1 and 5.3.2, for the two mutation sce-

narios, under complete, circle, and star networks. We use the following parameter

values: S = 0.03, k = 0.04, v = 0.4, T = 10. A summary of the newly observed

topological effects is provided in section 5.3.3. We identify the patterns observed on

the figures throughout section 5.3. However, it is only in section 5.4 that we do a

cross-scenario analysis and provide explanations for the similarities and differences

observed between the evolutionary dynamics.

5.3.1 Rare interactive strategy mutations

Complete Network

The evolutionary outcomes obtained under complete networks are similar for differ-

ent evolutionary dynamics, as evidenced by the region plots in figure 5.1. Selection

promotes stability for most of the parameter space. Cooperators are favoured for

lower values of the movement cost regardless of population size, while defectors do

better for large movement costs and small networks.

Despite the similarities, there are still a few clear emerging differences. The

region where defectors dominate is larger under dynamics where selection acts on

the death event. Under the DBD and LD dynamics, selection favours defectors

regardless of population size when movement costs are high enough (λ ≥ 0.8), and

it does so for much lower movement costs under small enough populations. The

regions under which cooperation dominates are the largest under the BDB and LB

dynamics. Finally, bi-stability is favoured more often under the BDD and DBB

dynamics than under the remaining dynamics.

An important aspect to highlight is that there is a small region where selection
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(d) LD dynamics
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(e) DBB dynamics
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(f) BDD dynamics

Figure 5.1: Evolutionary outcomes under complete networks and rare interactive mutations
for different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.2: Fixation probabilities of fittest mutant cooperators and defectors under a com-
plete network with N = 50 and rare interactive mutations for different evolutionary dynamics.
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(c) LB dynamics
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(d) LD dynamics
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(e) DBB dynamics
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(f) BDD dynamics

Figure 5.3: Evolutionary outcomes under circle networks and rare interactive mutations for
different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.4: Fixation probabilities of fittest mutant cooperators and defectors under a circle
network with N = 50 and rare interactive mutations for different evolutionary dynamics.

favours instability of both strategies under null movement costs and the smallest

populations which is present under almost all dynamics. This was not documented

in the analysis of the BDB dynamics on the complete network in Erovenko et al.

(2019), but it was observed then under the circle network.

The fixation probabilities for N = 50 are displayed in figure 5.2. All six evolu-
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(c) LB dynamics
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(d) LD dynamics
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(e) DBB dynamics
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(f) BDD dynamics

Figure 5.5: Evolutionary outcomes under star networks and rare interactive mutations for
different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.6: Fixation probabilities of fittest mutant cooperators and defectors under a star
network with N = 50 and rare interactive mutations for different evolutionary dynamics.

tionary dynamics exhibit similar trends in fixation probabilities, which align with

the results presented in Erovenko et al. (2019), particularly for the fixation of co-

operators. It is worth noting, however, that dynamics DBD and LD give defectors

a chance to fixate above neutrality in populations of size 50, resulting in fixation

probabilities that are twice as high as those of the other dynamics. This will be
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further discussed in section 5.4.

Our analysis revealed the formation of pairs of dynamics leading to similar re-

sults. Specifically, the pairs BDB/LB and DBD/LD had overlapping curves and the

pair DBB/BDD similarly led to quite close values. This pattern emerged for both

the fixation of cooperators and defectors. There are punctual deviations observed

in the first two pairs, which can be attributed to considering different discrete val-

ues for the optimal staying propensities of resident cooperators. Furthermore, we

observed the overlap of the curves referring to the four dynamics BDB, LB, DBD

and LD for the fixation of mutant cooperators in the presence of large movement

costs, and the fixation of defectors under low movement costs. In these situations,

the DBB and BDD dynamics also exhibit overlapping curves. However, differences

can be observed within these pairs of dynamics for the remaining movement cost

values. This result was surprising and it is discussed in section 5.4, as previous work

(Pattni et al. 2017, Schimit et al. 2022) suggests that complete networks should lead

the BDB/DBD and BDD/DBB pairs of dynamics to yield the same outcomes.

Circle Network

The circle network leads to results presented in figure 5.3. These exhibit a general

pattern of single strategy stability, with cooperators dominating in regions of lower

movement costs (excluding the minimal value of λ = 0) and defectors dominating

in higher cost regions.

There are two exceptions to this trend: selection favours bi-stability for interme-

diate values of movement costs and favours instability for minimal values. The first

typically occurs for small populations as observed in Erovenko et al. (2019), which

suggests it might be associated with the finiteness of populations, stabilising when

these are larger. However, the second remains present regardless of population size

under DBD/LD dynamics because, contrary to what happens under other dynamics,

defectors fixate above 1/N for λ = 0 under all population sizes.

The DBD and LD dynamics exhibit unique characteristics. Compared to other

dynamics, they facilitate the evolution of defection at lower values of movement

costs and favour instability of both strategies for null movement costs regardless

of population size. These observations suggest that these dynamics promote the

fixation of defectors and hinder that of cooperators, as was seen under the complete

network.
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Examining the fixation probabilities displayed in figure 5.4, we can easily draw

the conclusion that various evolutionary dynamics follow similar patterns. The

DBD/LD dynamics present smaller regions where cooperators fixate above neutrality

and larger regions where defectors do so, leading to the result already displayed in

figure 5.3.

Similar to the complete network, the fixation probabilities of cooperators have

overlapping curves within the pairs of dynamics BDB/LB and DBD/LD. The same

holds true for the fixation of defectors, especially for low movement costs. However,

larger costs lead to increased noise in the values, which may be linked to the fact

that only discrete values of the strategic staying propensity of resident cooperators

are considered. This can result in choosing either side of the scale when the optimal

staying propensities fall between two discrete values. The high sensitivity of fixation

probabilities to the staying propensity of residents contributes to the sudden spikes

seen for λ = 0.4, 0.7 in the BDB/LB and λ = 0.6 in the DBD/LD pair of dynamics,

in otherwise overlapping curves.

In the circle network, the BDD and DBB dynamics result in much larger devia-

tions from neutral selection, both for the overall fixation of cooperators and for the

fixation of defectors at low movement costs. The numerical difference is remark-

able, with values lower than neutral achieving near-zero fixation in certain cases,

and values higher than neutral being more than 50% higher than under any other

dynamics.

Star Network

The mapping of evolutionary outcomes under star networks is displayed in figure

5.5. These plots exhibit minimal differences. The conclusion drawn in Erovenko

et al. (2019) that cooperators are consistently unstable under this topology remains

valid, which is the most pronounced instance of topological effects dominating over

the evolutionary dynamics.

The region plots for the four dynamics BDB, LB, DBD, and LD are identical.

The high similarity within pairs BDB/LB and DBD/LD was already observed in the

previous sections. However, it is surprising that the two pairs are equivalent to each

other, considering the large differences observed between them in other topologies,

including complete networks.

Although the differences with the two remaining dynamics DBB and BDD are
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minor, it is noteworthy that they appear to be more similar to each other than to

the previously mentioned four other dynamics.

The fixation probabilities obtained for N = 50, as displayed in figure 5.6, suggest

a greater level of similarity among the dynamics than under other topologies. The

dynamics BDB/LB and DBD/LD result in nearly identical outcomes between them

for the fixation of both cooperators and defectors. For the fixation of cooperators,

the DBB and BDD dynamics produce results that are essentially the same between

them but are systematically farther from neutrality when compared to the other

four dynamics. However, for the fixation of defectors, the numerical results of all six

dynamics coincide.

5.3.2 Non-Rare interactive strategy mutations

Complete Network

The scenario with non-rare interactive mutations results in a significantly different

landscape of evolutionary outcomes under complete networks, as depicted in figure

5.7. Cooperators are favoured by selection for wide regions of low and intermediate

movement costs under all dynamics. Regions where selection does not favour either

strategy are narrow and transitional, both for large movement costs and for limiting

null costs. It is worth mentioning that the complete network once again appears to

promote the evolution of cooperation across a broad range of parameter values.

A comparison of the results obtained under each dynamics reveals that the DBD

and LD dynamics result in larger regions where defection is stable when compared to

the other dynamics. Defection remains consistently stable down to λ = 0.6 regardless

of population size, and for null movement costs of λ = 0 (sometimes together with

cooperation) for most population sizes. In contrast, the BDB and LB dynamics

remain the dynamics under which cooperation is selected across the widest regions,

whereas defectors have very limited values for which they are stable.

The DBB and BDD dynamics show sets of regions somehow between the previous

two pairs of dynamics. However, comparing these two dynamics, it is clear that the

first is slightly more favourable towards cooperation than the second. This is akin

to the previous comparison between the pairs BDB/LB and DBD/LD, suggesting

the presence of a systematic difference which was not expected to be present under

the complete network, which we discuss in section 5.4.
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(e) DBB dynamics
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Figure 5.7: Evolutionary outcomes under complete networks and non-rare interactive muta-
tions for different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.8: Fixation probabilities of fittest mutant cooperators and defectors under a com-
plete network with N = 50 and non-rare interactive mutations for different evolutionary dy-
namics.

112



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

Po
pu

la
tio

n 
siz

e

(a) BDB dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50
(b) DBD dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50

Po
pu

la
tio

n 
siz

e

(c) LB dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

20

30

40

50
(d) LD dynamics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Movement cost

10

20

30

40

50

Po
pu

la
tio

n 
siz

e

(e) DBB dynamics
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Figure 5.9: Evolutionary outcomes under circle networks and non-rare interactive mutations
for different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.10: Fixation probabilities of fittest mutant cooperators and defectors under a circle
network with N = 50 and rare interactive mutations for different evolutionary dynamics.

In this scenario, we examined the fixation probabilities starting from a mixed

state with an equal number of cooperators and defectors with mutually-optimal

staying propensities. As a result, the fixation probabilities of both types displayed

in figure 5.8 are symmetrical and sum up to one for each choice of movement cost.

Once again, the trends among the different dynamics are highly similar. The
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(e) DBB dynamics
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Figure 5.11: Evolutionary outcomes under star networks and non-rare interactive mutations
for different choices of evolutionary dynamics, population size and movement cost.
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Figure 5.12: Fixation probabilities of fittest mutant cooperators and defectors under a star
network with N = 50 and rare interactive mutations for different evolutionary dynamics.

fixation probability of cooperators is at near-neutral level for null movement costs,

rising above it for intermediate costs before falling below it for higher values. Fixa-

tion probabilities are coincident within pairs BDB/LB and DBD/LD, with the first

consistently leading to better outcomes for the evolution of cooperation. The DBB

dynamics lead to the fixation of cooperators with higher probabilities than the BDD.
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These quantitative findings support the observations made from the region plots.

Circle Network

The evolutionary outcomes obtained under circle networks with non-rare interactive

mutations are exhibited in figure 5.9. This figure shows that, similarly to the com-

plete network, defectors are favoured for both null and larger values of the movement

cost, while cooperators are favoured from low to intermediate values of this. The

transitions between cooperators to defectors showed narrow regions where selection

favoured neither of the two strategies in particular. Defectors were stable down

to lower values of movement costs than under the complete network, thus assuring

that, in comparison, this topology favoured them slightly more often.

The results obtained under this setting show small differences when compared

to the ones obtained under rare interactive mutations for the same topology. This

might be associated with the scarcity of regions where selection favours bi-stability

or instability of the two strategies under the previous mutation setting. This is a

feature particular to the circle network, which is not present under the other studied

topologies.

While the differences between evolutionary dynamics are not as striking as under

other settings, we still observe that the DBD and LD dynamics assure the largest

regions of selection of defection, for movement costs of λ = 0 and λ ≥ 0.4 regardless

of the size of the population.

The fixation probabilities for populations of size N = 50, as depicted in fig-

ure 5.10, reveal certain features more clearly. The pairs of dynamics BDB/LB and

DBD/LD continue to exhibit close alignment within them. The two pairs addi-

tionally converge to similar values both for low and high movement costs, values

under which the DBB and BDD dynamics similarly converge to each other. For the

remaining values, the BDB/LB dynamics systematically lead to higher fixation prob-

abilities of cooperators than the DBD/LD, just like the DBB shows an improvement

(even if quite small) when compared to the BDD dynamics.

Finally, the DBB and BDD dynamics exhibit a clear pattern of amplified se-

lection, with values above neutrality being the highest and values below neutrality

being the lowest among all dynamics.
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Star Network

The results obtained for the evolutionary process in star networks under non-rare

interactive mutations are shown in figure 5.11. Unlike the results obtained in the

same topology with rare interactive mutations, the different dynamics in this case

result in substantial differences. Across all dynamics, defectors are favoured by

selection at both low and high movement costs. However, there are intermediate

regions where either cooperation or no strategy is favoured, and these regions are

highly variable and dependent on the particular dynamics being considered.

This case presented a unique challenge that was discussed in Erovenko et al.

(2019). It was usually impossible to find a mutually-optimal pair of staying propen-

sities for cooperators and defectors. This was caused by the fact that the optimal

staying propensity of defectors had a jump discontinuity as a function of the staying

propensity of cooperators. We circumvented this issue as it was done in Erovenko

et al. (2019) by assuming that the staying propensities may change only to the near-

est values. This could lead to either local equilibria or local loops; in the latter case

it is assumed that the optimal staying propensities corresponded to the “middle”

values in the loops. We employed the same approach in this work. This might have

been the driver of the wider variation of the outcomes between different dynamics

compared to the complete or circle networks.

Despite the wide variations, the BDB and LB dynamics lead to equivalent maps

of evolutionary regions, under which cooperation is solidly favoured for intermediate

values. Conversely, the DBD and LD dynamics exhibit larger regions of favoured

defection and smaller regions of favoured cooperation, which may differ from each

other due to a higher susceptibility to stochastic fluctuations. The DBB and BDD

dynamics show the widest regions of favoured defection, particularly for large pop-

ulations where defection is favoured regardless of the movement cost value. When

comparing these two dynamics, the BDD continues to exhibit a stronger tendency

to promote defectors, failing to sustain cooperation across all population sizes and

movement cost values explored.

These results differ greatly from those obtained through rare interactive muta-

tions, as this scenario does not permit selection to favour instability. In the previous

mutation scenario, not only did we observe little to no differences between dynamics,

but we also observed cooperation to be unstable for all explored values. Therefore,

116



this mutation scenario presents an opportunity for cooperators to evolve within star

networks.

Figure 5.12 displays the fixation probabilities of cooperators and defectors when

N = 50. Fixation probability values obtained under different dynamics are quite

similar quantitatively. However, the proximity to the neutral selection fixation prob-

ability of 1/2 allows for small differences between the dynamics to potentiate distinct

qualitative evolutionary outcomes.

It is still clear that the BDD and DBB dynamics hold fixation probabilities

the furthest away from neutrality, in this case promoting more often than other

dynamics the evolution of defection. Selection happening on the birth event still

seems to benefit the fixation of cooperators and oppose that of defectors slightly,

which can be seen by comparing the BDB/LB dynamics against the DBD/LD and

the DBB dynamics against the BDD.

5.3.3 Comparative analysis

The two mutation scenarios resulted in distinct evolutionary outcomes, partially due

to their different nature. In the first, i.e. when interactive mutations are rare, selec-

tion favouring instability was consistently observed in the complete and circle net-

works under null movement costs, and in the star network under null-to-intermediate

movement costs. The presence of these regions was brought to light through the ex-

amination of alternative evolutionary dynamics to the BDB used in Erovenko et al.

(2019), since these uncovered the region in the complete network and extended it

for larger populations in the circle network.

In that context, mutant cooperators systematically fixate above neutrality for

low enough movement costs and for all topologies and evolutionary dynamics. Selec-

tion favouring instability of both strategies for λ = 0 is thus associated with mutant

defectors doing so as well in that limit. The stability of resident cooperators relies

on the extra steps that defectors have to do before finding groups of cooperators to

exploit. Even though defectors benefit from moving (shown by their fittest mutant’s

staying propensity not being 0.99), they still earn less than cooperators because

of the higher movement cost they pay and the limited time they spend amongst

them. When λ = 0, the absence of movement costs gives defectors an evolutionary

advantage, leading to a fixation above neutrality. This occurs regardless of popu-

lation size in the circle network for some dynamics, possibly due its locality being
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preserved under larger populations, enabling defectors to quickly encounter groups

of cooperators.

Additionally, the first mutation scenario led to significantly noisier fixation prob-

abilities of mutant defectors and less distinguishable patterns. This was due to

optimal staying propensities of resident cooperators being dependent on the move-

ment cost – contrary to the constant staying propensity of 0.99 achieved by resident

defectors – which had to be calculated from a discrete set of values. This compu-

tation added an uncertainty to the resulting fixation probabilities which made the

distinction of patterns comparatively more difficult, especially for larger movement

costs.

Upon examination of the results obtained from the non-rare interactive muta-

tion scenario and comparison with the previous, it becomes evident that different

topologies result in distinct relationships. We observe that regions where selection

favours one single strategy (i.e. cooperators or defectors) in the first mutation sce-

nario typically carry over into the second scenario. However, regions where selection

favours bi-stability or instability of both strategies can fall onto any of the possible

evolutionary outcomes in the second scenario. These shifts are especially prominent

in topologies such as the complete network where selection favouring bi-stability is

a prevalent outcome, or the star network where selection often favours instability.

The distinctive nature of the star network is once again evident in the substantial

variability of evolutionary outcomes observed in the non-rare interactive mutation

scenario. This is attributed to the proximity of fixation probabilities to the neutral

fixation value of 1/2, which results in small quantitative changes having a significant

impact on the qualitative outcomes. This phenomenon may be linked to the jump

discontinuity reported in Erovenko et al. (2019) and mentioned in section 5.3.2,

which occurs in the mutually-optimal staying propensities potentially leading to

the dynamics taking on a decisive role as it is observed in figures 5.11 and 5.12.

We see instances where cooperation evolves in regions where defectors consistently

dominated under rare interactive mutations.

Furthermore, we have observed both surprising similarities and novel differences

between the outcomes produced by different evolutionary dynamics, some of which

emerged systematically across various topologies and mutation scenarios. We sum-

marise and analyse them in the final section of this chapter in comparison to what

the previous literature has suggested to us. We anticipate their influence to extend
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beyond the scope of the specific population structure and mobility model utilised in

this study.

5.4 Discussion

We present a comprehensive analysis of the variations obtained between six distinct

evolutionary dynamics on the evolution of cooperation within structured populations

following Markov movement. These dynamics were originally expanded in Pattni

et al. (2017) to allow their application to a broader range of structured populations

models, such as the ones introduced in Broom & Rychtář (2012). Our examination

of these results under the three extreme network topologies studied in Erovenko

et al. (2019) brought to light several key features of these evolutionary dynamics.

The most striking of these features is that the set of evolutionary dynamics

analysed yields overall qualitatively similar results, indicating that network topol-

ogy has a greater influence than the particular dynamics considered. The features

that characterise evolutionary outcomes under each topology, some of which were

already pointed out in Erovenko et al. (2019), are shown to hold across evolutionary

dynamics. A deviation from this pattern was observed in the star network with

non-rare interactive mutations, a scenario that was highlighted in both this study

and in Erovenko et al. (2019) for its unique properties.

We observed the formation of two pairs of dynamics BDB/LB and DBD/LD

equivalent within them. Their equivalence stems from the general underlying frame-

work of multiplayer games in networks (Broom & Rychtář 2012), under which the

evolutionary graph is calculated from the time any two individuals spend together,

with time spent alone included as a self-replacement weight. The total time passed is

the same for each individual, thus resulting in an isothermal graph and the reported

equivalent pairs of dynamics (Pattni et al. 2015, 2017).

Moreover, the DBB and BDD pair of dynamics, and to a lesser extent the

BDB/LB and DBD/LD pairs, sometimes showed similar values. The statistical

study performed in Schimit et al. (2022) concluded that the dynamics within each

of these pairs may result in equivalent fixation probability distributions under in-

dependent movement. While both pairs passed this test, the first pair exhibited a

closer affinity than the second, a characteristic that appears to have been carried

over into the results we obtained under a more complex Markov movement model.

119



However, the pervasive similarity of qualitative outcomes obtained under all dy-

namics came out as a surprising result, considering the substantial differences that

some dynamics have shown in promoting cooperative behaviour in the past. In the

original paper (Ohtsuki et al. 2006), the DBB dynamics (and BDD, by extension)

showed that the viscosity of the evolutionary process on networks can lead to the

evolution of cooperation without the need for other overlapping mechanisms to be

present. This was in stark contrast to the results obtained under the BDB dynamics

(and DBD, by extension), in which network structure alone was not sufficient for

cooperation to evolve. This was later observed under the territorial raider model

where individuals played a multiplayer Charitable Prisoner’s Dilemma in a network

(Pattni et al. 2017). In both of these models, replacement events and the interac-

tions between individuals are characterised by their locality. The first assures that,

compared to defectors, cooperators are more often surrounded by other coopera-

tors, while the second guarantees that this generates an evolutionary advantage to

cooperate if rewards are high enough.

The present Markov model presents a distinct picture from previous models,

including the territorial raider model studied in chapters 3 and 4. Although replace-

ment events maintain their locality (see section 5.2), the exploration time of T = 10

enables individuals to navigate the network contingent on whom they meet. On

one hand, this partially suppresses the impact of structural viscosity on the fitness

of individuals. On the other hand, the assortative behaviour that emerges under

certain network topologies proves to be much more powerful in promoting coopera-

tion, surpassing the impact of viscosity. These two factors suppress the exceptional

significance of the DBB (and BDD) dynamics in ensuring the successful evolution

of cooperation.

Instead, the small differences that persisted in the evolutionary outcomes under

the six dynamics show another picture. The BDB/LB dynamics were found to

promote the evolution of cooperation over a wider range of parameter values, while

the DBD/LD dynamics did the same for the evolution of defection. A systematic

comparison between the two pairs of dynamics revealed that cooperators had higher

fixation probabilities in the first pair, while defectors had higher fixation probabilities

in the second. This pattern held across all topologies and mutation scenarios, with

only rare and isolated exceptions.

Although the difference was more pronounced when comparing those pairs of
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dynamics, it was also present between the DBB and BDD dynamics. Together

with the previous observation, this suggests that cooperation is overall favoured by

selection when this acts during birth rather than death, regardless of whether this

is the first or the second, or indeed referring to simultaneous events. According to

previous results (Pattni et al. 2017), the replacement structure being symmetric and

doubly stochastic should result in equivalent pairs of dynamics. However, this is only

true when choosing a different replacement pair between the same types does not

change the future fitness of individuals (Schimit et al. 2022), such as under complete

networks or fixed fitness. In our results, fitness being highly variable surprisingly

leads to the consistent reported differences within pairs of dynamics BDB/DBD,

DBB/BDD and LB/LD, even under complete networks, indicating an effect which

could be explored more extensively in future studies.

Another distinction between the dynamics is that in the second mutation case

and for the fixation of cooperators in the first mutation case, the DBB and BDD con-

sistently amplify selection compared to the other dynamics across topologies. This

effect has been observed under the territorial raider model and is analysed in chap-

ters 3 and 4. When selection acts during the second event, fitness and replacement

weights become intertwined in the same probability. The replacement structure is

often biased towards individuals of the same type, for example, when individuals

spend a disproportionate fraction of time alone. In those cases, the DBB and BDD

dynamics systematically favour the replacement of individuals with lower fitness by

ones with higher fitness, thus acting as amplifiers of selection, when compared to

dynamics where fitness and replacement structure are considered separately.

The only setting where the amplification effect was less pervasive was the fixation

of defectors in the rare interactive mutation case. This is potentially associated with

both mutants and residents having low staying propensities, leading to lower self-

replacement weights and, therefore, a lesser bias towards same-type replacement.

The star network serves as a notable limiting case, where both the mutant defec-

tor’s and resident cooperator’s staying propensity is 0.01, and under which defector

fixation probabilities are the same for all dynamics, thus showing no amplification

by these dynamics.

Further investigations on evolutionary models of finite structured populations

could focus on the interplay between structure and assortative behaviour in promot-

ing cooperation. The results obtained using this particular model highlight broader
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features of models incorporating these aspects and should be taken into account ac-

cordingly. Nevertheless, the model of population structure and mobility introduced

in Broom & Rychtář (2012) shows once again its flexibility. It offers the ability to

create new theoretical tools and study specific evolutionary systems. The model

is well-suited for analysing aggressive behaviour in territorial patches of biological

populations. Additionally, it has potential in social sciences, such as in the study of

labour market dynamics where employer networks could be viewed as territorial net-

works through which individuals move. It is our hope that this original modelling

framework and all the advancements made thus far will provide valuable insights

into real-world systems like these.
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Chapter 6

Self-organisation of common

goods usage in populations with

Win-Stay, Lose-Shift-Good

strategy
1

6.1 Introduction

Common goods are resources that are available to multiple individuals but are sus-

ceptible to depletion because one individual’s use reduces the amount available to

others (Ostrom 1990). These typically include natural resources such as groundwa-

ter basins, grazing land, forests, air quality, and fisheries. However, their challenges

are sometimes parallel to those of human-built resources which are available for col-

lective use, such as roads, public transport systems and Internet services. Shared

usage of such resources is pervasive in social systems making their study central

to economics, social and life sciences. Given the finite nature of commons, several

challenges arise from their usage, which under uncoordinated action may lead to the

“tragedy of the commons” as described by Hardin (1968). As a result, the gover-

nance of these shared resources has become a crucial issue, extensively studied by

Elinor Ostrom, in, for example Ostrom (1990), whose work in this area earned her

the Nobel Memorial Prize in Economic Sciences.

1This chapter is based on a working paper done in collaboration with Dr Paolo Castagno,
Professor Marco Ajmone Marsan, and Professor Vincenzo Mancuso.
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Individuals wanting a given resource often have several options of commons avail-

able to them that may fulfil the same need. This raises new questions on how such

systems can attain a sustainable distributed consumption and avoid scenarios of dis-

proportionate usage, over-consumption and depletion of one of the commons while

others remain available. In the context of grazing, foraging, and hunting, both an-

imals and humans must decide whether to remain in a partially exploited land or

move in search of new resources. These dynamics have contributed to the evolution

of nomadic patterns, both in hunter-gatherer and pastoralist societies. Moreover,

parallel problems emerge in industrialised societies. For instance, individuals have

to choose daily which form of public transport to take or which road to drive on;

institutions managing water distribution may need to choose which water resources

to use; fishing companies have to decide the areas at which they will fish; and de-

vices connected to mobile networks, such as mobile phones, have to choose to which

computing facilities they will send their requests. The quality and/or availability

of each of those resources decreases with the number of individuals simultaneously

using them, thus conferring them some common properties.

The ideal free distribution (IFD) theory was originally developed by Fretwell &

Lucas (1969) in the context of animal territorial behaviour, as briefly introduced

in chapter 1. It predicts that individuals will distribute themselves across different

resource patches to maximise their own benefit, assuming perfect knowledge and no

movement costs. As a result, individuals spread in a way that equalises availability

or quality across all used resources. The fact that the IFD strategy constitutes

an evolutionarily stable strategy was later proven by Cressman & Křivan (2006).

However, when individuals have minimal information about the current state of

the system and in the absence of governing institutions, attaining a distributed

usage over the available commons may be impossible to coordinate. In the systems

above mentioned, coordination would require either a governing institution directing

individuals on which option to use, constant communication between individuals,

or free movement of individuals allowing for direct observation, all of which are

sometimes impossible or, at the very least, costly.

In this chapter, we propose the extension of Win-Stay, Lose-Shift (WSLS) strat-

egy to systems of usage and consumption of common goods. The original strategy

is introduced in chapter 1 in the context of iterated social dilemmas, and its prin-

ciple is similar to the one used in chapter 5 when exploring conditional movement
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on networks. Individuals using WSLS strategy will consume a particular common

good until they are unsuccessful or their experienced quality falls below a threshold,

at which point they shift to a different good at random. In section 6.2, we show

that the dynamics obtained in a population using this strategy lead to the self-

organisation of distributed usage of commons. The equilibrium obtained leads to an

overall high average experienced quality in the population without individuals nor

central institutions storing, transmitting or processing any information. In section

6.3, we focus on the application of these results to Internet services and formalise

the problem associated with server selection in mobile networks. In section 6.4, we

formalise some of the theory on how individuals may act selectively towards different

commons. In section 6.5, we consider hybrid systems where individuals adapt their

patience to failure based on information, showing that significant improvements can

be attained, achieving in some cases the optimal distribution of usage, something

which is then confirmed in section 6.6, by the evaluation of the evolution of the sys-

tem with adaptive individuals. The usage of the Win-Stay, Lose-Shift-Good strategy

and the validity of the developed concepts can be extended to understand other dis-

tributed systems such as population distribution on grazing or foraging land, or to

inform solutions to the governing of complex social systems such as usage of public

transport or other technological common goods.

6.2 Win-Stay, Lose-Shift-Good

We consider a population of Nu users with an available set of Ng common goods

which are denoted Gi, with i = 1, 2, · · · , Ng. This system is represented in figure

6.1. We denote as Qi the quality of common good Gi. The quality may relate to a

quantifiable probability of having a failed or unsatisfactory attempt to use the good

Qi = 1 − P
(F )
i , where P

(F )
i is the failure probability of good Gi, holding a value

between 0 and 1. We consider the cases where probability of failure increases, and

therefore quality decreases, with the number of current simultaneous users ni of Gi.

Note that
∑Ng

i=1 ni = Nu. A failed attempt might happen due to reduced availability,

overcrowding, general lower quality of experience, or active competition with other

users. As mentioned in the introduction, some examples of these goods can be land

for grazing or foraging, fishing or hunting areas, water supply systems, means of

transportation, technological goods, or Internet services such as those offered by
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mobile network operators.

Figure 6.1: Representation of a system of common goods usage. On the left, individuals can
choose which of the Ng goods they will use without any information besides their individual
experience. On the right, the distribution of the population of individuals over the available
goods.

Let us consider that the population is fully distributed and individuals have

minimal information. They get no information about the characteristics of the

common goods from neither one another nor central institutions, e.g. operators.

They are only informed by the direct perception of the quality of the used good,

also lacking information about the current number of users of the good.

In this context, we introduce an extension of WSLS to common goods usage,

which we refer to by the same WSLS. Individuals do not interact directly with each

other, but only with the good they have chosen to use. Under WSLS, individuals

initially choose one of the available goods at random and stay there until they have

a failed or unsatisfactory attempt of use. When the failed event occurs, they shift to

one of the other goods at random. If in the particular system considered, individuals

can’t fail to use the commons, and instead they just have a lower experienced quality,

then consider that they may set their own probability of shifting proportional to the

experienced quality of the good.

Consider a large enough population of individuals using the described WSLS

strategy. Each individual attempts to use the good of their choice at an average

frequency of λu attempts per unit time. Let us assume that the quality of the good

they are using changes slowly, and that their usage may have only an infinitesimal

relative effect on the current number of users ni of each good, given the large size

of the population. This system can be modelled through the differential equations
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determining changes in the number of users on each good:

ṅi = −λu · ni · P (F )
i (ni) +

1

Ng − 1

∑
j ̸=i

λu · nj · P (F )
j (nj), (6.1)

where ni is approximated to a continuous variable.

The first term on the right hand-side corresponds to the rate at which individ-

uals have failed usage attempts and leave the common good Gi. The second term

corresponds to the rate at which individuals have failed attempts at using other

common goods and switch to Gi. This leads to the following equilibrium equations:

n1 · P (F )
1 (n1) = n2 · P (F )

2 (n2) = . . . = nNg · P
(F )
Ng

(nNg). (6.2)

6.3 Application to Internet services

Mobile networks are wireless communication systems that enable users to connect

and exchange data, such as voice, text, and Internet services through interconnected

base stations. Connecting to such systems allows users to perform computations on

in-network computing facilities, i.e. servers, which are essential to the implementa-

tion and use of Internet services. In those cases, active mobile users submit frequent

requests to the network, which are then processed in the base stations and the asso-

ciated network backhaul, and are then routed to a server for computing. The user

can often choose the server where the request will be processed, however, with very

limited information on them. Active mobile users form a population of individuals

who have to choose between Ng options, only knowing their past experienced success

with them. This makes this system suitable to test out the use of WSLS strategies.

Figure 6.2 shows a schematic representation of this system.

6.3.1 Server quality and probability of failure

Servers have different characteristics, such as their computing power and their dis-

tance from the end user, that translates in service latency. Latency is defined as

the delay between sending a service request and getting the corresponding response.

The main components of latency are the time di for the request to arrive at the

server, the processing delay at the server and the time di for the response to go from

the server back to the user. Computing power refers to the ability of a server to
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Figure 6.2: Server selection problem in Internet access as a system of common goods usage.
A population is constituted of active mobile users who connect to the network through a base
station. They have their connection attributed through the backhaul to their chosen server Gi

out of Ng available options.

process tasks quickly and handle large amounts of data, which can be quantified by

the number of requests per unit time they have the capacity µi to serve. We further

denote the total system capacity as µ =
∑

i µi, representing the total number of

requests it can serve per unit time. The system load is denoted as ρ = Nu · λu/µ

and represents the fraction of total requests per second over the system capacity.

The characteristics of servers determine how the probability of success of the

submitted service requests, and therefore the quality of experience on that server,

depends on the number of current users. Each server immediately processes requests

that arrive to find it idle, and queues requests that arrive when the server is busy.

Due to a finite buffer size, some requests can be lost because they arrive when the

server’s buffer is full (this is called a loss event and has probability P
(L)
i (ni) at server

i when ni users are accessing it), and others are discarded by the users when the

results of the computation are returned to the requesting user too late to be useful

(this is called an excessive delay event and has probability P
(D)
i (ni) at server i).

Both cases lead to failed attempts at using the server. Based on the characteristics

of each server, both the loss probability and the time delay distribution can be

calculated analytically using standard queuing theory results as in Mancuso et al.

(2022), which are partially described in section 6.3.2.

The outcomes of any two submitted requests are assumed to be independent and

have failure probability that change slowly, like the number of users. The failure

probability is obtained as P
(F )
i (ni) = P

(L)
i (ni)+(1−P (L)

i (ni))·P (D)
i (ni). This allows

us to describe the system through equations 6.1 with equilibrium condition 6.2.

To validate these results, we present simulation results for WSLS strategies gen-
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erated with a realistic simulator akin to the one used in Mancuso et al. (2022, 2023),

which is further explained in the following section. The resulting evolution of the

population distribution and server-specific probabilities of failure are presented to-

gether with the differential equation results in figure 6.3. These are obtained for

values of the system load ρ ranging from 0.5 to 1.25. The results obtained through

the simulator align with what predicted by the analysis of the dynamical system

originally proposed.
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(a) Population distribution evolution under ρ = 0.5.
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(b) Evolution of failure probability under ρ = 0.5.
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(c) Population distribution evolution under ρ = 1.
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(d) Evolution of failure probability under ρ = 1.
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(e) Population distribution evolution under ρ = 1.25.
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(f) Evolution of failure probability under ρ = 1.25.

Figure 6.3: Simulation of a population of 1000 users using WSLS strategies on three available
M/M/1 servers Gi, i ∈ {1, 2, 3}. We show the evolution of population distribution and server-
specific average probability of failure for three different load values ρ = 0.5, 1, 1.25. Each server
has the capacity to serve µi = {100, 200, 400} requests per second (reqs/s). The time between
user and server is set as di = {10, 20, 30} ms, and individuals’ timeout τ = 100 ms.

In particular, we observe that under all three load values, the result of the
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evaluation shows the population distribution evolving to the theoretical value given

by equation 6.2. In this equilibrium, a server with higher capacity holds more

users and exhibits lower average probability of failure, whereas a server with lower

capacity has fewer users and higher average failure probability. This suggests that

the equilibrium slightly overflows servers with lower capacity, but because their usage

rate is overall lower, this might have a low impact on the overall system probability

of failure.

The stochastic oscillations around this equilibrium value are higher under higher

system load, whereas convergence to this value and alignment with the ODE re-

sult (derived from equation 6.1) is slower under lower system load. Server-specific

probability of failure shows lower noise under higher load, and a striking alignment

with the long-term behaviour of the probability of failure in the computed ODE.

However, low load leads to higher noise of the server-specific probability of failure,

often leading to an overlap between the values.

6.3.2 Simulator

The model presented above is validated by comparing its results with a discrete-event

simulator developed in Matlab. The simulator reproduces the arrival of requests

from independent individuals to chosen servers, and tracks how individuals change

server over time as a response to the observed performance of the server they use.

In table 6.1, we have set the used parameters in the overall model and the values

considered in the simulator.

We consider a population of Nu mobile users, in the literature described as

“user equipment” (UE). Each UE connects to the same base station (BS), which is

attached to the backhaul (BH) through which a set of Ng servers can be reached.

As previously described, each individual issues on average λu requests per second

(reqs/s) to their server of choice and at each time there are ni individuals submitting

requests on server Gi.

The time delay between a request being sent and its arrival at the chosen server

Gi is denoted as di. These are considered to be the same for all individuals as

they connect to the same base station. Each server Gi is modelled as a Markovian

queuing system of the general form M/M/ci/ki. In such systems, requests from each

user arrive independently following a Poisson process with average rate given by λu,

so that the aggregate process of arrivals at server Gi is a Poisson process as well
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Notation Parameter Values

Nu Number of users 1000

Ng Number of servers available 3

Gi Servers {G1, G2, G3}
µi Service capacity of server Gi {100, 200, 400} (servs/s)
µ System service capacity

∑
i µi = 700 (servs/s)

ρ System workload 0.25; 0.5; 0.75; 1; 1.25

λu User service request rate ρ · µ/Nu (reqs/s)

ci Number of processors of sever Gi 1

ki Buffer size of server Gi 10 reqs

di Time between individuals and server Gi {10, 20, 30} ms

τ Service timeout 100 ms

T
(k)
i Tolerance of type k on server Gi 1; 5; adaptive

T0 Initialised adaptive tolerance 5; 10

x0 Initialised estimated failure probability 0

β Learning rate 0.10

Table 6.1: Parameters used in the simulator of Internet access. For free parameters, we
display the values used in the evaluations, whereas for dependent parameters we denote their
dependence.

with an average arrival rate at server of niλu. Requests are queued and processed

in first come, first served order (FCFS), according to the availability of processors,

and the server eventually sends a message back to the individual that generated the

request. The service time of arriving requests at server Gi follows an exponential

distribution with average value µ−1
i , where µi denotes the capacity of the server,

i.e. the average number of requests they serve per second (servs/s). The number of

available processors in the server is given by ci, each of which can take one request

at a time. We denote ki as the buffer size, with ki − ci being the maximum number

of requests waiting to be served.

The value of the system load ρ is defined as the ratio between the total population

request rate Nuλu divided by the total service capacity of the system µ =
∑

i µi.

Since the capacity of servers and population size is constant in the simulations, the

system load is varied by changing the user service request rate λu. For example,

when the system load is set as ρ = 1, the user service request rate is adjusted to 0.7

reqs/s.

At the beginning of the simulation, individuals select one server each, uniformly

at random. Each individual starts to send a Markovian process of requests to the

chosen server as described above. The simulator tracks individual failures, i.e.,

requests which are lost because they arrive when the buffer size is full or those whose
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return delay (counted as the sum of the delay between individual and server and

back and the service time at the server) exceeds the set timeout τ . The results shown

in section 6.3 were obtained by considering that, after experiencing a single failed

request, an individual switches to another server at random. However, in sections 6.4

to 6.6, each individual k will be assigned a set of tolerance values, T
(k)
i , i = 1, · · · , Ng,

one for each of the available servers. In those cases, the simulator counts individual

failures. When the failure count of an individual k sending requests to server Gi

hits the tolerance value T
(k)
i , the individual shifts to another server, and the failure

counter is reset. The next server to be used is selected uniformly at random.

With the above, we can track the size of populations attached to each of the

available servers, and observe how the failure probability of individuals and servers

changes over time. In the case of adaptive adjustment of tolerance values, the

simulator allows to track such adjustments and derive the average behaviour.

6.4 Introducing selective tolerance to common goods

failure

We further consider a heterogeneous population with Nt types of individuals with

subpopulations of size N
(1)
u , N

(2)
u , . . . , N

(Nt)
u , with

∑
k N

(k)
u = Nu. Each type of

individual k has a set of tolerance (or threshold) values T
(k)
i , which dictate how

many failures they accept at each common good Gi before shifting to another one.

We make the simplifying assumptions that the outcomes of any two usage attempts

are independent and have the same failing probability P
(F )
i (ni), and that this value

changes slowly with time. In this case, the number of attempts an individual makes

until the number of failures achieves their tolerance value should follow a negative

binomial distribution with average value T
(k)
i /P

(F )
i (ni). Therefore, the probability

that a randomly chosen attempt of usage by an individual of a type k leads to

shifting is equal to P
(F )
i (ni)/T

(k)
i . Considering large subpopulations of types, we

again describe the approximately continuous changes in the distribution of the types

nik, i.e. the number of users of type k using each common good i, in differential

terms:

˙nik = −λu · nik ·
P

(F )
i (ni)

T
(k)
i

+
1

Ng − 1

∑
j ̸=i

λu · njk ·
P

(F )
j (nj)

T
(k)
j

. (6.3)

The population will be at equilibrium when the following conditions are met for
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all types k:

n1k · P
(F )
1 (n1)

T
(k)
1

=
n2k · P

(F )
2 (n2)

T
(k)
2

= . . . =
nNgk · P

(F )
Ng

(
nNg

)
T
(k)
Ng

. (6.4)

Under a state of equilibrium, the different types of individuals will be distributed

between the set of available commons depending not only on the probability of failure

functions and the population size, but also on the values of tolerance to failure of

the individuals in the population.

However, similarly to the original dynamical equilibrium given by equation 6.2,

this might be a sub-optimal case. We introduce definition 1 of a distribution with

optimal equalised quality, inspired by the ideal free distribution (Fretwell & Lucas

1969, Cressman & Křivan 2006), as an ideal organised distribution of common goods

usage.

Definition 1. For a given population size Nu, we denote n∗ = [n∗
i ] respecting∑

i n
∗
i = Nu as the optimal equalised quality distribution between used common

goods. This can be defined as the distribution where the subset of used commons

{Gi : n
∗
i > 0} respects

P
(F )
i (n∗

i ) = y(Nu), (6.5)

where y(Nu) is an increasing function of the population size and depends on the set

of available common goods. The complementary subset of unused common goods

{Gi : n
∗
i = 0} respects

lim
n∗
i→0

P
(F )
i (n∗

i ) > y(Nu). (6.6)

A self-interested individual looking to maximise the success of its usage of com-

mons would avoid those with higher failure probabilities. In strategic terms, under

WSLS strategies with selective tolerance, they would increase their tolerance to

failure for commons with lower failure probabilities and decrease their tolerance

for higher probability ones. Due to the competing nature of the use of commons,

lower usage of one of them decreases the failure probability at it. Therefore, self-

interested individuals would have a positive impact on the overall system and push

in the direction of optimal equalised quality and failure probabilities between dif-

ferent commons, even if the impact of a single individual is negligible. This will be

further elaborated in section 6.6 by considering adaptive tolerance to failure. For

now, let us start by noting that a population with one or more types of individuals
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can achieve optimal equalised quality between common goods if individuals tune in

their tolerance values accordingly. Theorem 4 describes this result.

Theorem 4. The population distribution n∗
i corresponding to equalised quality be-

tween used common goods is attainable by any population using WSLS strategies if

and only if they hold a set of tolerance vectors T
(k)
i that respects

Nt∑
k=1

N (k)
u ·

(
T
(k)
i∑
j T

(k)
j

)
= n∗

i . (6.7)

Proof. The system of equations defined by equation 6.4 characterises the equilibrium

conditions of a heterogeneous population. This means that the presence of a type k

at any good can be written as a function of n1k:

njk = n1k ·
P

(F )
1 (n1)

T
(k)
1

·
T
(k)
j

P
(F )
j (nj)

(6.8)

Therefore, the total number of individuals N
(k)
u of type k is equal to the following

at equilibrium:

N (k)
u =

∑
j

njk = n1k
P

(F )
1 (n1)

T
(k)
1

∑
j

T
(k)
j

P
(F )
j (nj)

, (6.9)

which can be rearranged as:

n1k = N (k)
u · T

(k)
1 /P

(F )
1 (n1)∑

j T
(k)
j /P

(F )
j (nj)

. (6.10)

This relation is not valid just for i = 1 but for any i. Therefore, we can represent

nik at equilibrium the following way:

nik = N (k)
u ·

T
(k)
i /P

(F )
i (ni)∑

j T
(k)
j /P

(F )
j (nj)

. (6.11)

We now hypothesise that there is a combination of vectors of strategic tolerance

for which the population achieves the optimal distribution with equalised quality n∗
i

(see definition 1). In that case, the tolerance vector of each type will relate to their
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distribution in the following way:

nik = N (k)
u ·

T
(k)
i∑
j T

(k)
j

. (6.12)

However, n∗
i can be attained by different distributions of types over the goods.

We thus sum over all types k to relate the population distribution and the tolerance

vectors in the equalised quality state:

n∗
i =

Nt∑
k=1

N (k)
u ·

T
(k)
i∑
j T

(k)
j

. (6.13)

Therefore, any combination of types with tolerance vectors T
(k)
i and size N

(k)
u

that respects the equation above will lead to an equalised equilibrium n∗
i .

A population using WSLS strategies can always achieve the state with optimal

equalised quality between common goods if they accordingly choose their selective

tolerance to failure. Even though central coordination between individuals could

lead to equalised quality, fully distributed populations composed of self-interested

individuals might achieve the same by trying to minimise the failure probabilities

of individual requests. We will explore this hypothesis by resorting to adaptive

tolerance to failure in section 6.6.

Note that for any set of common goods, there might exist population sizes Nu for

which the equal performance between used common goods will exclude completely a

subset of the commons. In this case, for optimal equalised quality to be achieved, all

types of individuals will necessarily have no tolerance to failure in that good T
(k)
i = 0,

meaning that they will move from it without submitting requests. However, if there

are no such common goods, hybrid populations with both selective and non-selective

individuals might be enough to achieve the optimal equalised quality distribution.

6.5 Hybrid systems of selective common goods usage

Let us consider a system with only two types of individuals k = 1, 2. Individuals

of type k = 1 do not distinguish between common goods, thus being non-selective

individuals with constant T
(1)
i = T, ∀i. Individuals of type k = 2 have selective
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tolerance values towards common goods T
(2)
i . We denote the fraction of selective

individuals as γ = N
(2)
u /Nu.

Applying theorem 4 to the population defined by these parameters, we conclude

that the equilibrium with optimal equalised quality is attained if selective individuals

choose their tolerance to failure as to respect the following equations:

(1− γ)Nu ·
1

Ng
+ γNu ·

T
(2)
i∑
j T

(2)
j

= n∗
i . (6.14)

Under conditions of equalised quality, certain common goods exhibit lower us-

age (n∗
i ) compared to others. However, the original non-selective equilibrium, as

expressed in equation 6.2 and recovered here under γ = 0, results in a suboptimal

intermediate state: even though those commons have lower usage rates than others,

the difference is insufficient to reach the ideal distribution, leading to higher failure

probabilities on them. Consequently, selective individuals respecting equation 6.14

will correct this by avoiding commons which ideally would have lower usage and

flock to the remaining ones.

However, the condition of equilibrium with equalised quality of equation 6.14

may only be fulfilled if γ is large enough. We denote the lowest usage of any of

Figure 6.4: Distribution of a population over three common goods where n∗
1 < n∗

2 < n∗
3.

On the left, we see this makes G1 and G2 overused and G3 underused at the non-selective
equilibrium given by equation 6.2. On the right, selective individuals are shown in green. Only
non-selective individuals use G1 in the hybrid system, which means that this was considered
at γ = γc, i.e. the minimum proportion of selective individuals that allows the population to
achieve equalised quality. At the equalised quality equilibrium, non-selective individuals use
the three goods at the same rate. This is achieved through selective individuals avoiding G1

and distributing over G2 and G3 respecting equation 6.16.
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the common good at equalised quality as n∗
min = mini(n

∗
i ), which could be zero.

The critical value γc above which equalised quality can be attained is the one where

selective individuals don’t spend any time on the common good(s) corresponding to

that minimum, i.e. T
(2)
argmin(n∗

i )
= 0. Applying this to equation 6.14 replacing i by

argmini(n
∗
i ), we obtain the following expression for γc:

γc =
Nu −Ng · n∗

min

Nu
. (6.15)

An illustration of what happens under γ = γc is given in figure 6.4. If γ < γc, that

(those) good(s) will necessarily have a usage larger than n∗
min, thus never achieving

equalised quality. To obtain equalised quality under γ = γc, selective individuals

will have to distribute themselves among the remaining common goods by choosing

the following values of tolerance to failure:

T
(2)
i∑
j T

(2)
j

=
n∗
i − n∗

min

Nu −Ng · n∗
min

, (6.16)

thus forcing the remaining (1−γc)Nu non-selective individuals to distribute equally

between common goods.

6.6 Adaptive tolerance to common goods failure

Let us consider self-interested individuals with selective tolerance values who are

averse to the usage of common goods with lower quality and higher probability

of failure. These individuals may adapt their tolerance to common goods failure

to minimise reliance on such goods. We hypothesise that a population of such

individuals will attain the equalised quality distribution n∗
i in an uncoordinated

manner.

To test this hypothesis, we propose a learning method in the following subsection,

allowing individuals to dynamically adjust their tolerance to failure of each common

good. We then evaluate the results in the subsequent sections.

6.6.1 Adaptive tolerance method

We propose an adaptive tolerance method relying only on one’s previous experiences

with usage of the common goods, thus avoiding considering communication or direct
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coordination between different individuals. Individuals perform an assessment of

their own success rates and adapt their tolerance values accordingly.

For each focal individual k with adaptive tolerance:

• Define a vector for the estimated usage failure probability under each common

good x(k) =
(
x
(k)
1 , ..., x

(k)
Ng

)
. Initialise it with values x0 for all common goods.

• Define a vector for the strategic tolerance to failure under each common good

T (k) =
(
T
(k)
1 , ..., T

(k)
Ng

)
. Initialise it with values T0 for all common goods.

• The individual will choose a common good Gi at random and attempt to use

it repeatedly until T
(k)
i failures are achieved. We denote R as the number of

usage attempts until the T
(k)
i failures are achieved.

• The individual will update the estimated usage failure probability under that

common good x
(k)
i considering both the previous estimation and the new ex-

perienced average T
(k)
i /R:

x
(k)
i ←− (1− β) · x(k)i + β · T (k)

i /R,

where β is the learning rate.

• The individual will update the vector of strategic tolerance T (k) based on the

information on vector x(k). Considering l = argminj x
(k)
j , if x

(k)
l < x

(k)
i and

T
(k)
i > 1, then they will update:

T
(k)
i ←− T

(k)
i − 1

T
(k)
l ←− T

(k)
l + 1.

• The individual will shift to one of the other common goods randomly and

restart the usage phase.

6.6.2 Evaluation of adaptive tolerance in Internet Services

Resorting to the protocol described in the previous section, we evaluate the perfor-

mance of populations composed of individuals with adaptive tolerance to common

goods failure, whose results we present in figure 6.5. In the first panel, we observe

that the population quickly reaches a distribution which has clear quick stochastic
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Figure 6.5: Simulation of a population of 1000 users using WSLS strategies with adaptive
tolerance to common good failure on three available M/M/1 servers Gi, i ∈ {1, 2, 3}. We show
the evolution of the population distribution, and of server-specific average probability of failure
and average tolerance. Each server has the capacity to serve µi = {100, 200, 400} requests per
second (reqs/s) and the system load was set at ρ = 0.75. The time between user and server
is set as di = {10, 20, 30} ms, and individuals’ timeout τ = 100 ms. Tolerance values are
learned by each user independently. The value reported next to “Smoothed” in the plot with
average probabilities of failure reports the average of the low-pass-filtered system-level failure
probability, taken over the last 10% of samples.
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(a) Non-adaptive population with ρ=0.5.
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(b) Adaptive population with ρ=0.5.

1000 

800 

o�--�---�---�---�--�

0 2000 4000 6000 8000 1 0000 

time (s) 

200

400

600

po
pu

la
tio

n 
di

st
rib

ut
io

n

(c) Non-adaptive population with ρ=0.75.
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(d) Adaptive population with ρ=0.75.
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(e) Non-adaptive population with ρ=1.25.
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(f) Adaptive population with ρ=1.25.

Figure 6.6: Superposition of multiple simulations of the evolution of non-adaptive (left) and
adaptive (right) populations using WSLS strategies. The population of 1000 individuals is
initially distributed at random over the three available M/M/1 servers Gi, i ∈ {1, 2, 3}. Non-
adaptive individuals have a set tolerance to 5 failures, whereas adaptive individuals start from
that and learn the tolerance values. We consider three different values (rows) of the system
load ρ = {0.5, 0.75, 1.25}. Each server has the capacity to serve µi = {100, 200, 400} requests
per second (reqs/s). The time between user and server is set as di = {10, 20, 30} ms, and
individuals’ timeout τ = 100 ms.

fluctuations and subtle long-term oscillations, but which is close to an equilibrium

state. The oscillations are smooth and seem to dampen over time, suggesting that

a stable population distribution equilibrium might be reached.

The second panel in figure 6.5 shows that the average probability of failure is

reached quickly and doesn’t vary much over time. Server-specific probabilities of

failure have wider oscillations. Servers with lower capacity (1 and 2) tend to be

overcrowded in the early stages of the evolution, likely due to the initialised val-

140



ues of individual tolerances being the same, thus initially leading to overall better

performance at higher capacity server (3). This is corrected over time by the indi-

vidual’s independent learning process, which eventually overshoots the tolerance at

the highest-capacity server 3, thus leading to small self-correcting oscillations – this

can be seen in the third panel in figure 6.5. Through this whole process the overall

system average performance is positive and the overlap of the curves shows that the

system attains equalised quality.

Furthermore, in figure 6.6, we present an overlap of several evolution curves of the

population starting randomly distributed. Each plot shows a different system load

(rows) and the non-adaptive (left) and adaptive (right) systems compared. In those

curves it is clearly observed that there isn’t much of difference between the curves

obtained at each scenario. Even if the population starts at different distributions,

its evolution quickly moves into a determined distribution state. This distribution

evolves with time, depending on two aspects shown before for the ρ = 0.75 adaptive

case: the server-specific probability distributions and the individuals’ independently

learned tolerance values. These two aspects change slower with time, thus leading

to slower average changes of the population distribution curve.

Finally, figure 6.6 additionally shows that the differences between the equilib-

rium population distributions in populations of individuals with non-adaptive and

adaptive tolerances is quite small for lower loads than under overloading–in this case

ρ = 1.25. This is so because failure probabilities are more sensitive to changes in

usage rates under lower loads. After capacity is reached at ρ = 1, the probability

distribution is often dominated by the limitations of the system to failure. The

probability of failure will likely be larger than 1−1/ρ, which is 20% under ρ = 1.25.

Therefore, probabilities of failure become less sensitive to changes, which are main-

tained at the same order of magnitude, and we observe higher differences between

the population distribution at equilibrium when individuals are non-adaptive and

the equalised quality equilibrium attained by populations of adaptive individuals.

6.6.3 Evaluation for changing load

We evaluate the evolution of the population distribution and server-specific proba-

bilities of failure when the load of the system changes with time. For this, we have

simulated that the load is changed every hour to a value between ρ = 0.25 and

ρ = 1.25, as reported in figure 6.7. The distribution over the servers and probabil-
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(a) Distribution of non-adapting population.
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(b) Failure probability in non-adapting population.
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(c) Distribution of adapting population.
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(d) Failure probability in adapting population.

Figure 6.7: Simulation of a population of 1000 users using WSLS strategies with non-adaptive
(top) and adaptive (bottom) tolerance values to common good failure on three available M/M/1
servers Gi, i ∈ {1, 2, 3}. The system load ρ is set to switch every hour according to the following
sequence: 0.75, 1.25, 0.75, 1.25, 0.75, 0.5, 0.25, 0.5, 0.75. We show the evolution of population
distribution (left) and server-specific average probability of failure P (F ) (right). Non-adaptive
individuals have a set tolerance of 5 failures, whereas adaptive individuals start from that
and learn the tolerance values independently. The ODE results are obtained applying the
set of equations 6.3. For adaptive populations, the ODEs were ideally altered by setting
the ratio between the tolerance in different servers equal to the current ratio of server usage,
guaranteeing that the system always heads towards equalised probability of failure. Each server
has the capacity to serve µi = {100, 200, 400} requests per second (reqs/s). The time between
user and server is set as di = {10, 20, 30} ms, and individuals’ timeout τ = 100 ms.

ities of failure quickly change after load values are switched. In the non-adapting

populations, server-specific failure probabilities stabilise at different values. These

values can be well differentiated, especially for larger load values ρ = 1.25 where,

as mentioned before, the general overuse effect of the system is present and average

failure probabilities hit values close to 20%.

In comparison, the adapting population reaches remarkably identical failure

probabilities between servers, with only small differences emerging from them. The

small differences are likely to be coming from the fact that we have initialised toler-

ance values at 5, thus meaning that their learned values are limited between 1 and

13, with the sum of them being fixed at 5× 3 = 15. This is a limit to the maximum

difference between the learned tolerance values at each of the three servers, which
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are slightly visible for large load values. Nonetheless, as noted before, the results

obtained are remarkably close to equalised probability of failure between servers,

and valid under a wide range of system load values and quick dynamic changes.

The theoretical ODE results typically match the average behaviour of the sim-

ulation results, apart from the intervals of extremely low system load ρ = 0.25. In

such cases, the simulation statistics move much slower than the ODE predictions.

This is likely associated with the fact that the ODE statistics themselves change

slowly, instead of so abruptly as for all remaining load values.

6.7 Discussion

In this chapter, we have proposed an extension of the Win-Stay, Lose-Shift strategy

to common good usage. As noted before, this has been studied in the context of

other strategic settings, such as iterated, mobile, and spatial dilemmas. In the sim-

plest form of the Win-Stay, Lose-Shift-Good strategy, individuals have no memory

nor information about the system beyond the perceived outcome of their current

usage of a common good. The emerging dynamics in a population of individuals

using such strategies leads to stable equilibria where there is already a considerable

improvement when compared to the outcome of random usage of common goods.

However, the introduction of selective tolerance to common goods failure allows

populations to self-organise into an optimised usage distribution over the common

goods. This state should be attained by a population of self-interested individuals

acting to maximise the average perceived quality of the goods they use. This is

confirmed by considering a relatively simple learning method used by individuals

independently adapting their selective tolerances to failure. This multiagent rein-

forcement learning setting consistently led to the self-organisation of the population

into the optimised usage distribution.

Furthermore, it has been shown with behavioural experiments and theoretically

explained that the introduction of a small fraction of hardwired agents can lead

to an overall improvement of observed prosocial behaviour in hybrid populations

(Santos et al. 2019). More generally, hybrid social systems can trigger large-scale

prosocial behaviour of humans and virtual agents (Oliveira et al. 2021). These

ideas are relevant to the context of common good usage, where the introduction

of selective adaptive individuals in hybrid systems with non-selective individuals
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shows general improvements in the overall experienced quality. In this case, the

interests of individual users are not at conflict, but instead represent a coordination

problem. Selective adaptive individuals avoid overcrowding servers thus improving

the experienced quality for everyone, both selective and non-selective individuals.

Hybrid systems have the potential to reach the optimal scenario of equalised quality,

or probability of failure, if their existence overcomes a critical value.

In the context of grazing and foraging, positive results have been observed in

supporting the attainment of the IFD. Some examples are the size of spider cooper-

ative colonies which grow and develop webs that allow them to maximise the total

food intake per capita for the particular environment where they are (Yip et al.

2008). Another example is that of bumblebees, which frequent different patches of

land selectively, depending on their flower density and nectar levels (Dreisig 1995,

Abraham 2005). Our results highlight one of the possible strategies individuals in

a population may have available to them when accessing different common goods

under minimal communication and strong limitations on what they can observe at

a given time. The results obtained under adaptive tolerance to failure show that

indeed the ideal free distribution may be achieved, even under such limitations, as

long as individuals are able to store information about previously used resources.

We considered the above framework in light of the server selection problem faced

by mobile users accessing Internet services. This system is inherently dynamic and

subject to heavy stochastic fluctuations. However, the results we obtained through

a realistic simulation of this complex system verify our theoretical predictions of the

equilibria achieved by individuals using WSLS strategies, with both non-selective

and selective tolerance to failure. We further applied the simple individual adaptive

method for selective tolerance to failure mentioned above, showing that populations

of such individuals can reach the optimised usage distribution even when the usage

rates are changed dynamically. The general WSLS strategy and the adaptive toler-

ance method can thus be applied to network usage protocols with the potential to

improve overall general network accessibility, even in hybrid populations where users

use a variety of protocols. As shown, in some cases, a critical mass of individuals

with adaptive tolerance to failure can guarantee the optimisation of the experienced

quality of the service for all individuals using the network.

The theoretical principles developed within this framework can be further con-

sidered in light of other multiagent systems of common good usage. In particular,
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recent research of individual behavioural patterns in public transport services shows

that people typically stick to the same commuting route on a regular basis (Costa

et al. 2023), even when facing small disruptions (Marra & Corman 2023). If disrup-

tions come from overcrowding, they can be locally regulated, for instance through

collective rerouting strategies (Luan et al. 2024). However, upon experiencing suc-

cessive failures with their typical route, they might switch to a different option on

a daily basis. This makes this topic one of potential interest, where a better under-

standing of individual behaviour and their adaptive strategies may help developing

better public transport usage regulating mechanisms.

Parallel approaches using population dynamics have been used in the context

of water supply management in urban areas. These are complex interconnected

systems, where controlling mechanisms guarantee the continuous access to water

resources, which are available in different water storage units (Ramı́rez-Llanos &

Quijano 2010a). This problem has been approached using population dynamics

and, in particular, the IFD in order to find solutions that guarantee constant access

to a water supply of dense urban areas (Ramirez-Llanos & Quijano 2010b).

In all these systems, if the distribution of usage changes quickly enough, the sys-

tem might be temporarily malfunctional, as it was shown for internet services under

abruptly variable loads. However, over time, a population of adaptive individuals

are able to attain the adequate balanced equilibrium. We haven’t considered more

complex scenarios, where, for instance, the different options available to individu-

als have dynamically changing properties, or where new options become available

or previous options become unavailable. This could be further explored in the fu-

ture. However, the results just mentioned obtained for adaptive populations could

indicate that the new equilibria would be reached over time. It is often the case

that there are individual costs associated with shifting from the previously chosen

common good, or even associated with storing information about usage history and

adapting one’s tolerance to failure accordingly. These possibilities could be explored

in the future.
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Chapter 7

Skill interaction-transmission

dynamics and the evolution of

new skills
1

7.1 Introduction

Human societies are complex and highly cooperative structures built around the

production of material goods, services, knowledge, culture, institutions, and more.

For these to manifest, they require material resources and infrastructure, as well as

the skills to apply them effectively. For example, the best equipped barber shop is

nothing without a skilled barber and an atomic power station does not run safely

without the people who are trained to operate it. Specialisation emerges from the

division of labour in society, whose association with socio-economic success can be

first attributed to Émile Durkheim in Durkheim (1984/1893). Some human skills,

such as tool manufacturing, working of hard metals, agricultural production, or

animal domestication, date back to pre-historic times. However, the complex nature

of modern day societies generates new challenges.

Similarly to knowledge, skills can be seen as a cultural good (Derex & Morgan

2023) and, as such, they are typically transmitted through social learning in a pro-

cess that can be analysed through the lens of cultural evolution (Cavalli-Sforza &

Feldman 1981, Boyd & Richerson 1988). For example, crows learn to identify people

who did them ill (Marzluff et al. 2010) and pass on their animosity to their mob

1This chapter is based on a working paper done in collaboration with Professor Rudolf Hanel.
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and their offspring if the opportunity arises (Cornell et al. 2012). This is equally

true for skills. In humans, early skill transmission typically occurs in the family or

school context through repetition of actions (parent to child or educator to student).

When moving to the labour market, skills are often learned by direct contact with

peers who know how to perform certain tasks. Even though centuries apart, in

pre-modern societies, the same peer skill transmission through joint labour was fre-

quent, as artisans and farmers would typically join forces with unskilled individuals

in order to produce something, while the unskilled would learn in the process.

In recent years, the fields of economic complexity and evolutionary economic

geography have made striking advances in understanding the impact of having a

skilled and knowledgeable workforce on industrial development and its geographic

organisation. In particular, the presence of industrial skills and knowledge can

be determinants of future economic growth (Hidalgo et al. 2007). The concept

of industry relatedness (see a review in Hidalgo et al. (2018)) is used to explain

why innovation is often geographically concentrated, as the skills and knowledge

used in one industry can be transferable to others (Neffke et al. 2011). Leveraging

higher-order effects on the inter-industry labour flow network reveals clusters of

industries where there is a strong skill overlap that generates fertile ground for

innovation (O’Clery & Kinsella 2022). Furthermore, in countries with high rates of

migration, a high transfer of new skills happens often by contact with the specialised

returning workforce (Hagan & Wassink 2016). In this context, the value of what

a person knows depends on whom that person works with, and having co-workers

with complementary qualifications is beneficial (Neffke 2019). These approaches

highlight the positive impact that skill development and diversification can have on

guaranteeing the success of local economies.

However, the adoption of new skills by individuals in these complex social systems

should be itself dependent on the possibility that these may provide them with an

individual benefit. If a set of skills is not attractive enough for newcomers to learn

them, it will die out. New skills will similarly require a sufficient attractiveness in the

environment where they appear, in order to be socially adopted and become a part

of it. It is often the case that the evolution and survival of a new skill is dependent

on the pre-existing presence of other skills and resources that make it evolutionarily

possible. Therefore, in order to understand the evolution and extinction of skills

which determines the course of human history, we need to consider the incentives
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driving individuals to adopt them, as well as how these skills interact synergistically

within the system.

In this chapter, we will explore the role of interactions between skilled and un-

skilled individuals in skill transmission in social systems, focusing on the character-

istics that skills need to fulfil to successfully evolve. We will do so by developing a

model of population dynamics, where individuals with different skills interact with

each other and the outcome of their interactions determines their social fitness. In

turn, this affects which skills are more likely to be adopted by unskilled individuals

in their interactions with skilled individuals. We consider the outcome of an interac-

tion between a set of skills to be fixed over time. This thus describes a static regime

happening at a relatively fine time-scale where the (market) environment has not

yet reacted by adapting the incentives to the adoption of skills.

In section 7.2, we formally define this framework for a population with an arbi-

trary number of distinct skills. Section 7.3 examines the properties required for a

single skill to evolve within an otherwise unskilled environment, categorising them

as sustainable, tentative, or unsustainable, according to the observed outcome. In

section 7.4, we show that the evolution of a second skill in a population where an-

other skill is already established is only possible if the second skill is sustainable or

if there are synergistic properties between the two skills. In section 7.5, we explore

the introduction of an Nth skill, by considering the previously stable equilibrium

as a mean-field skill, against which the new Nth skill will compete for the existing

unskilled individuals to enter the market. This allows us to leverage the insights

from the 2-skill model and determine the success of any new skill as a function of its

synergy with the previous equilibrium and the availability of unskilled individuals.

In section 7.6, we explore the stable co-existence of skills and note that this is only

possible due to the frequency-dependent nature of their success generated by the

synergistic interaction between skills.

7.2 The skill interaction-transmission model

To study the evolution of new skills in social contexts, we have developed a model

of skill transmission dynamics within interacting populations. To construct such a

model, we have used elements of both epidemiological and game-theoretic modelling.

Let us consider a population of individuals, each of which has an associated
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skill type Si, where i = 0, 1, ..., N . We consider S0 to define unskilled individuals.

Individuals in the population interact with each other. After an individual with a

skill Si interacts with one with skill Sj , they will respectively receive aij and aji.

This establishes their interaction as a matrix game with N +1 types, with a general

payoff matrix which is given by the following general matrix in table 7.1.

S0 S1 S2 . . . SN

S0 a00 a01 a02 . . . a0N
S1 a10 a11 a12 . . . a1N
S2 a20 a21 a22 . . . a2N
...

...
...

...
. . .

...
SN aN0 aN1 aN2 . . . aNN

Table 7.1: Payoff matrix of a general N-skill game.

We make the assumption that the population is well-mixed and that, therefore,

individuals interact with each other with equal frequency. In this case, we can

use the mean field approximation to determine the fitness Fi of the individuals of

each strategy type Si. This is akin to the fitness considered in evolutionary games

(Maynard Smith 1974, Broom & Rychtář 2013) and it depends on the density of

each strategy Si in the population, denoted si, which holds a value between 0 and

1. We thus calculate the fitness through an average of the payoffs received weighted

by the density of each type they may interact with:

Fi(s0, s1, ..., sN ) =
N∑
j=0

aijsj . (7.1)

We consider the following dynamics ruling the distribution of types in the popu-

lation. Unskilled individuals learn from skilled individuals of type Si proportionally

to how frequently they may interact with them (calculated from the density of that

skill si) and to the potential fitness gain (Fi−F0) serving as their motivation to learn.

The learning rate ϵi determines the time rate at which interaction of unskilled indi-

viduals with skilled ones Si would lead to learning, for each unit of wealth gain. The

frequency-dependent transmission rate couples the interactions between individuals

to the dynamics. We further consider skilled individuals to leave the population

at a rate γi. Therefore, the dynamics can be described by a set of N differential

equations:

dsi
dt

= ϵi [Fi(s0, s1, ..., sN )− F0(s0, s1, ..., sN )] s0si − γisi. (7.2)
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Note that
∑

i si = 1, because variables si are densities as mentioned before, and

therefore the above equation can be rewritten considering s0 = 1−
∑N

i=1 si.

This model can generate complex dynamics, incorporating elements of both epi-

demic and evolutionary game-theoretic models, which we will untangle in the follow-

ing sections. In the 1-skill model, considering γ = 0 recovers the replicator equation

presented in chapter 1. Even though some of the characteristics of the model are

parallel to evolutionary game theory when more than one skill is considered and

γi = 0 for all skills, the equivalence is no longer true. On the other hand, consider-

ing constant fitness differences between the skills eliminates the frequency-dependent

character of transmission rates, leading to an N-strain SIS model.

We note that there are a set of natural scaled parameters which will be useful to

treat this system, which are defined in table 7.2. The parameter xi represents the

loss rate of skill Si, when everyone is unskilled (s0 = 1). It will thus reflect the skill’s

potential to evolve in an unskilled population. Parameter σij represents the synergy

coefficient between two skills Si and Sj . It encapsulates how much better (relative

to unskilled individuals) it is for an individual with skill Si to interact with another

with skill Sj instead of interacting with an unskilled individual. This serves as a

clear measure of supra-linear productive complementarity between different or the

same skills. If i = j, then this is the intra-skill synergy (intraspecific skill synergy),

whereas if i ̸= j, then it represents the cross-skill synergy (interspecific skill synergy).

Parameter Definition

Loss rate xi =
γi/ϵi

ai0 − a00

Synergy coefficient σij =
aij − a0j
ai0 − a00

Table 7.2: Natural scaled parameters of skill interaction-transmission model. The loss rate
of a skill describes the rate at which this skill is lost from the population when it appears (and
thus almost everyone else is unskilled). The synergy coefficient describes the potential payoff
gain that a skill Si has by interacting with another skill Sj , thus serving as a measure of their
productive complementarity. Note that the synergy coefficient corresponds to the intra-skill
synergy of Si if i = j, and the cross-skill synergy between Si and Sj if i ̸= j. These intrinsic
skill characteristics reflect their potential to evolve.

7.3 Interaction-transmission of one skill

Let us start by looking at the 1-skill version of this model. In this version, we

consider individuals to be either unskilled S0, or to possess a skill S1. Individuals
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interact with each other and receive the payoffs from table 7.3, depending on their

own skill status and on that of the individual with whom they are interacting. This

establishes their interaction as a 2 × 2 game.

S0 S1

S0 a00 a01
S1 a10 a11

Table 7.3: Payoff matrix of a general 1-skill 2 × 2 game.

The fitness F0 and F1 can be calculated through the following, where we have

used the fact that s0 + s1 = 1:

F0(s0, s1) = a00s0 + a01s1 = a00 + (a01 − a00)s1,

F1(s0, s1) = a10s0 + a11s1 = a10 + (a11 − a10)s1.
(7.3)

The dynamics can be described by a single differential equation (note that s1 =

1− s0):
ds1
dt

= ϵ1[F1(s1)− F0(s1)]s0s1 − γ1s1 (7.4)

This can be simplified by considering the naturally scaled parameters of table

7.2 and the normalising constant C1 = ϵ1(a10 − a00). This leads to the following

equation:
ds1
dt

= C1s1
[
(1− σ11)s

2
1 + (σ11 − 2)s1 + (1− x1)

]
. (7.5)

7.3.1 Existence and stability of equilibria in 1-skill model

The fixed points of the dynamical system described by equation 7.5 are found by

solving for
ds1
dt

= 0. (7.6)

There are three possible fixed points s∗1 to equation 7.5. We denote the trivial

solution as s01 = 0 and the non-trivial solutions as s±1 , which take the form of

s±1 =
(σ11 − 2)±

√
(σ11 − 2)2 − 4(σ11 − 1)(x1 − 1)

2(σ11 − 1)
. (7.7)

Let us assume x1 > 0 and σ11 > 0. Whereas the trivial solution is always within

the appropriate region of the parameter space (0 ≤ s1 ≤ 1), the non-trivial solutions

might not be depending on the values of x1 and σ11.
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First of all, from equation 7.7, it can be shown that s±1 hold real values if the

radicand in the square root is non-negative and therefore:

• σ11 < 1 or

• x1 <
σ2
11

4(σ11 − 1)
.

Then, focusing on the solution s+1 , it can be shown that s+1 ≤ 1 is always true

and s+1 > 0 is true if x1 < 1 or σ11 > 2.

Combining conditions above, s+1 is real and meets 0 < s+1 ≤ 1 if:

• 0 ≤ σ11 < 2 and 0 ≤ x1 ≤ 1, or

• σ11 ≥ 2 and 0 ≤ x1 ≤
σ2
11

4(σ11 − 1)
.

Focusing now on the solution s−1 , we derive that s−1 ≤ 1 if σ11 > 1. Moreover, it

respects s−1 > 0 if σ11 < 1 or if σ11 > 2 and x1 > 1.

Combining the conditions, s−1 is real and meets 0 < s−1 ≤ 1 if:

• σ11 ≥ 2 and 1 ≤ x1 ≤
σ2
11

4(σ11 − 1)
.

The second non-trivial fixed point s−1 exists in the appropriate domain if s+1 does

so as well. In those cases, it is clear that both the numerator and the first summing

term in their solution values (equation 7.7) are positive. This means that for all

existing solutions in the appropriate domain, we will have s−1 < s+1 .

Finally, each of these equilibria is stable if

d2s1
dt2

∣∣∣∣
s1=s∗1

< 0. (7.8)

We thus calculate the second derivative of s1, which leads to the function below:

d2s1
dt2

= C1 [A(s1) + s1 (2(1− σ11)s1 + (σ11 − 2))] , (7.9)

where A(s1) is the second order polynomial of s1 inside the brackets of equation 7.5:

A1(s1) =
[
(1− σ11)s

2
1 + (σ11 − 2)s1 + (1− x1)

]
, (7.10)

which by definition respects A(s±1 ) = 0.

Regarding the trivial solution, it is clear that

d2s1
dt2

∣∣∣∣
s1=s01

= C1A1(s
0
1) = C1 (1− x1) , (7.11)
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meaning that s01 is stable when x1 > 1.

Furthermore, we show that

d2s1
dt2

∣∣∣∣
s1=s±1

= −C1s
±
1

(
2(σ11 − 1)s±1 − (σ11 − 2)

)
= −C1s

±
1

(
±
√
(σ11 − 2)2 − 4(σ11 − 1)(x1 − 1)

)
.

(7.12)

This means that when real and in the appropriate domain, the solution s+1 is

always stable and s−1 never.

7.3.2 Evolution of one skill

The analysis of existence and stability of equilibria in the 1-skill model shows that

there are three solution scenarios. These solution scenarios are represented in figure

7.1 and correspond to three types of skills summarised as the following:

• Sustainable skill – leads to endemic equilibrium s+1 . Occurs when skill loss

rate is low enough (0 ≤ x1 ≤ 1) regardless of the intra-skill synergy value σ11;

• Tentative skill – leads to bi-stability of endemic s+1 and unskilled s01 equilibria.

The point that splits the two basins of attraction is given by s−1 . Occurs when

skill loss rate is high but compensated by a high enough intra-skill synergy

value (1 ≤ x1 ≤
σ2
11

4(σ11 − 1)
and σ11 ≥ 2);

• Unsustainable skill - leads to unskilled equilibrium s01 = 0. Occurs otherwise.

The dependence of the occurrence of each of three solutions on the values of x1

and σ11 is shown in figure 7.2.

Since sustainable and unsustainable skills lead to scenarios with a single stable

equilibrium, no temporary alterations of the payoff matrix in table 7.3 can change

the final outcome of the system after alterations are lifted. However, when facing a

tentative skill, the system can be pushed into the basin of attraction of the endemic

state by moving the value of s1 from below to above s−1 , after which it naturally

evolves to the endemic state s+1 , even after alterations are lifted. A temporary

reduction of the value of x1 to one would achieve this. The payoff a10 could be

increased until a′10 = a00 + ϵ1/γ1 – an incentive to skilled individuals interacting

with unskilled individuals. The minimum effort incentive would be one starting at

a′10 such that would lead to s+1 = s1(t = 0).
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Figure 7.1: Equilibrium scenarios in 1-skill systems. The three horizontal axes represent the
skill prevalence s1, ranging from 0 to 1 (from left to right). Blue circles are used to denote
stable endemic equilibria (s+1 ), red circles for stable unskilled equilibria (s01), and white circles
for unstable fixed points (s−1 ).
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11
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x 1
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Tentative Skill
Unsustainable Skill

Figure 7.2: Equilibrium scenarios for values of skill loss rate (x1) and intra-skill synergy (σ11)
in 1-skill systems.

7.4 Interaction-transmission of two skills

We take this question further and ask whether adding a new skill S2 to the system

would lead the system to collapse back into the previous equilibrium. Let us focus

on the game matrix of interactions between the previous types and the type with

the new skill:
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S0 S1 S2

S0 a00 a01 a02
S1 a10 a11 a12
S2 a20 a21 a22

Table 7.4: Payoff matrix of a general 2-skill 3 × 3 game.

We adapt the previous 1-skill dynamics to two skills, by considering that individ-

uals can only have one of the two skills, which can be taught to unskilled individuals

and vanish as explained in the 1-skill model. This leads to the following equations

for fitness and differential equations:

Fi(s1, s2) = ai0s0 + ai1s1 + ai2s2 =

= ai0 + (ai1 − ai0)s1 + (ai2 − ai0)s2
(7.13)

ds1
dt

= ϵ1s1

[
(F1(s1, s2)− F0(s1, s2))s0 −

γ1
ϵ1

]
ds2
dt

= ϵ2s2

[
(F2(s1, s2)− F0(s1, s2))s0 −

γ2
ϵ2

] (7.14)

Working on these equations as done in the 1-skill case, we obtain differential

equations 7.15. In these equations, we use the natural scaled parameters xi and σij ,

i, j = 1, 2 as defined in table 7.2. Parameters x1 and x2 are the scaled loss rates

of skills S1 and S2. Parameters σ11 and σ22 represent the scaled intra-skill synergy

coefficient and σ12 and σ21 the scaled cross-skill synergy coefficients.

ds1
dt

= C1s1 [(1− x1) + s1(σ11 − 2) + s2(σ12 − 2)+

+s1s2(2− σ12 − σ11) + s21(1− σ11) + s22(1− σ12)
]

ds2
dt

= C2s2 [(1− x2) + s2(σ22 − 2) + s1(σ21 − 2)+

+s1s2(2− σ21 − σ22) + s22(1− σ22) + s21(1− σ21)
]
.

(7.15)

7.4.1 Existence and stability of trivial and single skill equilibria in

2-skill model

Position of equilibria

The trivial state of the system (s∗1, s
∗
2) = (0, 0) is a always a fixed point to the set of

equations 7.15. Besides this one, there are either 0, 1, or 2 equilibria on each of the

edges (defined by s2 = 0 and s1 = 0). These equilibria are given by the following
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equations.

s∗2 = 0 and s∗1 = s±1 =
(σ11 − 2)±

√
(σ11 − 2)2 − 4(σ11 − 1)(x1 − 1)

2(σ11 − 1)
. (7.16)

s∗1 = 0 and s∗2 = s±2 =
(σ22 − 2)±

√
(σ22 − 2)2 − 4(σ22 − 1)(x2 − 1)

2(σ22 − 1)
(7.17)

Intuitively, the value of s∗1 when s∗2 = 0 shown in equation 7.16, is the same as

the one obtained in the single skill equilibrium in equation 7.7. In parallel, the value

of s∗2 when s∗1 = 0, assumes the same form, apart from the swapped indices.

Conditions of existence of single skill equilibria

The conditions of existence of such equilibria are similar to the ones obtained under

the 1-skill model. As such, we simply reproduce here some of the results already

derived.

Single skill equilibrium with s∗2 = 0

There is one and only one equilibrium s+1 in the appropriate domain (between 0

and 1) in the s2 = 0 edge apart from the trivial one, if the following condition holds:

0 ≤ x1 ≤ 1 (7.18)

The two equilibria from eq. 7.16 exist if the following condition holds:

σ11 ≥ 2 and 1 ≤ x1 ≤
σ2
11

4(σ11 − 1)
(7.19)

Therefore, there are no equilibria in that edge if the following condition holds:

(σ11 < 2 and x1 > 1) or

(
σ11 ≥ 2 and x1 >

σ2
11

4(σ11 − 1)

)
(7.20)

Single skill equilibrium with s∗1 = 0

In a parallel way, there is one and only one equilibrium s+2 in the appropriate

domain (between 0 and 1) in the s1 = 0 edge (apart from the trivial one) if the

following conditions holds:

0 ≤ x2 ≤ 1 (7.21)
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The two equilibria from eq. 7.17 exist if the following condition holds:

σ22 ≥ 2 and 1 ≤ x2 ≤
σ2
22

4(σ22 − 1)
(7.22)

Therefore, there are no equilibria in that edge if the following condition holds:

(σ22 < 2 and x2 > 1) or

(
σ22 ≥ 2 and x2 >

σ2
22

4(σ22 − 1)

)
(7.23)

Stability of equilibria

The Jacobian evaluated at a general point (s1, s2) of the parameter space is the

following:

J(s1, s2) =

J11(s1, s2) J12(s1, s2)

J21(s1, s2) J22(s1, s2)

, (7.24)

where

J11(s1, s2) = C1 (B1(s1, s2) + s1 [(σ11 − 2) + 2s1(1− σ11) + s2(2− σ12 − σ11)])

J12(s1, s2) = C1s1 [(σ12 − 2) + s1(2− σ12 − σ11) + 2s2(1− σ12)]

J21(s1, s2) = C2s2 [(σ21 − 2) + 2s1(1− σ21) + s2(2− σ21 − σ22)]

J22(s1, s2) = C2 (B2(s1, s2) + s2 [(σ22 − 2) + s1(2− σ21 − σ22) + 2s2(1− σ22)])

(7.25)

where B1(s1, s2) and B2(s1, s2) are functions defined as the factors delimited by

the brackets multiplying in the set of differential equations 7.15:

B1(s1, s2) = (1− x1) + s1(σ11 − 2) + s2(σ12 − 2)+

+s1s2(2− σ12 − σ11) + s21(1− σ11) + s22(1− σ12)

B2(s1, s2) = (1− x2) + s2(σ22 − 2) + s1(σ21 − 2)+

+s1s2(2− σ21 − σ22) + s22(1− σ22) + s21(1− σ21)

(7.26)

It is useful to note that B1(s
∗
1 ̸= 0, s∗2) = 0 and B2(s

∗
1, s

∗
2 ̸= 0) = 0.

For a fixed point (s∗1, s
∗
2) to be stable, the Jacobian has to meet the following con-

ditions: Tr(J(s∗1, s
∗
2)) < 0 and det(J(s∗1, s

∗
2)) > 0. Based on the previous definition

of the Jacobian matrix entries, this translates to the following:

J11(s
∗
1, s

∗
2) + J22(s

∗
1, s

∗
2) < 0 and J11(s

∗
1, s

∗
2)J22(s

∗
1, s

∗
2)− J12(s

∗
1, s

∗
2)J21(s

∗
1, s

∗
2) > 0

(7.27)

The trivial equilibria is described by (s∗1, s
∗
2) = (0, 0). In that case, the entries of
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the Jacobian are simplified and J12(0, 0) = J21(0, 0) = 0, which means that stability

is guaranteed by J11(0, 0) < 0 and J22(0, 0) < 0, translating into:

x1 > 1 and x2 > 1. (7.28)

Edge equilibria also have one of the entries of the Jacobian equal to zero, namely

J12(s
∗
1 = 0, s∗2) = 0 and J21(s

∗
1, s

∗
2 = 0) = 0. This assures that for edge equilibria,

it is always true that J12(s
∗
1, s

∗
2)J21(s

∗
1, s

∗
2) = 0. This simplifies the conditions of

stability from equation 7.27 to J11(s
∗
1, s

∗
2) < 0 and J22(s

∗
1, s

∗
2) < 0 if either s∗1 = 0 or

s∗2 = 0.

Assuming that there is a single skill equilibrium (s∗1, s
∗
2 = 0) is in the appropriate

domain, i.e., 0 < s∗1 ≤ 1, we study the conditions under which this equilibrium is

stable.

The first condition J11(s
∗
1, 0) < 0 is met under σ11 < 2 for all solutions in the

appropriate domain and under σ11 > 2 for solutions in the appropriate domain that

respect s∗1 > 1 − σ11
2(σ11 − 1)

. Together, these conditions mean that the solution s+1

in the appropriate domain always meets J11(s
∗
1, 0) < 0, and s−1 in the appropriate

domain never does. Therefore, s+1 is potentially stable, depending on the sign of

J22(s
+
1 , 0) alone and s−1 is always unstable.

Thus, it can be concluded that focusing on the edge with s∗2 = 0, if there is

only one solution, this might be stable depending on the sign of one of the entries

of the Jacobian. When there are two solutions on the that edge, the lowest one

(corresponding to s−1 ) is never stable, while the largest one (corresponding to s+1 )

might be, depending on the sign of the same entry of the Jacobian.

Condition J22(s
+
1 , 0) < 0 is met and thus s+1 is stable under σ21 < 2 for the

following cases:

• 0 < x2 < 1 for solutions in the appropriate domain that respect s+1 > s+1d;

• 1 < x2 for all solutions s+1 in the appropriate domain.

Condition J22(s
+
1 , 0) < 0 is met and thus s+1 is stable under σ21 > 2 for the

following cases:

• 0 < x2 < 1 for solutions in the appropriate domain that respect s+1 > s+1d;

• 1 < x2 <
σ2
21

4(σ21 − 1)
for solutions in the appropriate domain that respect

s+1 > s+1d or s+1 < s−1d;
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•
σ2
21

4(σ21 − 1)
< x2 for all solutions s+1 in the appropriate domain.

We have used the following definition:

s±1d =
(σ21 − 2)±

√
(σ21 − 2)2 − 4(σ21 − 2)(x2 − 2)

2(σ21 − 1)
(7.29)

The same analysis extends to the other edge with s∗1 = 0, where s+2 is stable

if J11(0, s
−
2 ) < 0 and s−2 is never stable. The conditions obtained are the same as

the ones above, with the simple switch of indices 1 and 2. This is also true for the

definition of s±2d.

If we choose σ21 = σ22, then s+1d = s+2 (in parallel, if we chose σ12 = σ11, then

s+2d = s+1 ). In those cases, the conditions of stability of the equilibrium on one edge

become the exact conditions of existence of the equilibrium on the opposing edge,

with an extra condition comparing the positions of the two. If there is only one

equilibrium on the opposing edge, the equilibrium will be stable only if its position

is larger than that of the other edge. If there are two equilibria on the other edge,

then the equilibrium will be stable if larger than the largest one of the other edge,

or lower than the smaller. If there are no equilibria on the other edge, then the

equilibrium will be stable. However, if both conditions σ11 = σ12 and σ21 = σ22 are

met, we recover the constant transmission rate model, which is analysed further in

section 7.6.1.

7.4.2 Evolution of a second skill

Let us assume we start from the case with one skill S1, and that its endemic equi-

librium s+1 was reached – this can either correspond to the cases of a single skill

endemic equilibrium or its bi-stability together with the unskilled equilibrium. Un-

der which circumstances would adding a new strategy S2 not result in immediate

extinction of the new strategy? We now use the stability analysis of the previous

equilibrium in the 2-skill space. The only cases under which there is no immediate

extinction are the following:

0 < x2 < 1 and s+1 < s+1d, (7.30)

σ21 > 2 and 1 < x2 <
σ2
21

4(σ21 − 1)
and s−1d < s+1 < s+1d (7.31)
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The first case corresponds to the second skill’s loss rate x2 being low enough.

The second case corresponds to its synergy coefficient σ21 being high enough to

compensate for its less advantageous loss rate with an extra condition the previously

stable single skill equilibrium needs to respect one of the relations above.

Furthermore, we note that under the bi-stability case there is an unskilled equilib-

rium besides the endemic one when only S1 is considered. Adding a second strategy

S2 de-stabilises the unskilled equilibrium in the first condition above, but not in the

second.

7.5 Evolution of an Nth skill

Let us consider adding an Nth skill to a complex system with N − 1 other skills.

This system will have N independent variables si, i = 1, 2, ..., N . The new skill will

grow if its respective differential equation evaluated at a first-order perturbation of

the previous skill equilibrium (s∗1, s
∗
2, ..., sN = 0) is positive. Based on equation 7.2,

this will happen if:

[FN (s∗1, s
∗
2, ..., sN = 0)− F0(s

∗
1, s

∗
2, ..., sN = 0)] s∗0 > γN/ϵN . (7.32)

The left hand-side of the equation above can be interpreted as the fitness differ-

ence between new skilled and unskilled individuals against a mean-field skill equi-

librium. By replacing the fitness by their respective expressions given by equation

7.1, we get the following condition:N−1∑
j=0

aNjs
∗
j −

N−1∑
j=0

a0js
∗
j

 s∗0 > γN/ϵN . (7.33)

We join the two sums, and isolate the term j = 0, getting the following equivalent

condition: N−1∑
j=1

(aNj − a0j)s
∗
j + (aN0 − a00)s

∗
0

 s∗0 > γN/ϵN . (7.34)

Dividing all terms by (aN0− a00) and using the definition of the scaled skill loss

rate and synergy coefficient from table 7.2, we obtain the following condition:N−1∑
j=1

σNjs
∗
j + s∗0

 s∗0 > xN . (7.35)
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To simplify the condition above, let us denote as ΩN the scaled synergy between

the Nth skill and the skills in the pre-existing equilibrium, ignoring interactions with

unskilled individuals:

ΩN =
N−1∑
j=1

σNj · s∗j =
N−1∑
j=1

aNj − a0j
aN0 − a00

· s∗j . (7.36)

This thus means that a new skill can only de-stabilise the previous equilibrium

if and only if:

ΩN >
xN − s∗0

2

s∗0
=

xN
s∗0
− s∗0, (7.37)

where ΩN is the synergy between the Nth skill and the pre-existing equilibrium and

s∗0 is the pre-existing unskilled level. This reflects the fact that new skills may only

destabilise a previous equilibrium if they do well enough when interacting with the

population and if there is a large enough pool of unskilled individuals allowing them

to gain traction in the population.

In the 2-skill model, the condition is equivalent to:

σ21 >
x2 − (1− s+1 )

2

s+1 (1− s+1 )
, (7.38)

which leads to the conditions presented in section 7.4.2.

7.6 Stable co-existence of skills

We have explored the conditions under which new skills may evolve for three cases:

when there are no pre-existing existing skills; when there is one pre-existing skill; or

when there are already N − 1 skills present. We now focus on assessing whether the

system may evolve into a stable equilibrium where different skills co-exist.

7.6.1 Systems of two skills with constant transmission rates

Let us consider for a moment the simplifying assumption that skill transmission

rates are constant in an N skill model. This is obtained by setting the payoff values

received by each skill as independent of who they are interacting with. In this case,

we can represent the payoffs received by each skill as ai = ai0 = ai1 = ... = aiN , thus

eliminating interaction-dependent transmission rates. The fitness of each individual

is now independent of the state of the population and equal to Fi = ai.
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In the 2-skill model, the differential equations become:

ds1
dt

= ϵ1(a1 − a0)s1s0 − γ1s1,

ds2
dt

= ϵ2(a2 − a0)s2s0 − γ2s2.

(7.39)

This system has one trivial fixed point at (s∗1, s
∗
2) = (0, 0). This will be stable

and the only equilibria if and only if x1 ≥ 1 and x2 ≥ 1. There is an equilibrium

with s∗2 = 0 at (1 − x1, 0) if x1 < 1. Similarly, there is an equilibrium with s∗1 = 0

at (0, 1 − x2) if x2 < 1. If there is only one edge equilibrium, that will be a stable

one. If there are two, the one with lowest loss rate xi will be the stable one. The

case where x1 = x2 < 1 will lead to a stable solution line between the two stable

points (1−x1, 0) and (0, 1−x2). This means that for us to have a stable equilibrium

with co-existence of skills under constant transmission rates, the skills need to be

indistinguishable. This raises the question: do interaction-dependent transmission

rates allow for the stable co-existence of skills?

7.6.2 Stable co-existence of two skills

To explore the evolution of stable co-existence of two skills, we assess the cases in

which there are no stable unskilled or single skill equilibria. In those cases, there

is necessarily a resulting stable equilibrium of co-existence or a stable cycle. Let us

study the combination of conditions that leads to these cases.

As previously identified in section 7.4.1, the unskilled equilibrium is stable when

both x1 > 1 and x2 > 1. Therefore, at least one of the skills needs to be a sus-

tainable skill as per the definition provided in section 7.3. This necessarily excludes

combinations of two tentative skills, two unsustainable skills or one tentative with

one unsustainable skill, cases which will likely lead to a single unskilled equilibrium,

bi-stability or tri-stability. From what was explored, no co-existence equilibrium

was found in such combinations. This way, there are three possible combinations of

types of skills that may lead to stable co-existence, as shown in figure 7.3. In those

cases, for the fixed points on the edges (of sustainable and tentative skills) to be

unstable, further conditions will be necessary.

One of the possible combinations that can lead to stable co-existence is two

sustainable skills. This means that they both have low loss rates (0 < x1 < 1 and

0 < x2 < 1). In this case, the two single skill equilibria are destabilised under an
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(a) Dynamics under two sustainable skills (S1 and
S2).

(b) Dynamics under a sustainable skill (S1) and an
tentative skill (S2).

(c) Dynamics under a sustainable skill (S1) and an
unsustainable skill (S2).

Figure 7.3: Representation of the dynamics for three different combinations of skill strength
in the two skill model for which stable co-existence emerges.

additional condition (s+1 < s+1d and s+2 < s+2d). This scenario is represented in figure

7.3a. This is a parallel case to the one mentioned under constant transmission rates,

but where the skill interaction-transmission model explains the emergence of a single

stable solution with co-existence of skills.

Alternatively, we may have a combination of two skills, where one is sustainable

and the other is either tentative (figure 7.3b) or unsustainable (figure 7.3c). Let us

say that x1 < 1 and x2 > 1. This means that, when alone, skill S1 has an endemic

equilibrium and S2 either leads to bi-stability or an unskilled equilibrium depending

on its intra-skill synergy value (σ22). We focus on the two cases below.

If the intra-skill synergy of the second skill is high enough (σ22 > 2 and σ2
22/(4(σ22−

1)) ≥ x2), then when alone it leads to bi-stability of S2. Combining these two skill

types destabilises the endemic equilibrium of the tentative skill S2 under an addi-
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tional condition (s+2 < s+2d). The endemic equilibrium of the sustainable skill S1 will

be destabilised if the second skill has a high cross-skill synergy with the first (σ21 > 2

and σ2
21/(4(σ21 − 1)) > x2), together with a further condition (s−1d < s+1 < s+1d). Es-

sentially, tentative skills combined with sustainable skills can survive in the stable

co-existing equilibrium shown in figure 7.3b if and only if the tentative skill has a

good cross-skill synergy.

The third dynamics represented in figure 7.3c corresponds to the combination

of a sustainable skill S1 with an unsustainable skill S2. This case is particularly

interesting as S2 can never survive alone due to high loss rate (x2 > 1) and low

intra-skill synergy (σ22 < 2 or σ2
22/(4(σ22 − 1)) < x2). However, in combination

with a sustainable skill S1 with whom it has a high cross-skill synergy (σ21 > 2 and

σ2
21/(4(σ21 − 1)) > x2), and with a further additional condition (s−1d < s+1 < s+1d), it

can rise out of inexistence and into a stable co-existence scenario.

7.7 Discussion

In this chapter, we explored the evolution and co-existence of new skills in popu-

lations. We developed a model where the interaction and transmission of skills are

interdependent. Individuals with a given skill interact with each other and produce

something based on that interaction. Unskilled individuals may learn one of the

skills from the individuals with whom they interact, depending on the frequency

and benefits of the interactions.

Single skills were categorised as sustainable, tentative, or unsustainable, depend-

ing on the evolutionary outcome observed in the absence of other skills. Sustainable

skills always lead to a stable endemic equilibrium. This occurs if a skill has a low loss

rate, which can be guaranteed by a sufficiently high payoff improvement working as

an incentive to learn the skill. Tentative skills are those which lead to bi-stability of

endemic and unskilled equilibria, and occur when the loss rate is high but compen-

sated by a high enough intra-skill synergy value. In these cases, temporary incentive

schemes may work to assure the population is moved to the basin of attraction of

the desired endemic equilibrium. Unsustainable skills are those with a single stable

unskilled equilibrium, where no temporary incentives can guarantee their evolution.

A second skill introduced in a previous single skill equilibrium may destabilise it

if and only if the second skill’s loss rate is low enough, or if its cross-skill synergy is
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high enough to compensate a higher loss rate. Some of these insights were extended

to the introduction of an Nth skill into a system in an equilibrium with N − 1 other

skills. A new skill can always destabilise a pre-existing skill equilibrium if its synergy

with the mean-field skill of that equilibrium is large enough. The synergy threshold

is lower if the pool of unskilled individuals in the previous equilibrium is high. This

is reasonable as new skills compete with the previous ones to be adopted by the

same unskilled individuals. A low loss rate guarantees a lower threshold as well,

even a potentially negative one, highlighting that the skill intrinsic characteristics

(dependent only on their skill payoff improvement in an unskilled population) can

also be enough to destabilise previous equilibria.

The stable co-existence of two skills happens for different combinations of skill

types. We show that there are three different combinations which may lead to no

stable single skill or unskilled equilibria, thus assuring the existence of a stable co-

existence equilibrium (or potentially a limit cycle, which was never observed). We

show that stable co-existence of two sustainable skills is easily observed, due to their

low loss rates. Moreover, tentative and unsustainable skills, i.e. skills with high loss

rates, can also evolve to co-existence if they are facing a sustainable skill with whom

they have a high cross-skill synergy value. These insights highlight once again two

main points. Firstly, the intrinsic value (defined by their loss rate) of a skill may be

a good determinant of its evolution. However, it is not the only one, as its intra-skill

synergy (in the absence of other skills) or its cross-skill synergy (when combined

with sustainable skills) can make up for their high loss rates and guarantee their

evolutionary success.

In this chapter, we show that skills compete for the exact same pool of resources–

in this case the unskilled individuals in the population–and still reach stable co-

existence. This is contrary to the common wisdom of ecological systems set out

by the competitive exclusion principle as formalised by Hardin (1960). In a system

with two skills, this outcome mainly relies on the existence of sustainable skills

or cross-skill synergies. In systems with more than two skills, adding new skills

with those characteristics guarantees the destabilisation of the previous equilibrium,

but not necessarily the establishment of new higher-order equilibria with stable co-

existence. It could, alternatively, lead to the collapse of previous co-existence states.

This possibility would be in agreement with the idea that ecological systems become

more unstable as their complexity increases (May 2019/1973), which has been further
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investigated in the context of economic systems (Moran & Bouchaud 2019). Would

a more complex co-existence equilibrium be more stable to the introduction of new

skills or is there a maximum skill capacity that stable states can have? This could be

assessed by considering the iterated introduction of random new skills on the system

and observing the successive transitions between stable co-existence states and the

vanishing of new and old skills. We are interested in whether we would observe the

increasing complexity of the stable skill landscape increase over time or its iterated

collapse and rebirth.

Throughout this chapter, we used the assumption that the outcome of the inter-

action between a given combination of skills is fixed, and does not change dynami-

cally. However, in the context of interactions between productive skills, this reflects

a static regime where the economical environment has not yet reacted. The value

of production of a given good in society can be highly dynamic and, for example,

the lack of skilled individuals in a particular trade may increase the value produced

by skilled individuals in comparison to the value produced by unskilled ones. The

study of these dynamics could be done considering the co-evolution of the value of

the produced good in relation to the average skill level in the population, leaving be-

hind the game-theoretic nature of our model, and associating frequency-dependence

with a supply-demand function. However, the present model focused on the syn-

ergistic relation between skills and on their effects on skill evolution, for which a

game-theoretic model was ideal. Our framework could be extended to include other

exogenous factors which may change the payoff matrix of the interaction between

skills over time, thus modifying the relative production value of acquiring a skill.

We also made the assumption that individuals interact with each other in the

population with equal frequency. However, unskilled individuals might have an

interest in interacting more often with those with a skill which they would benefit

the most from learning. Alternatively, they might be interested in interacting with

those who guarantee the highest immediate payoffs. Skilled individuals may also

prefer to interact with those possessing the skills with best cross-skill synergy, and

potentially form skill bubbles. Partner choice preferences such as these could be

considered in the present model, namely by resorting to adaptive networks previously

used in the context of evolutionary game-theoretic models (Pacheco et al. 2006b,a).

These have the potential to explain the clustered way in which related skills and

industries emerge in productive economies, as it has been reported in the economic
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complexity literature (O’Clery & Kinsella 2022).
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Chapter 8

Conclusions

In this thesis, we have leveraged a wide range of tools from evolutionary game theory

to develop models of population dynamics and advance theories of social behaviour.

The work presented a natural progression of complexity of social interactions. Chap-

ter 1 introduced the relevant pre-existing models of evolutionary games. In chapter

2, we elaborated on the effects of population size in the evolution of strategies of pair-

wise games in well-mixed populations. The following chapters 3, 4, and 5, constitute

the core of this thesis, exploring evolutionary models of cooperation in multiplayer

social dilemmas, where both structure and mobility are considered in various forms.

In the remaining chapters 6 and 7, we developed dynamical models of infinite pop-

ulations where game-theoretic concepts were combined with other theories, namely

foraging and epidemiological models. We apply such models to particular real-world

problems such as systems of Internet service accessing and transmission of produc-

tive skills. In the discussion sections of each chapter of this thesis, we propose future

research directions which may further advance our understanding of social behaviour

and its applications.

A major part of these advances focused on understanding fixation processes of

new strategic types on finite populations for broad classes of games. In chapter 2,

we provide a systematic analysis of these processes under all pairwise games with

two strategies in well-mixed populations. The fixation probability of a single mu-

tant was shown to increase with population size in half of the possible games, thus

making it a strikingly pervasive feature. These results are generalisable for pairwise

games with more strategies as long as only a maximum of 2 strategies are present

in the population at the same time. Our analysis of fixation probabilities continued
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in the following chapters 3, 4, and 5, focusing on multiplayer games in structured

and mobile populations. In particular, we were successful in deriving their exact

analytical expressions for general multiplayer games on territorial networks. This

was done for isolated communities in chapter 3 and for completely mixed popula-

tions in chapter 4. These were later applied to a large set of multiplayer games.

However, there were cases where deriving expressions for fixation probabilities was

not possible. In the last sections of chapter 4, we compute their values for territorial

networks with mixing communities by solving systems of linear equations numer-

ically, whereas in chapter 5, we perform agent-based simulations to obtain them.

These probabilities were key in assessing the evolution of strategic behaviour, and

in particular cooperation, in such systems.

In chapters 3, 4, and 5, we analyse the evolution of cooperation for a set of

multiplayer social dilemmas. We explore a variety of assumptions about the struc-

tural organisation of populations and the mobility of individuals. In chapter 3, we

show that cooperation in public goods dilemmas evolves successfully for populations

organised onto networks of local communities. Larger networks of smaller sized

communities were high promoters of cooperative behaviour under all public goods

dilemmas, but the results were robust to any topology and any size of network and

communities. In the limit of asymptotically isolated communities, the network struc-

ture, i.e. how communities are connected, plays no impact. In chapter 4, we show

that considering a higher mixing of communities typically has a detrimental effect

on cooperation, completely suppressing its evolution for the Charitable Prisoner’s

Dilemma, already known for its strictness. Although higher mixing also increases

the impact of the topology of the network, we haven’t yet observed scenarios where

this topology facilitates cooperation in independent movement models.

The co-evolution of conditional movement model explored in chapter 5 showed

this to be another robust mechanism for the evolution of multiplayer cooperation. In

contrast to what we observed for local independent movement, the network topology

played a key role on the evolution of cooperation. Similar to what was observed in

Erovenko et al. (2019), networks with low degree centralisation, i.e. low variance

in degree centrality (in this case, complete and circle networks) facilitated the co-

evolution of cooperation and high mobility strategies under low movement costs.

Those topologies allow cooperators to find each other quickly in the network, but in

a decentralised way that also allows them to be missed by defectors for long enough
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time before they dismantle their groups. We note that the topological features that

allow them to do this may depend on the density of individuals on the network,

as a higher centralisation might be useful for cooperators when casual encounters

between them are rarer. This is a potentially interesting avenue to explore in the

future. Nonetheless, it is clear that their success is not attributed to the locality of

their interactions in the network.

These results suggest that the structural mechanisms present in the two types of

movement models are different and therefore lead to distinct dependences on spa-

tial network topology. Moreover, this is supported by the way the two mechanisms

are affected by the choice of the six evolutionary dynamics explored throughout

chapters 3, 4, and 5. In chapter 3, we see that the DBB and BDD dynamics consis-

tently extend the regions of the parameter space for which cooperation evolves under

community organisation. In particular, those dynamics lead to the evolution of co-

operation under the CPD which does not occur under the remaining four dynamics.

This is coherent with results from other models of evolutionary games on networks

(Ohtsuki et al. 2006, Hauert & Imhof 2012, Allen et al. 2017, Pattni et al. 2017), as

previously reviewed through this thesis. Such dynamics are sensitive to the viscosity

of the evolutionary process on structured populations which allows cooperation to

evolve under network reciprocity.

However, in chapters 4 and 5, we observe that the dynamics have virtually no

impact on the evolutionary outcome. This is not surprising for the completely mixed

populations studied in chapter 4. However, the absence of impact of the evolutionary

dynamics on cooperation under the conditional movement model observed in chapter

5, further supports the idea that that mechanism is distinct from traditional network

reciprocity. Conditional movement suppresses the impact of the viscosity of the

evolutionary process on the fitness of individuals reported in Ohtsuki et al. (2006),

but allows for a different type of mobile assortative behaviour to co-evolve under

certain network topologies. The mobile assortative behaviour between cooperators

is robust to choice of evolutionary dynamics, unlike network reciprocity.

These modelling methods developed in the context of evolutionary game theory

provide theories of the evolution of cooperation. However, they may also offer an

understanding of the adoption of broader types of behaviour in populations. In

this context, evolutionary game theory has been used to model and tackle specific

problems associated with AI monitoring (Alalawi et al. 2024), disease evolution
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and spread (Morison et al. 2024), environmental governance (Couto et al. 2020),

and healthcare investment (Alalawi et al. 2020). We propose that some of the

theoretical advancements, particularly those of chapters 3 and 5, can be applied to

such problems to understand how the structure and mobility of populations may

affect behavioural outcomes. Moreover, in chapters 6 and 7, we focus on developing

extensions of other game-theoretic concepts and apply them to understand other

complex social systems.

In chapter 6, we introduce a strategy under which individuals use a particular

common good until their usage fails or the experienced quality falls below a thresh-

old, at which point they shift to a different option. This strategy was inspired by

the WSLS strategy developed for iterated games (Kraines & Kraines 1989, Nowak

& Sigmund 1993), and is conceptually similar to the the conditional movement rule

used in chapter 5. We develop a theory of populations using such strategies, in-

vestigate their equilibria, and extend the results to hybrid populations where some

individuals store information about their past experiences and adapt their tolerance

to failure strategically.

We apply this theory to populations of mobile users attempting to access In-

ternet services by submitting requests to servers in the network with minimal in-

formation about them. Overall, this strategy and its adaptive extension showed

good performance results when evaluated by realistic stochastic simulations of the

system. Future work will focus on extending these evaluations to realistic experi-

mental testbeds and potentially develop platform implementations (Mancuso et al.

2022, 2023, Castagno et al. 2020). Moreover, the theory developed can be easily

extended to understand other systems such as population distribution on grazing

or foraging land or propose solutions to operators of systems of public transport or

other technological common goods.

In chapter 7, we focus on developing a model of productive interaction and

selection-transmission of skills with the aim of understanding their evolution and

co-existence in complex systems. This work was motivated by the recent advances

in economic complexity and evolutionary economic geography which show the key

impact of a skilled and knowledgeable workforce on industrial development and its

geographic organisation. To study how skills are learnt and adopted in the context

of co-production and how that affects their selection in populations, we developed a

dynamical model which incorporated both aspects of evolutionary game theory and
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epidemiological modelling. We characterised skills as sustainable, tentative or unsus-

tainable based on the stability of their endemic equilibria. Furthermore, we analysed

their potential to destabilise previous skill equilibria when newly introduced, and

their ability to co-exist with other skills. These characteristics depend on their loss

rate, as well as on their intra- and inter-skill synergy coefficients. Together with

the results presented throughout this thesis, we hope this work enlightens on the

potential of developing the theory of game-theoretic models and extending it to find

cross-disciplinary solutions to problems faced in complex social systems.
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Appendix A

The effect of the weak selection

limit on fixation probability

functions in pairwise games

In section 2.3.2, it was observed that anti-coordination games held fixation prob-

abilities which increased for population sizes above a turning point N > Nmin(w)

(see figure 2.2). Figure A.1a suggests that turning points are inversely proportional

to the intensity of selection Nmin(w) ∼ 1/w, which means that they would become

very large under the weak selection limit. Under this limit, it could be argued that

the increase in the population sizes for which fixation probabilities increase would

lead to a loss of significance of fixation processes due to most of the evolutionary

time being spent in transient/mixed states (Antal & Scheuring 2006, Vasconcelos

et al. 2017), also called quasi-stationary states (Zhou et al. 2010, Overton et al. 2022,

Nasell 1999b,a).

The average conditional fixation time is the average number of discrete steps

that the population takes to go from state i = 1 to state i = N (i.e. the fixation of

a single mutant) conditional on it happening:

tN =

∑∞
t=0 tϕN (t)∑∞
t=0 ϕN (t)

, (A.1)

where ϕN (t) is the probability that the population gets from state i = 1 to state

i = N after t discrete steps. It should be clear from this definition that
∑∞

t=0 ϕN (t) =

ρN . Following Antal & Scheuring (2006), we can obtain a recursive relation leading
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to the following expression (see Della Rossa et al. (2017) and Huang et al. (2018)

for alternative expressions):

tN =
N−1∑
n=1

s0,n−1sn,N−1

PN
n+qns0,N−1

, sn,m =
m∑

k=n

qk, qn =
n∏

j=1

γNj . (A.2)

We are interested in comparing the average time obtained in the turning points

Nmin(w) of figures 2.2 and A.1a with three different scenarios: the simple symmetric

random walk, the neutral fixation case and the same game for maximum intensity

of selection w = 1.

The simple symmetric random walk is obtained by considering the stochastic

process under which the transition between a state i and one of its two neighbours

is one-half: Pi+ = Pi− = 1/2. The average conditional fixation time under this

process is

tN =
1

3
(N2 − 1). (A.3)

On the other hand, under the frequency-dependent Moran process the transition

probabilities Pi+ and Pi− do not add up to 1. This is so because at each time

step there is a probability that the population will remain in the same state Pi= .

Thus, when we are under neutral selection (w = 0), equation A.2 leads to a different

equation than A.3, which is three times slower than the simple random walk

tN = N(N − 1). (A.4)

By analysing fixation processes under 2 × 2 games, Antal & Scheuring (2006)

concluded that anti-coordination games have average conditional fixation times that

grow exponentially with population size for asymptotically large populations. The

base of exponential growth τ can be calculated from the payoff matrix. The average

conditional fixation time thus becomes

tN ∼ τ(a, b, c, d)N , (A.5)

where τ(a, b, c, d) > 1 for any choice of [a, b, c, d] leading to an anti-coordination

game with I < 0.
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Figure A.1: Fixation process under game with payoff values [5.5, 5, 6, 3], corresponding to
Dove fixation in the Hawk-Dove game Figure A.1a exhibits the turning point Nmin as a function
of the intensity of selection w, showing that they have an approximately inversely proportional
relation. In figure A.1b, the average conditional fixation times tN were shown for (1) the
Hawk-Dove game with the maximum intensity of selection (w = 1 and independent N), (2)
the Hawk-Dove game at the turning points of figure A.1a (w ∈ (0, 1) and N = Nmin(w)), (3)
the neutral fixation scenario (w = 0 and independent N), and (4) the simple random walk
(Pi+ = Pi− = 1/2).

In figure A.1b, we observe that as intensity of selection decreases w → 0, and

turning points increase Nmin →∞, fixation times under this anti-coordination game

keep on being of the order of the neutral ones tN ∼ N2 instead of increasing expo-

nentially with N . As noted in Sample & Allen (2017), considering limits N →∞ and

w → 0 in different orders may lead to different fixation outcomes. Here we present

a case where it is important to clarify that relationship in order to understand what

would happen asymptotically.
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Appendix B

Large home fidelity in the

territorial raider model

B.1 Fixation probabilities under high home fidelity

Consider a connected network with M places and an arbitrary set of edges between

them. Within the extended territorial raider model, each node will be home to a

community of size Q. We consider the limit of large home fidelity, where individuals

interact mainly within their communities. This limit is dependent on the size of the

network, and therefore when we consider h→∞, we in fact mean h/M →∞.

We denote FCk
c,d as the fitness of cooperators Ck in a community with c cooper-

ators and d defectors with home in place Pk. In the limit of high home fidelity, this

can be represented as the following expansion:

FCk
c,d = 1− w + w

(1− dk
h+ dk

)Q

·
∏

i∈X(k)

(
1− 1

h+ di

)Q

·RC
c,d +O(h−1)

 =

= 1− w + wRC
c,d +O(h−1),

(B.1)

whereX(k) denotes the set of places adjacent to Pk on the network, and dk represents

the size of that set, corresponding to the degree of the node. The zeroth-order term

of the expansion is dependent only on the composition of the community present in

place Pk. Similarly, we have that the fitness of defectors is reduced to the following:

FDk
c,d = 1− w + wRD

c,d +O(h−1). (B.2)
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We denote fC
c,d and fD

c,d as the zeroth-order terms of the fitness expansion under

high home fidelity, which are presented in equations 3.6 and 3.7 of the main text.

In the next sections, we will focus on the resulting fixation processes in the limit

of high home fidelity.

B.1.1 BDB, DBD, LB and LD dynamics

Starting from the state where all individuals in the population use strategy D, we

consider the occurrence of a mutation leading one of them to adopt strategy C. At

each step of the BDB process, one individual is chosen for reproduction proportional

to their fitness, and another one is chosen for death with probability proportional to

the time spent with the first. This means that while there are mixed communities,

type-changing replacement events will occur mainly within those communities as we

will see below.

We denote rCh (rDh ) as the within-community fixation probability of a single

cooperator (defector) in a community of defectors (cooperators). We define this

as the probability that starting with one mutant in a community of residents, we

will observe the fixation of that mutant in the community before we observe that

type vanishing. This probability is equal to the sum of the probabilities of all the

paths that alter the number of mutants in that community from 1 to Q without

passing by 0. We note that this can be split into the sum of the probabilities of

paths under which no type-altering between-community replacements occur before

within-community fixation is attained, S1, S2, ..., and those under which at least one

type-altering between-community replacement occurs before fixation is attained, S′
1,

S′
2, ...:

rCh = p(S1) + p(S2) + ...+ p(S′
1) + p(S′

2) + ... (B.3)

In the limit we are considering, the sum over the first set of paths introduced

before tends to the fixation probability obtained in a well-mixed community (Karlin

& Taylor 1975), since individuals of the same community using the same strategy

are indistinguishable. Under the BDB dynamics, the transition probabilities used

in this expression can be replaced by the zeroth-order terms of the fitness expansion

presented in equations B.1 and B.2, and higher-order terms are added outside the
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expression:

p(S1) + p(S2) + ... =
1

1 +
∑Q−1

j=1

∏j
c=1

fD
c,Q−c

fC
c,Q−c

+O(h−1). (B.4)

The paths in the second set introduced above involve at least one between-

community replacement, therefore having a probability of at least the first order in

h−1. This highlights the fact that they occur at a different time-scale from within-

community fixation processes:

p(S′
1) + p(S′

2) + ... = O(h−1). (B.5)

Therefore, the cooperator within-community fixation probability in the limit

h→∞ can be represented as the following:

rCh =
1

1 +
∑Q−1

j=1

∏j
c=1

fD
c,Q−c

fC
c,Q−c

+O(h−1). (B.6)

Similar to this, we can obtain the same equation for the within-community fix-

ation probability of a single defector by using the following expression:

rDh =
1

1 +
∑Q−1

j=1

∏j
d=1

fC
Q−d,d

fD
Q−d,d

+O(h−1). (B.7)

We denote rC and rD as the zeroth-order terms of the equations above, which

are presented in equations 3.8 and 3.8 of the main text.

We call ρC the probability that a single mutant cooperator will fixate in a popula-

tion of defectors. Under h→∞, populations reach the states where each community

is homogeneous, i.e. c = Q or c = 0, before any between-community replacement

occurs. When the population is in one of the homogeneous community states, it will

be altered only when a cooperator replaces a defector from an adjacent community,

or vice versa. After a new cooperator (defector) is born, the population will move to

a different homogeneous community state with one more (less) cooperator commu-

nity with probability rC (rD), or it will return to the previous state with probability

1− rC (1− rD).

Let us call I the set of communities composed of only cooperators, M the entire

set of communities, and M\I the set of communities of defectors. At a homogeneous
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community state denoted by I, the probability that the size of set I increases by

one after a given evolutionary step is:

P |I|+(I) =

(
fC
Q,0

|I| · fC
Q,0 + |M\I| · fD

0,Q

+O(h−1)

)
·

Q ·
∑

i∈I,j∈M\I

wij

·(rC +O(h−1)
)
.

(B.8)

The expression above is the product of probabilities of three successive necessary

events: 1) choosing a cooperator from a particular community for birth, 2) choosing

a defector from another community to be replaced by the first cooperator, and

3) the within-community fixation of the new cooperator before another between

community type-altering event occurs. Note that in the probability of choosing a

cooperator for birth, we have replaced the fitness of individuals considered in the

homogeneous community state by the zeroth-order terms present in equations B.1

and B.2, with higher-order terms being explicitly summed onto that probability.

The replacement weights wij between individuals with homes in different places

Pi and Pj are independent of their two strategies, and they are multiplied by Q

to account for all the defectors present in each of the communities in M\I. The

within-community fixation probability is perturbed by higher-order terms in h−1

already analysed when its expression was obtained. The probability that the size of

set I decreases by one is the following:

P |I|−(I) =

(
fD
0,Q

|I| · fC
Q,0 + |M\I| · fD

0,Q

+O(h−1)

)
·

Q ·
∑

i∈I,j∈M\I

wji

·(rD +O(h−1)
)
.

(B.9)

The two equations B.8 and B.9 depend on the particular set I because the sum

of weights wij depends on it. These weights tend to zero as h → ∞, but they can

be considered at their lowest order in h−1. As long as there is no disconnected

component of the network of communities (∀i∃j ̸= i(wij ̸= 0)), this probability is

low but positive, regardless of the particular set I considered. However, because

replacement weights are symmetric, i.e. wij = wji, the terms in the two transition

probabilities in the above equations are identical. Therefore, the ratio between the

two probabilities, which we denote Γ, does not depend on the particular set I of

communities which are composed of cooperators:

Γ =
P |I|−(I)

P |I|+(I)
=

fD
0,Q · rD

fC
Q,0 · rC

. (B.10)
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Furthermore, the transition probability ratio above is constant under all homoge-

neous community states. After the initial within-community fixation of a cooperator,

the probability that the community will fixate on the whole population thus becomes

a simple fixed fitness Moran probability (Moran 1958), with equivalent relative fit-

ness denoted by the ratio from equation B.10.

The fixation probability of one single cooperator will therefore be equal to the

following:

lim
h→∞

ρC = rC · PMoran

(
Γ−1

)
= rC · 1− Γ

1− ΓM
, (B.11)

when Γ ̸= 1. Otherwise, limh→∞ ρC = rC/M . Similarly, we have that:

lim
h→∞

ρD = rD · PMoran (Γ) = rD · 1− Γ−1

1− Γ−M
, (B.12)

when Γ ̸= 1. Otherwise, limh→∞ ρD = rD/M .

This result is surprisingly simple and shows that the topology of the underlying

network plays no role in the limit of high home fidelity, as long as there is no

disconnected component of the network. The dynamics in that limit depend only

on within-community fixation probabilities and on the probability ratio Γ.

The equations presented in B.6–B.12 are valid for dynamics BDB, DBD, LB,

and LD. This equivalence is valid under all territorial networks in the limit h→∞.

This is so because the transition probability ratios are the same under all these

dynamics, both in each step of the within-community fixation processes considered

to build equations B.6 and B.7, and in the community fixation process as presented

in equation B.10.

Furthermore, we note that the results are robust to the use of alternative move-

ment models when the limit of isolated communities with the same size is considered,

and if the replacement weights between any two individuals are kept symmetrical, i.e.

the evolutionary graph is undirected. This includes simple variations of the current

movement model, e.g. all individuals could have the same probability of not being

in their home node independent of its degree, in the limit where this probability

tends to zero. Even though outside the limit of isolated communities, those models

could lead to generally different results, in that limit the fixation probabilities would

be equal to the ones obtained here. Nonetheless, these alternative movement model

choices could still impact the rate at which between-community events occur.
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B.1.2 DBB and BDD dynamics

A procedure analogous to the one conducted in section B.1.1 applies to the remaining

two dynamics introduced in chapter 3. However, these dynamics exhibit distinct

transition probability ratios compared to the four aforementioned ones, resulting in

quantitatively different outcomes.

We start by noting that the sum of paths that end in fixation with no type-

altering between-community replacements is obtained using different transition prob-

abilities. Let us start with the DBB dynamics, under which the transition probability

from having c cooperators to having c+ 1 or c− 1 at a given evolutionary step are

respectively as follows:

P+
DBB(c,Q− c) =

Q− c

N
·

c · fC
c,Q−c

c · fC
c,Q−c + (Q− c− 1) · fD

c,Q−c

+O(h−1), (B.13)

P−
DBB(c,Q− c) =

c

N

(Q− c) · fD
c,Q−c

(c− 1) · fC
c,Q−c + (Q− c) · fD

c,Q−c

+O(h−1). (B.14)

Repeating this process considering the BDD dynamics, we obtain the following

transition probabilities, which were simplified by multiplying the numerator and

denominator by both cooperator and defector’s fitness:

P+
BDD(c,Q− c) =

c

N
·

(Q− c) ·
(
fD
c,Q−c

)−1

(Q− c) ·
(
fD
c,Q−c

)−1
+ (c− 1) ·

(
fC
c,Q−c

)−1 +O(h−1) =

=
c

N
·

(Q− c) · fC
c,Q−c

(Q− c) · fC
c,Q−c + (c− 1) · fD

c,Q−c

+O(h−1),

(B.15)

P−
BDD(c,Q− c) =

Q− c

N
·

c ·
(
fC
c,Q−c

)−1

(Q− c− 1) ·
(
fD
c,Q−c

)−1
+ c ·

(
fC
c,Q−c

)−1 +O(h−1) =

=
Q− c

N
·

c · fD
c,Q−c

(Q− c− 1) · fC
c,Q−c + c · fD

c,Q−c

+O(h−1).

(B.16)

The ratio U(c, d) = P−(c, d)/P+(c, d) between transition probabilities under
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both dynamics leads to the following expression:

UDBB/BDD(c,Q− c) =
P−
DBB/BDD(c,Q− c)

P+
DBB/BDD(c,Q− c)

=

=
fD
c,Q−c

fC
c,Q−c

·

(
TDBB/BDD(c,Q− c)− fD

c,Q−c

TDBB/BDD(c,Q− c)− fC
c,Q−c

)
=

=
fD
c,Q−c

fC
c,Q−c

(
1 +

fC
c,Q−c − fD

c,Q−c

TDBB/BDD(c,Q− c)− fC
c,Q−c

)
,

(B.17)

where we have used the following definitions:

TDBB(c, d) = c · fC
c,d + d · fD

c,d, (B.18)

TBDD(c, d) = d · fC
c,d + c · fD

c,d. (B.19)

Now, we use these transition probability ratios to compute the zeroth-order term

of the within-community fixation probability expansion, similar to what was done

in section B.1.1, getting the following result:

rC,h
DBB/BDD =

1

1 +
∑Q−1

j=1

∏j
c=1

fD
c,Q−c

fC
c,Q−c

(
1 +

fC
c,Q−c−fD

c,Q−c

TDBB/BDD(c,Q−c)−fC
c,Q−c

) +O(h−1).

(B.20)

Following the same procedure for the within-community fixation of defectors, we

get the following result:

rD,h
DBB/BDD =

1

1 +
∑Q−1

j=1

∏j
d=1

fC
Q−d,d

fD
Q−d,d

·
(
1 +

fD
Q−d,d−fC

Q−d,d

TDBB/BDD(Q−d,d)−fD
Q−d,d

) +O(h−1).

(B.21)

We denote rCDBB/BDD and rDDBB/BDD as the zeroth-order terms of the equations

above, which are presented in equations 3.18 and 3.19 of the main text.

The difference in transition probabilities, when compared to the previous 4 dy-

namics, also affects the probability that the number of communities increases or

decreases by one in the next evolutionary step. We start by looking at what hap-
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pens under the DBB dynamics:

P
|I|+
DBB(I) =

=

(
1

M
+O(h−1)

)
·

Q ·

 ∑
i∈I,j∈M\I

wij

 ·(fC
Q,0

fD
0,Q

+O(h−1)

) · (rCDBB +O(h−1)
)
.

(B.22)

The preceding probability encompasses: 1) the uniform random selection of a

specific community for the death of one of its individuals; 2) the subsequent selection,

if the first individual was a defector, of a cooperator community for birth, involving

any of its Q cooperators; and 3) the fixation of the invading cooperator in the newly

mixed community. The sum of fractions above includes a simplification coming

from the fact that the denominator is a sum over all products of weights and fitness

according to the definition from table 3.2 of the main text, which in the limit h→∞

simply tends to the fitness of communal residents fD
0,Q plus higher-order terms in h−1.

This will introduce another key difference in the results. We obtain the following

transition probability in the opposing direction:

P
|I|−
DBB(I) =

=

(
1

M
+O(h−1)

)
·

Q ·

 ∑
i∈I,j∈M\I

wji

 ·(fD
0,Q

fC
Q,0

+O(h−1)

) · (rDDBB +O(h−1)
)
.

(B.23)

Now looking at what happens under BDD dynamics, we obtain the following

expressions for transition probabilities between homogeneous community states:

P
|I|+
BDD(I) =

=

(
1

M
+O(h−1)

)
·

Q ·

 ∑
i∈I,j∈M\I

wij

 ·

(
fD
0,Q

)−1

(
fC
Q,0

)−1 +O(h−1)


 · (rCBDD +O(h−1)

)
,

(B.24)
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P
|I|−
BDD(I) =

=

(
1

M
+O(h−1)

)
·

Q ·

 ∑
i∈I,j∈M\I

wij

 ·

(
fC
Q,0

)−1

(
fD
0,Q

)−1 +O(h−1)


 · (rCBDD +O(h−1)

)
.

(B.25)

We note that, once again, the highest-order terms in these probabilities are

indeed first-order in h−1 due to the effects of between-community replacements hap-

pening between different communities on the network. However, the particular set

of edges between the nodes of the network, i.e. its topology, does not influence the

ratio between probabilities, but only the time-scale at which these transitions occur.

The probability ratio ΓDBB/BDD is independent of I and its size, as was under the

remaining dynamics:

ΓDBB/BDD =
P

|I|−
DBB/BDD(I)

P
|I|+
DBB/BDD(I)

=

(
fD
0,Q

fC
Q,0

)2

·
rDDBB/BDD

rCDBB/BDD

. (B.26)

Therefore the resulting process under high home fidelity in these two dynamics is

parallel to the one occurring under the remaining four dynamics, with two quantita-

tive differences: within-community fixation probabilities have correction coefficients

as represented in equations B.20 and B.21, and the overall population process has

an altered equivalent fitness characterised in equation B.26.

The resulting fixation probabilities are therefore the following:

lim
h→∞

ρCDBB/BDD = rCDBB/BDD ·PMoran

(
Γ−1
DBB/BDD

)
= rCDBB/BDD ·

1− ΓDBB/BDD

1− ΓM
DBB/BDD

,

(B.27)

when ΓDBB/BDD ̸= 1. Otherwise, limh→∞ ρCDBB/BDD = rCDBB/BDD/M . Similarly,

we have that:

lim
h→∞

ρDDBB/BDD = rDDBB/BDD ·PMoran

(
ΓDBB/BDD

)
= rDDBB/BDD ·

1− Γ−1
DBB/BDD

1− Γ−M
DBB/BDD

,

(B.28)

when ΓDBB/BDD ̸= 1. Otherwise, limh→∞ ρDDBB/BDD = rDDBB/BDD/M .
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B.2 Fixation probabilities under high home fidelity and

weak selection

Making the assumption of high home fidelity, we now introduce the limit of weak

selection. Both limits considered depend on the number of places on the network,

since large home fidelity in fact means h/M → ∞ and weak selection means to

w · (MQ) → 0. Therefore, when large networks are further considered, the values

of h and w have to be chosen accordingly. We highlight the fact that the limits

are considered in this order: first, we consider home fidelity to be asymptotically

high, then we consider selection to be asymptotically weak, and only then may

we consider large networks. It has been proved that the order in which the limits

of weak selection and large population size are considered impacts the resulting

asymptotic fixation probability expansions and the conditions for the evolution of

a given strategy to be favoured in comparison to neutral fixation (Sample & Allen

2017).

B.2.1 BDB, DBD, LB, and LD dynamics

We start from equation B.11 and expand it around w → 0. In that case, we obtain

the following expression:

ρC ≈
[
rC · 1− Γ

1− ΓM

]∣∣∣∣
w→0

+ w

[
∂

∂w

(
1− Γ

1− ΓM

)
· rC +

∂rC

∂w
·
(

1− Γ

1− ΓM

)]∣∣∣∣
w→0

.

(B.29)

We start to simplify this equation by noting that, under this limit, within-

community fixation probabilities tend to 1/Q. In that limit, we define their deriva-

tives in respect to w as the following:

δC =
∂rC

∂w

∣∣∣∣
w→0

=
1

Q2

Q−1∑
j=1

j∑
c=1

[RC
c,Q−c −RD

c,Q−c], (B.30)

δD =
∂rD

∂w

∣∣∣∣
w→0

=
1

Q2

Q−1∑
j=1

j∑
d=1

[
RD

Q−d,d −RC
Q−d,d

]
. (B.31)

.

These equations can be simplified by taking into account that each term on the

inner sum is repeated Q − c and Q − d times respectively in the outer sum, thus
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leading to the following expressions:

δC =
1

Q2

Q−1∑
c=1

(Q− c)[RC
c,Q−c −RD

c,Q−c], (B.32)

δD =
1

Q2

Q−1∑
d=1

(Q− d)
[
RD

Q−d,d −RC
Q−d,d

]
. (B.33)

.

In the same limit, we observe that Γ → 1, leading the Moran probability with

effective fitness Γ to simply tend to 1/M . We then evaluate the derivative of the

Moran probability and obtain the following relation:

∂

∂w

(
1− Γ

1− ΓM

)∣∣∣∣
w→0

=
1

2

(
1− 1

M

)(
− ∂Γ

∂w

∣∣∣∣
w→0

)
. (B.34)

The derivative of the effective fitness Γ can be obtained in the following way:

− ∂Γ

∂w

∣∣∣∣
w→0

= ∆CD +Q
(
δC − δD

)
, (B.35)

where

∆CD = RC
Q,0 −RD

0,Q = −∆DC . (B.36)

Replacing these redefined terms onto the original equation B.29 of the expanded

fixation probability, we obtained the following relation:

ρC ≈ 1

MQ
+

w

2

[
1

Q

(
1− 1

M

)
∆CD +

(
1 +

1

M

)
δC −

(
1− 1

M

)
δD
]
. (B.37)

Following the same procedure for the fixation probabilities of defectors, we obtain

the previous equation with swapped indexes C and D:

ρD ≈ 1

MQ
+

w

2

[
1

Q

(
1− 1

M

)
∆DC +

(
1 +

1

M

)
δD −

(
1− 1

M

)
δC
]
. (B.38)

B.2.2 DBB and BDD dynamics

The expansion is slightly different when we consider the DBB and BDD dynamics.

The original expansion is parallel to the one presented in equation B.29, the only

difference being that all instances of rC , rD, and Γ are replaced by their respective

equations under the DBB and BDD dynamics. Evaluated in the limit w → 0, the
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three quantities lead to the same values as in the previous dynamics. Therefore,

all differences come from their derivatives. Based on the definitions presented in

equations B.20 and B.21, and the previously defined derivatives δC and δD, we

obtain the following relations for their derivatives evaluated in the limit w → 0:

∂rCDBB

∂w

∣∣∣∣
w→0

=
∂rCBDD

∂w

∣∣∣∣
w→0

=

=
1

Q2

Q−1∑
j=1

j∑
c=1

(
1− 1

Q− 1

)
[RC

c,Q−c −RD
c,Q−c] =

=

(
1− 1

Q− 1

)
δC ,

(B.39)

∂rDDBB

∂w

∣∣∣∣
w→0

=
∂rDBDD

∂w

∣∣∣∣
w→0

=

=
1

Q2

Q−1∑
j=1

j∑
d=1

(
1− 1

Q− 1

)[
RD

Q−d,d −RC
Q−d,d

]
=

=

(
1− 1

Q− 1

)
δD.

(B.40)

The derivative of the effective fitness Γ can be obtained in the following way:

∂ΓDBB/BDD

∂w

∣∣∣∣
w→0

= 2
[
RD

0,Q −RC
Q,0

]
+

+Q

[
∂rDDBB/BDD

∂w

∣∣∣∣∣
w→0

−
∂rCDBB/BDD

∂w

∣∣∣∣∣
w→0

]
, (B.41)

which, based on equations B.36, B.39 and B.40, leads to the following equation:

−
∂ΓDBB/BDD

∂w

∣∣∣∣
w→0

= 2∆CD +Q

(
1− 1

Q− 1

)(
δC − δD

)
. (B.42)

Replacing these terms in the fixation probability expansion parallel to the one

from equation B.29, we obtain the following resulting equations:

ρCDBB/BDD ≈
1

MQ
+

w

2

[
2
1

Q

(
1− 1

M

)
∆CD +

(
1− 1

Q− 1

)(
1 +

1

M

)
δC+

−
(
1− 1

Q− 1

)(
1− 1

M

)
δD
]
,

(B.43)
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ρDDBB/BDD ≈
1

MQ
+

w

2

[
2
1

Q

(
1− 1

M

)
∆DC +

(
1− 1

Q− 1

)(
1 +

1

M

)
δD+

−
(
1− 1

Q− 1

)(
1− 1

M

)
δC
]
.

(B.44)

B.3 Rules of cooperation under a finite number of com-

munities and general intensity of selection

In this section, we propose to analyse the evolution and stability of cooperation when

relaxing the limits of weak selection (considered in sections 3.4–3.6 of the main text)

and large number of communities (considered in sections 3.5 and 3.6 of the main

text). We start by considering a finite number of communities under weak selection

and their impact on the simple rules previously presented. We derive an exact rule

for the CPD and analyse the general impact of finiteness under the remaining social

dilemmas. We then move outside the weak selection limit, analysing the impact of

relaxing the two limits on the parameter regions under which cooperation evolves.

B.3.1 The effect of a finite number of communities on the evolution

of cooperation

We start by analysing the particular case of the CPD under the DBB and BDD

dynamics. The fixation probability of cooperators expanded under weak selection is

larger than the neutral value if the following condition is true:

V/K > (Q− 1) ·
1− 2

MQ

1− 2(Q−1)
MQ

. (B.45)

The second term of the product on the right-hand side of the equation can be

considered the finiteness correction coefficient. This is equal to 1 under Q = 2,

which means that in that case, the condition obtained is the same regardless of the

number of communities. However, for larger numbers of communities (Q > 2), the

denominator is lower than the numerator in the correction coefficient above, and

therefore the critical value of the reward-to-cost ratio will necessarily be larger than

the one obtained under an infinite number of communities. The difference between

the two should be the largest for the smallest possible network size M = 2, under
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which the rule becomes the following:

V/K > (Q− 1) · (Q− 1). (B.46)

It was stated in section 3.4 of the main text that decreasing the number of com-

munities increases the importance of within-community fixation against between-

community replacement events in the course of a fixation process. Because of that,

defectors should generally do better in smaller networks. This can be concluded

based on the following rearrangement of the weak selection expansion:

ρC ≈ 1

MQ
+

w

2

[
2
1

Q
∆CD+

(
1− 1

Q− 1

)
(δC − δD)+

+
1

M

[
− 2

Q
∆CD +

(
1− 1

Q− 1

)(
δC + δD

)]]
.

(B.47)

We can identify three types of terms in the equation above. The first type corre-

sponds to the zeroth order term of the fixation probability under weak selection; the

second includes the set of first-order terms in w which are independent of M ; and

the third (second line of the equation) represents the first-order terms in w which

are dependent on M and vanish for large M , thus having a finiteness correction of

the expansion. The third type does not originate on the expansion of the fixation

probability under a large number of communities but instead reflects its exact de-

pendence on the number of communities under weak selection. Let us analyse the

effect introduced by this finiteness correction term.

Focusing on public goods dilemmas, the fixation of cooperators can only be

favoured by selection for a choice of network parameters Q and M if we observe

∆CD > 0. This is so because the remaining contributions in equations B.37 and

B.43 (involving δC and −δD) are always negative (see table 3.4). Therefore, for

cooperation to fixate successfully, the first contribution to the finiteness correction in

equation B.47 has to be negative. The sum of the remaining correction contributions

is zero in most public goods dilemmas, except for the S and the TS dilemmas,

under which they are negative. This means that the M -dependent term of the weak

selection expansion of the fixation probability is necessarily negative. If the fixation

probability is higher than the neutral one for a given choice of network (Q and M)

and payoff (V andK) parameters, it will necessarily be so for anyM larger than that,

whereas it might not be for choices of M lower than that. This necessarily means
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that the critical reward-to-cost ratio under all public goods dilemmas (expressed in

table 3.5 of the main text for a large number of communities) will increase when we

decrease M . Finiteness narrows the regions of V/K for which cooperation evolves

under public goods dilemmas.

Under the HD dilemma, the effect of M can be quite different because both

∆CD and δC + δD are always positive, thus leading to different signs on the two

contributions to the third term in the previous equation. This complex effect of M

is parallel to the effects of Q explored in section 3.4 of the main text.

Cooperation evolves under sufficiently large values of V/K when Q ≥ 2 in non-

threshold public goods and when Q ≥ L in threshold public goods, irrespective of the

number of communities M . This conclusion arises from the linear dependency of all

∆CD on V , whereas δC and δD lack such dependence except under the CPD (a game

already shown to support cooperation under any number of communities through

equation B.45). Consequently, there is always a critical value of V above which the

first-order term of the weak selection expansion is positive. In the context of the HD

dilemma, cooperation can consistently evolve under sufficiently small values of V/K

when Q ≥ 2, regardless of the network size. This stems from the linear dependence

of ∆CD and δC on K, and δD on −K, ensuring that all contributions to the fixation

probability expansion are positive when K reaches a high enough value.

B.3.2 The effect of strong selection on the evolution of cooperation

In this section, we relax the weak selection limit. This limit was introduced in

section 3.4 of the main text, and it was used together with the limit of large number

of communities in the succeeding sections to achieve simple rules of cooperation.

We focus on understanding the effect of considering larger values of intensity of

selection on the critical value of the reward-to-cost ratio, denoted as (V/K)c, above

which cooperation fixates in public goods dilemmas and below which cooperation

fixates in the HD dilemma. Figures B.1, B.2, and B.3 show the value of (V/K)c

under networks with M = 10 communities of various sizes, such as Q = 2, 3, 4, 6, 8.

We present results for values of w between 0 and 0.5, the interval under which all

10 social dilemmas can be considered for any possible value of V when K = 1,

i.e. for which probabilities remain positive. More generally, this corresponds to

w ∈ (0, 1/(K + 1)).

The reward-to-cost ratio is affected in different ways by the increase in intensity
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Figure B.1: Critical values of the reward-to-cost ratio for which V/K > (V/K)c leads to the
successful fixation and stability of cooperation. The results are obtained for different intensities
of selection under M = 10, K = 1, and different values of Q.

of selection for each of the social dilemmas, and no particular strategy is consistently

favoured. We start by focusing on the CPD. Under Q = 2, cooperation evolves for

V/K > 1 for all values of w and M , which is equivalent to the rule shown in table

3.5 of the main text. However, under the remaining community sizes considered,

increasing the intensity of selection consistently leads to higher critical values of

the reward-to-cost ratio. In those cases, weak selection has a positive effect on the

evolution of cooperation. Under strong enough selection, there is no critical reward-

to-cost ratio and cooperation may never evolve. We explored other values of M

and observed that increasing M under strong selection extended the values of w for

which there existed a critical reward-to-cost ratio.

Under other dilemmas such as the PD, the PDV, and the TS, lower intensities

of selection also led to lower critical values of the reward-to-cost ratio, but the

differences obtained across values of w are substantially lower. In those dilemmas,
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Figure B.2: Critical values of the reward-to-cost ratio for which V/K > (V/K)c leads to the
successful fixation and stability of cooperation. The results are obtained for different intensities
of selection under M = 10, K = 1, L = 2, and different values of Q.

Figure B.3: Critical values of the reward-to-cost ratio for which V/K < (V/K)c leads to the
successful fixation of cooperation. Cooperators fixate for all values of V/K and w when Q = 2.
The results are obtained for different intensities of selection under M = 10, K = 1, L = 2, and
different values of Q.

the payoff parameters we explored always led to the existence of a critical value,

contrary to what was observed under the CPD and other threshold games such

as the TVD, SH and the FSH, which showed otherwise similar trends. Moreover,

under the PDV, the TVD, and the FSH, the minimum value of (V/K)c occurred for

intermediate intensities of selection. These correspond to an optimal w for which

cooperation evolves under the largest regions of the payoff parameter space.

Under the VD and the S, higher intensities of selection lead to lower critical values

of the reward-to-cost ratio. Therefore, cooperation evolves for larger regions of the
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payoff parameter space under stronger selection. This trend was more pronounced

under the VD.

As an overall trend under public goods dilemmas, we note that larger community

sizes require higher reward-to-cost ratios for cooperators to successfully fixate. This

is concluded from the rules of multiplayer cooperation (section 3.5 of the main text),

obtained under weak selection and a large number of communities. Here, we observe

that this is still valid when those limits are relaxed.

Furthermore, we can observe some of the effects of considering a finite number

of communities. The critical values obtained under w → 0 and shown in figures B.1

and B.2 for public goods dilemmas are higher than the ones presented in table 3.5

of the main text, which were obtained considering a large number of communities.

Larger numbers of communities were proven in section B.3.1 to decrease the values

of (V/K)c above which cooperation evolves under public goods dilemmas. Naturally,

the observed difference is more prominent when Q is larger and of the same order

as M .

Most public goods dilemmas lead to one and only one stable strategy when one

of the limits of large number of communities or weak selection is considered, as was

noted in sections 3.3 and 3.4 of the main text. Under the S and the TS, the only

exceptions to that rule, there are some cases of bi-stability when the system is close

to neutrality, under which none of the strategies fixates on the other. Overall, this

means that in either of those limits, if the fixation of cooperators is favoured by

selection, we can conclude that cooperation will necessarily be a stable strategy.

In settings with strong selection and a finite number of communities, such as the

ones explored in this section, we have not observed any outcome where mutual

fixation (and therefore instability of both strategies) occurs, thus suggesting that

the previous conclusion might hold for more general regions of the parameter space.

Under the HD dilemma, the only commons dilemma studied here, cooperators

fixate successfully when V/K < (V/K)c. Therefore, from figure B.3, we observe

that higher values of intensity of selection lead to larger regions in which cooperation

fixates. As noted before, cooperation always fixates when Q = 2, and therefore we

haven’t represented in the figure the value of (V/K)c for that case. Increasing the

community size to Q = 3, 4 lowers the critical values of V/K, thus leading to smaller

regions of fixation of cooperators. However, increasing it to Q = 5 and above leads

to a change in the opposite direction, thus increasing the regions where cooperation
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fixates. This effect has been described and analysed in section 3.5 of the main text

in the context of weak selection and a large number of communities, and it is valid

when those limits are relaxed, as can be observed in figure B.3.
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Appendix C

Multiplayer social dilemmas in

completely mixed populations

C.1 Calculating fitness under completely mixed popu-

lations

C.1.1 Charitable Prisoner’s Dilemma

Under the CPD, cooperators will get

πC
Nc,N−Nc

= E

[
c− 1

c+ d− 1

]
V −K, (C.1)

where we represented implicitly the expected value of the share of the reward received

by cooperators. This can be simplified by using the fact that c and d are just the

sum of random independent variables c =
∑Nc−1

i=1 Xi
C + 1 and d =

∑Nd
j=1X

D
j , with

Nd = N−Nc. Each random variable is 1 with probability 1/M , i.e. its corresponding

individual is in the same place as the focal one, and is 0 with probability 1 − 1/M .

We added a unit constant to c because the focal individual is a cooperators. This

leads to:

E

[
c− 1

c+ d− 1

]
= E

[ ∑Nc−1
i=1 XC

i∑Nc−1
i=1 XC

i +
∑Nd

i=1X
D
j

]
=

= (Nc − 1)E

[
XC

1

XC
1 +

∑Nc−1
i=2 XC

i +
∑Nd

j=1X
D
j

]
,

(C.2)
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where we have considered the fact that all random variables follow the same distri-

bution. Furthermore, we can evaluate the distribution of random variable XC
1 and

say that:

E

[
c− 1

c+ d− 1

]
= (Nc − 1)pE

[
1

1 +
∑Nc−1

i=2 XC
i +

∑Nd
j=1X

D
j

]
. (C.3)

We now evaluate the sum of the remaining random variables n′ by using the fact

that it follows a binomial distribution with parameters N − 2 and p = 1/M :

E

[
1

1 +
∑Nc−1

i=2 XC
i +

∑Nd
j=1X

D
j

]
=

=

N−2∑
n′=0

(
N − 2

n′

)
pn

′
(1− p)N−2−n′ 1

1 + n′ =

=

N−2∑
n′=0

(N − 2)!

(N − 2− n′)!n′!(n′ + 1)
pn

′
(1− p)N−2−n′

=

=
1

p(N − 1)

N−2∑
n′=0

(N − 1)!

(N − 2− n′)!(n′ + 1)!
pn

′+1(1− p)N−2−n′
=

=
1

p(N − 1)

(
1− (1− p)N−1

)
.

(C.4)

Joining the results obtained in equations C.3 and C.4 and introducing them back

onto equation C.1, we get the following result:

πC
Nc,N−Nc

=
Nc − 1

N − 1

(
1− (1− p)N−1

)
V −K. (C.5)

In the case of defectors in the CPD, we would follow the same procedure by

replacing the values of c and d by similar the random independent variables c =
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∑Nc
i=1X

i
C and d =

∑Nd−1
j=1 XD

j = 1, again with Nd = N −Nc, which would lead to:

πD
Nc,N−Nc

= E

[
c

c+ d− 1

]
V =

= E

[ ∑Nc−1
i=1 XC

i∑Nc
i=1X

C
i +

∑Nd−1
j=1 XD

j

]
V =

= NcpE

[
1

1 +
∑Nc

i=2X
C
i +

∑Nd−1
j=1 XD

j

]
V =

= NcpE

[
1

1 +
∑Nc−1

i=2 XC
i +

∑Nd
j=1X

D
j

]
V =

=
Nc

N − 1

(
1− (1− p)N−1

)
V.

(C.6)

C.1.2 Prisoner’s Dilemma

Under the PD, cooperators get

πC
Nc,N−Nc

= E

[
c

c+ d

]
V −K

= E

[
1 +

∑Nc−1
i=1 XC

i

1 +
∑Nc−1

i=1 XC
i +

∑Nd
j=1X

D
j

]
V −K =

= E

[
1

1 +
∑Nc−1

i=1 XC
i +

∑Nd
j=1X

D
j

]
V+

+ (Nc − 1)pE

[
1

2 +
∑Nc−1

i=2 XC
i +

∑Nd−1
j=1 XD

j

]
V −K.

(C.7)

Let us work on the two terms separately. We use again the evaluation of the

sum of independent Bernoulli trials and the fact it follows a binomial distribution.
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Starting with the first term:

E

[
1

1 +
∑Nc−1

i=1 XC
i +

∑Nd
j=1X

D
j

]
=

=
N−1∑
n′=0

(
N − 1

n′

)
pn

′
(1− p)N−1−n′ 1

1 + n′ =

=

N−1∑
n′=0

(N − 1)!

(N − 1− n′)!n′!(n′ + 1)
pn

′
(1− p)N−1−n′

=

=
1

pN

N−1∑
n′=0

N !

(N − 1− n′)!(n′ + 1)!
pn

′+1(1− p)N−1−n′
=

=
1

pN

N∑
n′′=1

N !

(N − n′′)!n′′!
pn

′′
(1− p)N−n′′

=

=
1

pN

(
1− (1− p)N

)
.

(C.8)

Regarding the second term:

E

[
1

2 +
∑Nc−1

i=2 XC
i +

∑Nd−1
j=1 XD

j

]
=

=

N−2∑
n′=0

(
N − 2

n′

)
pn

′
(1− p)N−2−n′ 1

n′ + 2
=

=

N−2∑
n′=0

(N − 2)!

(N − 2− n′)!n′!
pn

′
(1− p)N−2−n′ 1

n′ + 2

n′ + 2− 1

n′ + 1
=

=

N−2∑
n′=0

(N − 2)!

(N − 2− n′)!n′!
pn

′
(1− p)N−2−n′

(
1

n′ + 1
− 1

(n′ + 2)(n′ + 1)

)
=

=
1

p(N − 1)

N−2∑
n′=0

(N − 1)!

(N − 1− (n′ + 1))!(n′ + 1)!
pn

′+1(1− p)N−1−(n′+1)+

− 1

p2N(N − 1)

N−2∑
n′=0

N !

(N − (n′ + 2))!(n′ + 2)!
pn

′+2(1− p)N−(n′+2) =

=
1

p(N − 1)

N−1∑
n′′=1

(N − 1)!

(N − 1− n′′)!n′′!
pn

′′
(1− p)N−1−n′′

+

− 1

p2N(N − 1)

N∑
n′′=2

N !

(N − n′′)!n′′!
pn

′′
(1− p)N−n′′

=

=
1

p(N − 1)

(
1− (1− p)N−1

)
− 1

p2N(N − 1)

(
1−Np(1− p)N−1 − (1− p)N

)
.

(C.9)

Finally, we take the results of these two terms and introduce them into equation
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C.7 to obtain the following fitness function:

πC
Nc,N−Nc

=

=
1

pN

(
1− (1− p)N

)
V + (Nc − 1)p

[
1

p(N − 1)

(
1− (1− p)N−1

)
+

− 1

p2N(N − 1)

(
1−Np(1− p)N−1 − (1− p)N

)]
V −K =

=
1

pN

(
1− (1− p)N

)
V +

Nc − 1

N − 1

[
1− 1

pN

(
1− (1− p)N

)]
V −K =

=
M

N

[
1−

(
1− 1

M

)N
]
V +

Nc − 1

N − 1

[
1− M

N

(
1−

(
1− 1

M

)N
)]

V −K.

(C.10)

We now perform the parallel calculations for the average payoff of defectors:

πD
Nc,N−Nc

= E

[
c

c+ d

]
V =

= E

[ ∑Nc
i=1X

C
i

1 +
∑Nc

i=1X
C
i +

∑Nd−1
j=1 XD

j

]
V =

= NcpE

[
1

2 +
∑Nc

i=2X
C
i +

∑Nd−1
j=1 XD

j

]
V =

= Ncp

[
1

p(N − 1)

(
1− (1− p)N−1

)
+

− 1

p2N(N − 1)

(
1−Np(1− p)N−1 − (1− p)N

)]
V =

=
Nc

N − 1

[
1− 1

pN

(
1− (1− p)N

)]
V =

=
Nc

N − 1

[
1− M

N

(
1−

(
1− 1

M

)N
)]

V.

(C.11)

C.1.3 Volunteer’s Dilemma

Under the VD, cooperators get the same payoff, regardless of their group composi-

tion. Therefore:

πC
Nc,N−Nc

= V −K. (C.12)

Defectors get the reward V if they have at least one cooperator on their group
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and get nothing otherwise. Their average payoff is therefore:

πD
Nc,N−Nc

= V −
(
Nc

0

)
p0(1− p)NcV =

(
1− (1− p)Nc

)
V =

=

[
1−

(
1− 1

M

)Nc
]
V.

(C.13)

C.1.4 Snowdrift

Under the Snowdrift game, cooperators always get the reward V and then pay a

cost which depends on how many cooperators are in their group. Therefore:

πC
Nc,N−Nc

= V − E

[
1

c

]
K =

= V − E

[
1

1 +
∑Nc−1

i=1 XC
i

]
K =

= V −
Nc−1∑
c′=0

(
Nc − 1

c′

)
pc

′
(1− p)Nc−1−c′ 1

1 + c′
K =

= V −
Nc−1∑
c′=0

(Nc − 1)!

(Nc − 1− c′)!c′!
pc

′
(1− p)Nc−1−c′ 1

1 + c′
K =

= V − 1

pNc

Nc−1∑
c′=0

c′ + 1

(Nc − (c′ + 1))!(c′ + 1)!
pc

′
(1− p)Nc−(c′+1)K =

= V − 1

pNc

(
1− (1− p)Nc

)
K =

= V − M

Nc

[
1−

(
1− 1

M

)Nc
]
K.

(C.14)

Defectors have the average payoff as under the VD, and thus they will have the

same payoff:

πD
Nc,N−Nc

=

[
1−

(
1− 1

M

)Nc
]
V. (C.15)

C.1.5 Hawk-Dove

Under the HD game, cooperators receive nothing if there is at least one defector in

their group, otherwise they receive V/c. Therefore, their average payoff is obtained

by the product of the probability of having no defectors in the group by the expected

value of V/c, which has been calculated for the average payoff of cooperators in the

200



S game:

πC
Nc,N−Nc

= (1− p)NdE

[
1

c

]
V =

= (1− p)Nd
1

pNc

(
1− (1− p)Nc

)
V =

=
M

Nc

(
1− 1

M

)N−Nc

·

[
1−

(
1− 1

M

)Nc
]
V.

(C.16)

The expected payoff of defectors can be represented the following way:

πD
Nc,N−Nc

= E

[
V − (d− 1)K

d

]
=

= E

[
1

d

]
(V +K)−K.

(C.17)

The calculation done for the expected value of 1/d from the point of view of

defectors is parallel to the one done for expected value of 1/c from the point of view

of cooperators used in the average payoff of cooperators in both the VD and the

HD. Therefore, we apply that result here replacing Nc by N −Nc

πD
Nc,N−Nc

=
1

p(N −Nc)

(
1− (1− p)N−Nc

)
(V +K)−K =

=
M

N −Nc

[
1−

(
1− 1

M

)N−Nc
]
(V +K)−K.

(C.18)

C.2 Obtaining the rules of cooperation under completely

mixed populations

The rules of cooperation can be obtained by comparing the fixation probabilities

of cooperators (ρC) and (defectors (ρD) to the fixation probability under neutral

selection (ρneutral = 1/N).

C.2.1 Charitable Prisoner’s Dilemma

Under the CPD, we always have that FD
Nc,N−Nc

> FC
Nc,N−Nc

. This means that all

terms of the sum in equation 4.9 are higher than 1, and therefore ρC < ρneutral. In

parallel, all the terms of the sum in equation 4.10 are lower than 1, and therefore

ρD > ρneutral. This is true for any values of w, V , K, number of cooperators Nc and

population size N .
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C.2.2 Prisoner’s Dilemma

Under the PD, we have FD
Nc,N−Nc

> FC
Nc,N−Nc

for all Nc and N if

V/K >
N − 1(

1−
(
1− 1

M

)N
)

N

Q
− 1

, (C.19)

which under large N and M , with a defined asymptotic value of Q, becomes:

V/K >
Q

1− exp(−Q)
, (C.20)

We have used the following well-known limit limN→∞

(
1 +

x

N

)N
= ex, in which

case x = −Q.

This is valid under any value of w and number of cooperators and population

size. We can therefore use the same reasoning as before, concluding that below that

threshold selection favours defection, and above it it favours cooperation.

In the remaining games, similarly to the CPD and PD, there are values of V/K

for which either cooperators have higher fitness for all values of Nc of a given (large)

population or defectors do. However, to obtain general rules which include the val-

ues of V/K for which cooperators are benefit under some states of the population

and defectors do in others, we calculate the first-order terms of the weak selec-

tion expansion of fixation probabilities, and compute the conditions for them to be

positive.

We recall the equations introduced in section 4.3.2 of the first-order terms:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nc=1

[
FC
Nc,N−Nc

− FD
Nc,N−Nc

]
=

=
1

N2

N−1∑
Nc=1

(N −Nc)
[
FC
Nc,N−Nc

− FD
Nc,N−Nc

]
,

(C.21)

and

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
Nd=1

(N −Nd)
[
FD
N−Nd,Nd

− FC
N−Nd,Nd

]
=

=
1

N2

N−1∑
Nc=1

Nc

[
FD
Nc,N−Nc

− FC
Nc,N−Nc

]
.

(C.22)
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C.2.3 Volunteer’s Dilemma

In the case of the VD, we have that:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nc=1

[(
1− 1

M

)Nc

V −K

]
=

=
1

N2

N−1∑
j=1


(
1− 1

M

) 1−
(
1− 1

M

)j

1−
(
1− 1

M

) V − jK

 ,

(C.23)

where we have used the result of the geometric series. We can further simplify the

expression using the result of the arithmetic and geometric series again, to get the

following:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

[
(M − 1) ·

(
(N − 1)− (M − 1) ·

(
1−

(
1− 1

M

)N−1
))

V+

−N(N − 1)

2
K

]
.

(C.24)

Therefore, under arbitrary M and N in the weak selection limit, cooperators

fixate successfully if:

V/K >

N(N − 1)

2

(M − 1) ·

(
(N − 1)− (M − 1) ·

(
1−

(
1− 1

M

)N−1
)) , (C.25)

which under the limit of large networks and populations with asymptotic density

N/M = Q, becomes:

V/K >
Q/2

1− 1− exp(−Q)

Q

. (C.26)

Performing the same operation for the expansion of the fixation probability of
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mutant defectors, we obtain the following:

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nd=1

[
K −

(
1− 1

M

)N−Nd

V

]
=

=
1

N2

N−1∑
j=1

jK −
(
1− 1

M

)N−j

·
1−

(
1− 1

M

)j

1−
(
1− 1

M

) V

 =

=
1

N2

N(N − 1)

2
K +

−M ·


(
1− 1

M

)
·
1−

(
1− 1

M

)N−1

1−
(
1− 1

M

) − (N − 1)

(
1− 1

M

)N

V

 ,

(C.27)

which after some algebra leads to the following expression:

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

[
N(N − 1)

2
K +

−(M − 1)M ·

(
1−

(
1− 1

M

)N−1(
Q+ 1− 1

M

))
V

]
.

(C.28)

This is positive when:

V/K <

N(N − 1)

2

(M − 1)M ·

(
1−

(
1− 1

M

)N−1(
Q+ 1− 1

M

)) , (C.29)

which in the limit of large networks and populations with a fixed asymptotic density

Q = N/M becomes:

V/K <
Q2/2

1− exp(−Q) · (Q+ 1)
. (C.30)
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C.2.4 Snowdrift

In the case of the Snowdrift game, we obtain the following first-order term of the

fixation probability of cooperators:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nc=1

[(
1− 1

M

)Nc

V −

(
1−

(
1− 1

M

)Nc
)

M

Nc
K

]
. (C.31)

The summations over the first term can be solved similarly to what was done in

the VD, resulting on the same term multiplying by V in equation C.23. The term

multiplying by K requires more work. We thus split it into the two sums and focus

on them individually. The first set of summations can be simplified to the following:

N−1∑
j=1

j∑
Nc=1

(
−M

Nc

)
=

N−1∑
Nc=1

(N −Nc)

(
−M

Nc

)
= −M (NHN−1 − (N − 1)) , (C.32)

where we have used the definition of the harmonic series HN−1 =
∑N−1

i=1 1/i.

Regarding the second term, we can simplify it to the following:

N−1∑
j=1

j∑
Nc=1

[(
1− 1

M

)Nc M

Nc

]
=

=
N−1∑
Nc=1

(N −Nc)

[(
1− 1

M

)Nc M

Nc

]
=

= NM
N−1∑
Nc=1

(
1− 1

M

)Nc

Nc
−M

N−1∑
Nc=1

(
1− 1

M

)Nc

=

= NMf1(M,N)−M(M − 1)

(
1−

(
1− 1

M

)N−1
)
,

(C.33)

where we applied the sum of the geometric series and denoted one of the geometric-

harmonic series of interest as:

f1(N,M) =

N−1∑
i=1

(
1− 1

M

)i

i
. (C.34)

Joining all the terms, we get the following first-order term of the weak selection
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expansion of the fixation probability of cooperators:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

[
(M − 1) ·

(
(N − 1)− (M − 1) ·

(
1−

(
1− 1

M

)N−1
))

V +

−

(
M (NHN−1 − (N − 1))−NMf1(N,M) +

+ M(M − 1)

(
1−

(
1− 1

M

)N−1
))

K

]
.

(C.35)

This leads to the following rule for the successful fixation of cooperation:

V/K >

M (NHN−1 − (N − 1))−NMf1(N,M) +M(M − 1)

(
1−

(
1− 1

M

)N−1
)

(M − 1) ·

(
(N − 1)− (M − 1) ·

(
1−

(
1− 1

M

)N−1
)) .

(C.36)

When the limit of large networks and populations is considered, then the condi-

tion becomes:

V/K >
1− exp(−Q) +Q(L1(Q)− 1)

Q− 1 + exp(−Q)
(C.37)

where we used the definition of the function

L1(Q) = lim
M→∞

(HM×Q−1 − f1(M ×Q,M)) =

= lim
M→∞

M×Q−1∑
i=1

1i −
(
1− 1

M

)i

i

 =

= γ −B1(Q)

(C.38)

The function L1(Q) is always positive. It tends to zero for very low Q, and

increases monotonically, taking, for example values L1(1) ≈ 0.80, L1(2) ≈ 1.32,

L1(3) ≈ 1.69, and L1(20) ≈ 3.57.

We perform the same calculations for the expansion of the fixation probability
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of defectors:

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nd=1

[(
1−

(
1− 1

M

)N−Nd
)

M

N −Nd
K −

(
1− 1

M

)N−Nd

V

]
=

=
1

N2

N−1∑
Nd=1

(N −Nd)

[(
1−

(
1− 1

M

)N−Nd
)

M

N −Nd

]
K+

− 1

N2

N−1∑
j=1

j∑
Nd=1

[(
1− 1

M

)N−Nd

V

]
=

=
1

N2

N−1∑
Nc=1

[(
1−

(
1− 1

M

)Nc
)
M

]
K+

− 1

N2

N−1∑
j=1

(
1− 1

M

)N−j 1−
(
1− 1

M

)j

1−
(
1− 1

M

) V.

(C.39)

Both summations can be easily solved by using the solution of the geometric

series, thus obtaining the following expansion:

∂ρD

∂w

∣∣∣∣
w→0

=
1

N2

[
(N − 1)MK − (M − 1)

(
1−

(
1− 1

M

)N−1
)
MK−

M

(
(M − 1)

(
1−

(
1− 1

M

)N−1
)
− (N − 1)

(
1− 1

M

)N
)
V

]
.

(C.40)

Finally, based on this, defectors fixate successfully if:

V/K <

(N − 1)M − (M − 1)

(
1−

(
1− 1

M

)N−1
)
M

M

(
(M − 1)

(
1−

(
1− 1

M

)N−1
)
− (N − 1)

(
1− 1

M

)N
) , (C.41)

which under large networks and populations becomes:

V/K <
Q− 1 + exp(−Q)

1− exp(−Q)(1 +Q)
. (C.42)
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C.2.5 Hawk-Dove

In the Hawk-Dove game, we obtain the following first-order term of the fixation

probability of cooperators:

∂ρC

∂w

∣∣∣∣
w→0

=
1

N2

N−1∑
j=1

j∑
Nc=1

[
N

QNc
·
(
1− 1

M

)N−Nc

·

[
1−

(
1− 1

M

)Nc
]
V+

− N

Q(N −Nc)

[
1−

(
1− 1

M

)N−Nc
]
(V +K) +K

]
=

=
1

N2

N−1∑
Nc=1

(N −Nc)

[(
1− 1

M

)N−Nc

·
[
MV

Nc
+

MV
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(C.43)
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We redefined the summation as the following function:

f2(N,M) =
N−1∑
Nc=1

(
1− 1

M

)−Nc

Nc
. (C.44)

Based on the equation above, we can say that cooperation evolves successfully

if:

V/K <

(
1−

(
1− 1

M

)N−1
)
(M − 1)M − (N − 1)M +

N(N − 1)

2

(N − 1)MV −
(
1− 1

M

)N (
f2(N,M)−HN−1 + 1− 1

N

)
NM

, (C.45)

which in the limit of large populations and networks with asymptotic Q becomes:

V/K <
(1− exp(−Q))−Q+

Q2

2
Q−Q exp(−Q) (L2(Q) + 1)

, (C.46)

where we have redefined the limit of the difference between the series f2 and the

harmonic series:

L2(Q) = lim
M→∞

(f2(M ×Q,M)−HM×Q−1) =

= lim
M→∞

M×Q−1∑
i=1


(
1− 1

M

)−i

i
− 1

i

 =

= B2(Q)− γ.

(C.47)

Finally, the expansion of the fixation probability of defectors can be obtained
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by:
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(C.48)

The term multiplied by V is always positive, and the one multiplied by K is al-

ways negative. Thus, according to the above expansion, defectors fixate successfully
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if:

V/K >

N(N − 1)

2
+M(N − 1)−MN(HN−1 − f1(N,M))−M(M − 1)

(
1−

(
1− 1

M

)N−1
)

MN(HN−1 − f1(N,M))−M(N − 1)

(
1−

(
1− 1

M

)N
) .

(C.49)

In the limit of large networks and large populations with asymptotic density Q,

this becomes:

V/K >

Q

2
+ 1− L1(Q)− 1− exp(−Q)

Q

L1(Q)− (1− exp(−Q))
. (C.50)
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Appendix D

Robustness of co-evolution of

cooperation and conditional

movement on networks

We extend the analysis of the evolutionary outcomes obtained under the Markov

movement model outlined in chapter 5. We focus on identifying if the similarity of

qualitative outcomes between different evolutionary dynamics holds when we reduce

the exploration phase length to the limiting value T = 1. We also assess the impact

of considering different values of reward c.

In this setting, assortative behaviour is suppressed because individuals do not

have iterated movement decisions. The isolated evolution of interactive strategies

can be considered by fixing the movement strategies of residents and mutants, in

which case the model becomes similar to an independent movement model such as

the territorial raider (Broom et al. 2015, Pattni et al. 2017, Schimit et al. 2019,

2022). As will be shown, similar results to the ones obtained in that model and

under static interaction networks (Ohtsuki et al. 2006) are recovered.

In the following tables D.1, D.2, and D.3, we present the results obtained for

the fixation probability of one cooperator on a population of defectors, under the

same three topologies (complete, circle and star networks, respectively), for the two

distinct dynamics BDB and DBB, and two different mobility scenarios.

Under co-evolved mobility, we consider the fixation probability of the fittest

mutant cooperator on defectors with optimal staying propensities, a probability

which is essential to the analysis under rare interaction mutations. Once again, the
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optimal staying propensity of resident defectors is α = 0.99. The fittest mutant

cooperators have the staying propensity that maximises their fixation probability

on those defectors. This is the value represented in parenthesis, together with each

fixation probability under co-evolved mobility.

Under fixed mobility, we consider that both resident defectors and mutant co-

operators have the same staying propensity, which, with the purpose of simplifying

our search, we have considered to be the one held by the fittest mutant cooperators

under co-evolved mobility.

These results were obtained based on 100, 000 simulation trials for each com-

bination of parameters. The estimation of the standard deviation is provided in

Erovenko et al. (2019). We use the following parameter values: N = 50, λ = 0.1,

S = 0.03, c = 0.04, T = 1, and we considered the following different values of

v = 0.08, 0.4, 2, 8. Note that fixation probabilities are compared to their value under

neutral selection, which corresponds to 1/N = 0.02. Probabilities higher than this

value are highlighted in the tables.

For an extensive analysis of the parameter space, we refer to Erovenko et al.

(2019), on whose supplementary material the impact of different values of reward-

to-cost ratio and exploration time is assessed considering only the BDB dynamics.

Co-evolved mobility Fixed mobility
BDB DBB BDB DBB

v = 0.08 0.0063 (0.99) 0.0015 (0.99) 0.0063 0.0015
v = 0.4 0.0065 (0.9) 0.0021 (0.8) 0.0057 0.0022
v = 2 0.0170 (0.8) 0.0159 (0.6) 0.0050 0.0019
v = 8 0.0202 (0.9) 0.0323 (0.4) 0.0018 0.0003

Table D.1: Fixation probabilities of cooperators under a complete network, for two distinct
mobility scenarios, and different reward values and evolutionary dynamics. The value in-
cluded in parenthesis together with each fixation probability value, under co-evolved mobility,
corresponds to the calculated staying propensity of the fittest mutant cooperators. Resident
defectors under co-evolved mobility were considered to use their optimal staying propensity
of 0.99. Fixation probabilities under fixed mobility were calculated using the same staying
propensity for both mutants and defectors as the obtained for the corresponding fittest mu-
tants under co-evolved mobility. Note that fixation probabilities are compared to their value
under neutral selection, which is 0.02 – probabilities higher than this value are highlighted.

In table D.1, we observe that for reward values up to v = 2 in the complete

network, mutant cooperators do not fixate above neutrality both under the co-

evolution of movement strategies and when these are fixed at the same value for

resident defectors. In comparison, the main results presented in chapter 5 show that

under longer exploration phases of T = 10 and under v = 0.4, cooperators fixate
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under all dynamics for this movement cost λ = 0.1.

When the reward value is high enough (v = 8), co-evolving mobility allows for

the successful fixation of cooperators. However, under fixed mobility, we observe

that the fixation of cooperators decreases for the highest values of the reward. The

fact that it never reaches the neutral fixation threshold is in accordance with the

proposition that under T = 1 and fixed mobility, assortative behaviour vanishes,

and only the spatial viscosity of the evolutionary process described in Ohtsuki et al.

(2006), and also observed in Pattni et al. (2017), can sustain cooperation. Viscosity

is not present in complete networks, as all individuals are connected, hence the lack

of success of cooperators under fixed mobility.

The differences between dynamics are smaller under this topology, and are mainly

related to the overall effect of amplification of selection described in chapter 5.

Co-evolved mobility Fixed mobility
BDB DBB BDB DBB

v = 0.08 0.0062 (0.99) 0.0015 (0.99) 0.0062 0.0015
v = 0.4 0.0070 (0.9) 0.0034 (0.8) 0.0063 0.0040
v = 2 0.0285 (0.8) 0.0564 (0.7) 0.0062 0.0221
v = 8 0.0622 (0.8) 0.1040 (0.7) 0.0067 0.0378

Table D.2: Fixation probabilities of cooperators under a circle network. Other information
as in the caption of table D.1.

Table D.2 shows the results obtained under circle networks. These are fairly

similar to the ones from complete networks under co-evolved mobility, but they

hold key differences under fixed mobility. In the later, we observe that fixation

probabilities under the BDB dynamics are consistently below neutrality, while under

the DBB they increase considerably for larger reward values, reaching values above

that threshold for both v = 2 and v = 8. This shows that under T = 1, and in the

absence of co-evolving mobility, the viscosity of the process can still allow for the

fixation of cooperation. This is again in agreement with the conclusions from Ohtsuki

et al. (2006), that if the average degree of a network is lower than (a function) of the

reward-to-cost ratio, cooperation can evolve under some dynamics. Here we further

show that the distinct nature of the BDB and DBB dynamics is recovered when

there is no co-evolved assortative behaviour. This difference should be associated

with the network viscosity of the process but not with the later mechanism.

Finally, the results obtained under star networks hold similarities with to the

ones obtained under complete networks. Under co-evolved mobility, cooperation
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Co-evolved mobility Fixed mobility
BDB DBB BDB DBB

v = 0.08 0.0064 (0.99) 0.0022 (0.99) 0.0064 0.0022
v = 0.4 0.0105 (0.7) 0.0288 (0.4) 0.0059 0.0032
v = 2 0.0530 (0.5) 0.1731 (0.01) 0.0049 0.0043
v = 8 0.0760 (0.6) 0.2551 (0.01) 0.0023 0.0027

Table D.3: Fixation probabilities of cooperators under a star network. More information
included in the caption of table D.1.

fixates under both evolutionary dynamics for high enough rewards. The minimum

value for which it happens is lower under the DBB dynamics, and, once again, these

dynamics amplify selection and allow for cooperators to fixate with high probabili-

ties. Under fixed mobility, this network leads to fixation probabilities as low as under

complete networks. This is a highly centralised network, where all individuals can

potentially meet (in the centre), therefore corresponding to a highly connected in-

teractive structure, under which viscosity is no longer present Ohtsuki et al. (2006),

and cooperation cannot evolve under T = 1 without co-evolved mobility.

In summary, we observed that strictly limiting exploration phases to T = 1,

co-evolving staying propensities and network viscosity can still allow cooperation to

fixate. The later is related to the mechanism analysed in the context of evolutionary

games for the first time in Ohtsuki et al. (2006). Here we recover a result similar

to the original rule stated there: cooperation can evolve only in networks with

low enough degree, far from complete, and under particular evolutionary dynamics.

These results are relevant for the analysis we perform in chapter 5, as they show

that the fundamental differences between some of these dynamics come from their

relation to the viscosity of evolutionary processes on networks, and are often not

reflected in the presence of co-evolving assortative behaviour.
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