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Abstract

This thesis is motivated by the progressive expansion of electronic markets with re-

duced pre-trade transparency and the collateral liquidity effects. In this thesis I develop

three independent theoretical models and explore the repercussions of weak market

liquidity and transparency.

First, I approach the issue of limited liquidity through the optimal order placement

problem of a risk-averse trader in a continuous time context and introduce a random

delay parameter, which defers limit order execution and characterises market liquid-

ity. This framework demonstrates that imperfect liquidity explains order clustering in

the proximity of best quotes and the existence of the bid-ask spread. The distribution

of expected time-to-fill of limit orders conforms to the empirically observed distribu-

tion of trading times, and its variance decreases with liquidity. Finally, two additional

stylised facts are rationalised in this model: the equilibrium bid-ask spread decreases

with liquidity, but increases with agents’ risk aversion.

My second framework adjoins the few theoretical attempts in the literature to chal-

lenge investors’ incentives to participate in opaque trading environments. Through

a real option approach I justify how market opacity can encourage liquidity provi-

sion, which, in turn, supports the empirical evidence on the proliferation of such trad-

ing venues. I demonstrate that transparency in conjunction with liquidity determine

traders’ eagerness to supply liquidity to the opaque market, and that once the trader

enters the opaque market, he commits to trade relatively quickly. Furthermore, error

analysis reveals that impatient traders are highly likely to pass over favourable trade

execution offered in the opaque market precisely because of imperfect clarity of infor-

mation signals, while a prior optimistic bias prompts the trader to submit his limit order

sooner.

Lastly, as a complement to static inference on individual level, I establish an artifi-

cial market with heterogeneous agents and distinct transparency regimes that replicates

the long memory properties and empirical order flow patterns. The results suggest

that full quote transparency incurs substantial transaction costs and dampens trading

activity, while exogenous restriction of displayed depth up to several quotes does not

alter significantly market performance. The core implication of this model is that the

endogenous restriction of displayed quote depth by means of iceberg orders improves

market quality in multiple dimensions.

This thesis contributes to the microstructure domain by providing a theoretical sup-

port to the benefits of market opacity as well as its downsides. The research outcomes

of this thesis are, therefore, relevant from a regulatory standpoint.
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Chapter 1

Introduction

I sometimes think that speculation must be an unnatural sort of business, because I find
that the average speculator has arrayed against his own nature. The weaknesses that all
men are prone to are fatal to success in speculation usually those very weaknesses that
make him likable to his fellows or that he himself particularly guards against in those
other ventures of his where they are not nearly so dangerous as when he is trading in
commodities or stocks.

– Edwin Lefèvre, Reminiscences of a Stock Operator.

If you have too much respect for facts, especially when they refute your conjectures,
you will go on with pre-naive trial-and-error and look for another conjecture. But if you
have a better heuristic, you at least try to ignore the adverse observational test, and try a
test by thought-experiment [...].

– Imre Lakatos, Proofs and Refutations.

In this thesis I develop three comprehensive frameworks that address repercussions of trading

rules imposed in financial markets and the associated strategic behaviour of market participants.

The issues of my primary interest are pre-trade quote transparency and imperfect liquidity in elec-

tronic markets. This chapter renders a brief overview of these problems put in context, explains the

main motivation behind my research and locates its niche in financial economics. Following this I

summarise my contributions to the existing literature on this subject and close the chapter with a

path walk of the remaining parts of the thesis.

1



1. Introduction

1.1 Motivation

This thesis shares the principal objective of all market microstructure studies in that it explores

the routes by which the architecture of financial markets perturbs price discovery, trading activ-

ity, and market quality in a broad sense. In my study I justify the relevance of market liquidity

and transparency regimes, which arguably emerge as yet more intricate in the milieu of electronic

trading systems, to market performance. My narrative commences with a revision of key market

microstructure aspects and gradually leads to a discussion about the roles that weak liquidity and

market transparency rules play in asset price formation, in the promotion of competition among

traders, and in creating incentives to provide sustainable market depth.

1.1.1 Background

In contrast with classical economics which analyses the equilibrium prices at which demand equals

supply, market microstructure exploits how specific trading mechanisms guide the evolution of

prices over time. While a unique fundamental price remains a useful theoretical concept, much un-

derstanding of short run market fluctuations and adjustments is gained by scrutinising the minutiaes

of the asset exchange process implied by a concrete market structure. Several expansive surveys,

that overview findings and methodologies in market microstructure research, have been accom-

plished to date. The pioneering work of O’Hara (1997) consolidated inventory models, followed

by extensive overviews of more advanced models by Madhavan (2000) and Biais et al. (2005), and

Parlour and Seppi (2008) with a specific emphasis on limit order markets. In addition, Hasbrouck

(2006) revised empirical microstructure literature, and Harris (2003) collected microstructure in-

sights for practitioners and regulators. These surveys and empirical knowledge emanate five major

properties that mould the microstructure of every financial market:

• trade intermediation,

• time and frequency of trading,

• location,

• transparency, and

• rules and regulations.

Trade Intermediation

There are three principal methods used on trading venues to arrange the exchange of assets between

agents: a quote-driven, a brokered, and an order-driven system. In quote-driven markets there is

a designated specialist, one or several, who aggregates market demand and supply and intermedi-

ates all transactions between traders. Brokered trading assumes that brokers assist the matching of

2



1. Introduction

counterparties without participating in their transactions. In non-intermediated order-driven mar-

kets buyers and sellers find each other by adopting certain order precedence rules that ultimately

determine the prices at which trades are executed.

While in a quote-driven system a market maker is responsible for liquidity provision and has to

maintain his inventory position for this reason, in order-driven and brokerage systems all market par-

ticipants jointly generate liquidity necessary for smooth functioning of the market. The majority of

modern financial markets are either hybrids, with the prominent examples of NYSE and NASDAQ,

or non-intermediated electronic order matching systems. Top world exchanges rely extensively on

the electronic order book. According to the data collected by the World Federation of Exchanges,

the cumulative value of shares transacted on electronic platforms has not declined dramatically ever

since its rapid surge and a recent global boom in 2003-2009. Typically, the execution of trades on

each stock exchange is achieved in either of the three modes: (i) transactions are effected in the

electronic order book as a result of automatic order match according to precise exchange priority

rules, (ii) negotiated deals are executed on an alternative platform with the price confirmed by both

the buyer and the seller, and (iii) over-the-counter trades are executed off the exchange and reported

a posteriori. Figure 1.1 depicts the split of the shares turnover between three modes of trade execu-

tion on the basis of year-to-date estimates in December 2012, with the exchanges ranked by market

capitalisation. This chart highlights that trades matched automatically through electronic limit or-

der book exhibit remarkable prevalence across all major exchanges, annihilating the role of market

makers.

Figure 1.1: The share turnover split between trades matched automatically in the electronic order book
(EOB), negotiated (ND) and over-the-counter (OTC) deals for the largest global exchanges by market capi-
talisation in December 2012. Source: World Federation of Exchanges.

The distinction between quote-driven markets with inventory positions and competitive be-

haviour, on the one hand, and order-driven markets with strategic behaviour, on the other, motivated

3



1. Introduction

the change in both perception and methodologies used in market microstructure research. As Biais

et al. (2005, p.220) note, the focus of analysis has shifted from prices to order flow and limit order

book shape information. My study targets primarily the latter type of market organisation. Given

the heterogeneity and multitude of traders and their trading styles, market dynamics induced by

order-driven trade execution mechanism are highly complex. Moreover, the diversity of operational

market phases imposed by exchanges tends to exacerbate this complexity.

Time and Frequency of Trading

A typical schedule of a trading day can be traced from the example of the New York Stock Exchange

Arca (NYSE Arca) platform for trading in equities (Table 1.1). Each day on NYSE Arca Equities

begins at 3:30 a.m. with the 29-minute session when limit orders are submitted to the market and

saved in the book. During this period traders can cancel or modify their orders up until the last

minute, or keep these orders in the book till 4:00 a.m otherwise. Trading is initiated by the Opening

Session with a one-minute Auction Freeze, when all accumulated limit orders are matched, and a

5.5-hours Opening Auction, which concludes with a one-minute Market Order Freeze whereabout

market orders or auction limit orders can no longer be amended and new orders are not accepted to

avoid price distortions. At 9:30 a.m. the main trading session opens and active real-time trading is

carried out until 3:59 p.m. Closing Auction Freeze from 3:59 p.m. to 4:00 p.m. bans cancellations

of day orders and forbids order placement on the side of current imbalance to prevent last minute

price manipulations. Next, with the Closing Auction Run the market end-of-the-day information

about prices and trades is published. Finally, all limit orders that arrived after closing or expired

by the end of the day are cancelled at 8:00 p.m. and cross orders are matched through a portfolio

crossing system.

The total operation time on the NYSE Arca Equities is distributed rather evenly between the

principal active trading session that occupies 6.5 hours, 6 hours for price discovering sessions and

preparation for the next opening, and the remaining 4 hours dedicated to market clearing process.

Most of the venues are closed for trading overnight; some markets are open for longer with a

maximum of 11 hours across Europe, others – for fewer hours per day. Many Asian markets still

close for a lunch break, for example: Tokyo Stock Exchange and Hong Kong Stock Exchange have

two core trading sessions per day separated by a one-hour interval. However, daily schedules of

most markets with several market phases are fairly similar. For example, Figure 1.2 indicates that

although the distributions of time varies between the New York Stock Exchange and the London

Stock Exchange, the active trading period is only 2 hours longer in the latter.

Daily trading schedules are designed to accommodate efficiently overnight arrivals of informa-

tion. Also, the coordination of market opening times around the globe allows to trade 24 hours a

day without interruption and incorporate latest market, macroeconomic and business news timely.

4



1. Introduction

Table 1.1: Market phases at the NYSE Arca Equities. Source: NYSE Euronext.

Pre-Opening Session 3:30–3:59 a.m.
3:30–3:59 a.m. Limit Orders can be entered and queued

Opening Session 4:00–9:30 a.m.
4:00 a.m. Opening Auction Freeze Period

4:00–9:29 a.m. Opening Auction
9:29–9:30 a.m. Market Order Freeze Period

9:30 a.m. Market Order Auction

Core Trading Session 9:30–4:00 p.m.
9:30–3:59 p.m. Active Trading Session
3:59–4:00 p.m. Closing Auction Freeze Period

4:00 p.m. Closing Auction Run

Extended Hours 4:00–8:00 p.m.
8:00 p.m. Limit Orders entered after 4:00 p.m. are cancelled
8:01 p.m. Portfolio Crossing System (PCS)

(a) (b)

Figure 1.2: Market phases on a regular trading day (a) on the New York Stock Exchange Arca (NYSE Arca),
and (b) on the London Stock Exchange (LSE).

Daily schedules of markets are important since, for instance, they generate intraday U-shaped pat-

tern and day-of-the-week seasonality in the intensity of trading activity and trades aggressiveness.

For convenience of theoretical analysis I deliberately focus, in most theoretical microstructure mod-

els, on the core asset exchange period – a continuous trading session. This abstraction implies that

the set of order placement and execution rules is fixed throughout trading.
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Location

The third key microstructure determinant is market location. Trading in financial markets tradi-

tionally took place on physical trading floors of local exchanges with people shouting out their

orders. Nowadays, new communication technologies have given rise to virtual trading venues with

rapid information transmission which enables traders to receive up-to-date market feedback and act

upon it instantaneously. Trading in electronic markets offers substantially higher speed of order

processing and execution and permits stronger participation. Assured by obvious benefits of com-

puterisation, such as availability, convenience and minimal efforts required from all trading parties,

lower transaction and maintenance costs and enhanced market efficiency, many exchanges incline

towards online electronic matching systems to boost turnovers.

Notwithstanding the exact operation mode of a market, its location does not need to be unique.

If a particular security is traded exclusively on one exchange, the market for this security is con-

solidated. However, each given asset can be potentially listed on multiple organised exchanges, be

they physical or virtual, or be transferred in over-the-counter deals, thereby causing market frag-

mentation. Computing and communication innovations accelerate the ease of creating new markets

and in this manner intensify competition between various trading service providers, which, in turn,

inevitably accentuates market fragmentation issues.

Summarising the topic of fragmentation, Harris (2003) reasons that the desirability of fragmen-

tation is ambiguous. A consolidated market eliminates competition between various trading venues

to provide services and trading rules that are attractive to all and at better costs. However, a sin-

gle market certainly cannot satisfy the needs of every trader, whereas diversity of markets allows

agents to select most suitable venues to realise their trading intentions. At the same time a frag-

mented market entails lack of competition among traders and demotivates specialists to secure best

prices. The research report Navigating Liquidity 6 (Lehalle et al., 2012) attributes the creation of

the Markets in Financial Instruments Directive (MiFID) in November 2007 to the milestones in the

regulation of fragmentation: it established a legal framework for competition between traditional

and modern trading venues. On the practitioners side, there has been made a number of attempts to

measure and diagnose market fragmentation. Among widely accepted quantitative indicators counts

the Cheuvreux Fragmentation Efficiency Index, that uses a physics formula of entropy (i.e. disorder

in a system) to evaluate the level of fragmentation that a given security attains; and Fragulator R©

(Fidessa Fragmentation Index) is a tool that offers a single number estimate of the degree of mar-

ket fragmentation. The latter tool assists investors in measuring the dispersion of liquidity and

allows to differentiate between various combinations of security split across primary and alternative

venues. However, regardless of investors’ ability to incorporate the extent of market fragmentation

into their strategies and balance between multiple trading venues using smart order routing and

computer algorithms, all traders are naturally bound to flock to the highest liquidity and produce
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an order flow externality. In other words, all investors, despite tremendous heterogeneity of trading

motives, prefer to participate in the most liquid markets.

Transparency

In light of fragmentation, both regulators and businesses are interested in understanding which mar-

ket conditions imply fair competition for liquidity and draw additional liquidity, and how liquidity

is to be assessed. Opaque markets that pertain limited transparency regarding the state of the market

and executed trades, play a special role in this discussion. A thorough study by Board et al. (2002)

in the recent book “Transparency and Fragmentation” investigates this link.

Within the spectrum of opaque markets, some exchanges display only the depth at a few best

quotes in the limit order book, whereas other exchanges endogenise the regulation of transparency

by permitting traders to submit iceberg orders that conceal partly or entirely the limit order size.

Iceberg orders are designed primarily for large institutions and exceptionally wealthy individuals

that employ block trading and thereby require delicate cost and exposure management. Certain new

opaque markets, for instance, display only partial information about incoming orders and current

market depth striving to gain a competitive advantage over older existing exchanges that have by

now attracted many versatile investors and to circumvent the positive order flow externality that

those older exchanges exercise. Moreover, special attention has been drawn to dark markets where

the limit order book is entirely hidden from trading agents and prices with corresponding volumes

are “known” only to the electronic system. The anonymity of trades in dark pools aims to prevent

explicit price manipulation. According to Fidessa datasource (Fidessa, 2012), the cumulative vol-

ume transacted on the European dark venues has increased more than tenfold in the past five years

and continues a stable positive trend. The proliferation of dark and semi-transparent venues gives

rise to a variety of interesting questions: how does the market benefit from reduced transparency

rules, what kind of agents are enticed by opacity and what are their gains, how frequently traders

are misled by excessive uncertainty in these markets?

Rules and Regulation

Transparency rules compose only one brick of the ultimate market microstructure pillar – trading

rules and regulations. On the one hand, markets have plentiful freedom to choose the preferred op-

eration mode and order handling rules: be it physical floor exchange or an on-screen platform, with

an assigned dealer to mediate transactions or auction-based trade execution. To give an example,

orders waiting in the limit orders book can be allocated according to a price-time priority protocol,

whereby the earliest order at the matching price is fully executed before switching to the next order

that was placed at the same price later. Alternatively, some exchanges favour a pro rata priority

protocol: when a market order arrives each agent queuing at the best quote gets a fill proportionally
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Figure 1.3: The estimates of the volumes traded in European dark pools. Source: Fidessa (2012).

to his total order size. Exchanges establish their rules based on specific trader profiles they intend

to engage. All along empirical evidence traces a persistent link between the choice of trading prin-

ciples and ensuing market quality in terms of liquidity, transaction costs, and other characteristics.

Therefore, it is essential that competent regulatory authorities give prescriptions to trading venues

and impose certain constraints on them in order to promote a fair and competitive trading environ-

ment and enhance market efficiency and economic welfare. The directives devised by regulators

are, in turn, guided by substantial economic research.

In this thesis I contemplate two broad issues recognised in market microstructure research:

liquidity and transparency. More precisely, my interest lies in departures from perfect liquidity and

transparency, their origins and inflicted consequences. These two issues, as becomes apparent after

a closer examination, are tightly intertwined. This thesis, therefore, sets out to examine liquidity

and transparency from several angles, and the following subsections give an initial outline of the

concepts and methodologies adopted in my work.

1.1.2 Imperfect Liquidity

Liquidity is commonly defined as the ease of buying or selling the asset in a market with no effect

on its price. From macreconomic view, the most liquid asset is cash, hence a market for any risky

asset is ascribed with imperfect liquidity. It is clear that imperfect liquidity hinders both trading and

asset pricing, thus it is crucial to retrieve the market rules that can further deteriorate this fragile

liquidity. On the other hand, alternative lines of research take the level of liquidity as given and

inspect its relation to other market characteristics.

In double auction markets the succinct concept of liquidity is normally partitioned into five main
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criteria: (i) immediacy, (ii) tightness, (iii) depth, (iv) order book resilience, and (v) and market

breadth. Immediacy is a characteristic that refers to the speed of order execution and settlement

and, thereby, reflects the overall efficiency of market clearing. Transaction costs, together with any

implicit costs, indicate relative tightness of a market. Resilience refers to the market capability

to replenish liquidity consumed by aggressive trades and balance appropriately buy and sell side

volumes. Market depth is usually measured by the total demand and supply recorded in a limit

order book. Lastly, market breadth assesses the density of orders stored in a book, so that a narrow

market breadth implies a sparse limit order book with few orders and modest depth. All these

characteristics have clear intercepts, hence they jointly determine the ease of converting an asset

into cash and vice versa, in other words, asset liquidity.

In my work I take different approaches to evaluate liquidity. Evidently there is no unique mea-

sure that gauges all five of its interconnected components. In Chapter 2, I propose an aggregate

liquidity factor that is proxied by delay in limit order execution and is based on the notion of imme-

diacy. Under these assumptions I deduce implications of imperfect liquidity on market tightness.

In the real option framework proposed in Chapter 3, I model liquidity simply by order flow inten-

sity. I also monitor how different, less abstract market specifications affect this liquidity variable

using simulation analysis in Chapter 4. Another statistic that I consider is a price impact that is

ingenuously linked to the resilience of a limit order book. Third, I measure the liquidity provision

propensity as the ratio of the limit orders in the overall order flow. This characteristic is related both

to non-transitory depth and breadth of markets.

1.1.3 Reduced Transparency

Market transparency refers to the ability of market participants to observe non-confidential infor-

mation about outstanding orders – pre-trade transparency, and executed trades – post-trade trans-

parency. Many modern electronic markets permit iceberg and hidden orders aiming to attract ad-

ditional liquidity. Each iceberg order has a fixed limit price, a disclosed quantity – total amount of

shares to buy or sell, and a peak – the order size publicly displayed in the electronic trading book.

Once a peak of an iceberg order is executed, the order is renewed by the same amount and the re-

maining quantity is reduced accordingly. In this manner iceberg orders assist exposure control and

retain price priority with a sacrifice in time priority. If the order size is completely omitted, the order

is called hidden. The latter can hide behind other iceberg and limit orders recorded in the book, or

have a price distinct to any existing visible passive orders. Therefore, iceberg orders add depth to

displayed orders and, as a result, create two market layers: a visible volume and a shadow volume,

that is temporarily invisible and mimics the former. Exchange and alternative matching systems

with this structure belong to the category of opaque. One concern associated with the promotion of

iceberg and hidden order types lies in the discriminative nature of market access, particularly in the
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extreme case of dark pools. More importantly, hidden orders can distort the price discovery process

by exacerbating information asymmetry.

The effect of reduced transparency on market quality is contingent upon the motivation and

aggressiveness of traders who rely on iceberg orders: according to empirical evidence, this impact

varies from market to market, while theoretical works on this subject are still scarce. Therefore,

it is often implicitly assumed that the opportunity to hide granted by opaque markets lures traders

because this valuable option diminishes the price impact of their trades. In this thesis I challenge the

attractiveness of opaque markets by virtue of an optimal entry model in Chapter 3 and of a dynamic

environment with interacting agents in Chapter 4.

1.1.4 Agent-Based Models in Microstructure

Agent-based modelling has proven particularly convenient for exploring the microstructural prop-

erties of financial markets. Unlike many theoretical models that often achieve substantive results at

the expense of stern simplifying assumptions, agent-based models embrace the sophistication of the

trading process and heterogeneity of market participants. One of the first examples that illustrated

the benefits of agent-based simulation techniques in application to finance was the Santa Fe Institute

artificial stock trading platform created in the late 1980’s and early 1990’s.

The level of complexity in electronic double auction markets is constantly rising. In recent

decades, especially with the development and cheapening of computer technologies, there has been

a surge in algorithmic trading and computer-based trading in general. In some cases the use of

algorithms implies devising elaborate trading principles and strategies, whereas, when the speed of

information processing is a priority, coding bluntly replicates basic rules of thumb. However, the

mere diversity of these strategies coupled with the multi-directional nature and, sometimes, high fre-

quency of interactions between various counterparties abrogates this seeming simplicity. Within the

complex financial vehicles, as electronic markets undoubtedly are, the emergent institutional impact

of trading cannot be deduced by aggregation of individual decisions and actions. To make matters

worse, interacting agents usually exhibit bounded rationality. These factors combined challenge

the validity of analytical approaches in application to double auction markets. While traditional

models appear quite limiting, agent-based models have the capacity to incorporate complexity, and,

therefore, gain deeper understanding about the collective behaviour of autonomous agents.

In the meantime, an agent-based simulation approach, like any theoretical framework, enables

certain filtering of the modelled complexity level by including some real market principles and

omitting others. In fact, it is not even necessary to model the market with substantial precision

to reproduce many of its important properties, as proven by previous research. In contrast with

empirical studies, this abstraction welcomes to set up more pure experiments within agent-based

environment and to test the market impact of new policies ceteris paribus. Moreover, agent-based
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models are especially suitable for exploring non-equilibrium tendencies.

These advantages motivated my analysis of pre-trade transparency regimes in a double auction

market via agent-based simulations in Chapter 4. In addition to stochastic models of the optimal

behaviour for a single agent in Chapters 2 and 3, the comparative study of interactions among traders

and market properties that arise from distinct transparency regimes provides problem interpretation

from a different angle.

1.2 Thesis Outline

This thesis belongs to the realm of market microstructure theory, an area of financial economics

which examines how the trading behaviour of heterogeneous investors affects the evolution of prices

in financial markets. In the summary of ideas introduced above, this thesis contemplates the im-

plications of two market imperfection types: reduced pre-trade transparency and deviations from

absolute liquidity. In investigating these problems, I implement stochastic calculus and real options

methods alongside agent-based simulations. Each of the three core chapters takes an independent

approach to examine the repercussions of weak market liquidity and transparency. Any crossovers

in terminology and concepts introduced in each chapter, aside from common definitions accepted

in the literature, are noted separately.

Chapter 2 approaches the issue of limited liquidity through the optimal order placement problem

of a risk-averse trader in a continuous time framework and introduce a random delay parameter,

which defers limit order execution and characterises market liquidity. This framework demonstrates

that imperfect liquidity explains order clustering in the proximity of best quotes and the existence

of the bid-ask spread. The distribution of expected time-to-fill of limit orders conforms to the

empirically observed distribution of trading times, and its variance decreases with liquidity. Finally,

two more stylised facts are rationalised in this model: the equilibrium bid-ask spread decreases with

liquidity, but increases with agents’ risk aversion.

Chapter 3 adjoins the few theoretical attempts in the literature to challenge traders’ incentives

to participate in opaque trading environments. Through a real option approach I investigate the

impact of various market parameters on the optimal order placement time of a risk-neutral trader

in a market with hidden liquidity. The model justifies how market opacity can encourage liquidity

provision, which, in turn, supports the empirical evidence on the expansion of such trading venues.

I demonstrate that transparency in conjunction with liquidity, measured by order flow intensity, de-

termine traders’ eagerness to supply liquidity to the opaque market, and that it can be optimal to

postpone liquidity provision for later if the order flow is too weak. Moreover, once the trader enters

the opaque market, he commits to trade rather quickly relative to his time horizon. Furthermore,

error analysis reveals that impatient traders are highly likely to pass over the favourable trade exe-
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cution offered in the opaque market precisely because of imperfect clarity of information signals,

while a prior optimistic bias prompts the trader to engage sooner.

As a complement to static inference on individual level, Chapter 4 presents a study of various

transparency regimes and liquidity properties through an artificial limit order market with hetero-

geneous traders. I establish a model of an artificial market with heterogeneous trading rules and

distinct transparency regimes that replicates the long memory properties and empirical patterns in

conditional order flow distributions. The results of my experiments suggest that full quote trans-

parency incurs substantial transaction costs for traders and dampens trading activity in an order-

driven market, and that exogenous restriction of displayed depth up to several quotes does not

substantially alter market performance. The core implication of this model is that the endogenous

restriction of displayed quote depth by means of iceberg orders improves market quality in multiple

dimensions: it alleviates the problem of adverse selection to patient limit order traders, relieves the

average transaction costs, maintains higher liquidity and faster execution, balances the limit order

book, and enhances price discovery.

Chapter 5 concludes and summarises the findings obtained from the three methodologies de-

vised in my study. Finally, I discuss briefly potential directions for my future work and propose

several extensions that would facilitate further insight into the topics of transparency limitations

and liquidity.

1.3 Key Contributions

My contribution to the microstructure literature is at least threefold.

First, I propose a simple stylised order placement model with a synthetic liquidity factor that

retrieves a link between liquidity and the bid-ask spread in a limit order market. In addition, this

model traces how imperfect liquidity generates the patterns in limit order submissions which are

frequently observed in real markets.

Second, I implement a real option approach and show that transparency in conjunction with

liquidity determine traders’ eagerness to supply liquidity to the opaque market. At the same time,

this framework illustrates that market microstructure can benefit from incorporating real option

method, which is not broadly applied in this research area at present.

Third, I examine the desirability of opacity through an agent-based model, which is an ample

device that complements more rigid theoretical models and empirical research. In line with plen-

tiful empirical observations, this model suggests that opaque markets fulfil its mission to augment

liquidity and enhance aggregate market quality, which is a particularly relevant outcome for market

transparency regulation.
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Chapter 2

Optimal Trading and the Bid-Ask
Spread in a Limit Order Market with
Imperfect Liquidity

2.1 Introduction

Optimal order placement is a recurrent theme in market microstructure since the solution to this

problem ultimately determines market shape and performance. From an investor’s standpoint, op-

timal order placement is the core of successful investment strategy implementation, since skillful

trade execution reduces associated transaction costs and amplifies expected returns. Traders con-

struct their submission strategies to benefit from particular market properties and order types, hence

the architecture of the market defines their expectations about future price dynamics and trade ex-

ecution efficiency. In pure quote-driven dealer markets small orders typically execute at the best

opposing dealer quote regardless of the order type. In public limit order books, market orders may

encounter price improvement, whereas limit orders execution is conditional upon the location where

traders place their limit prices relative to the prevailing bid and ask. Market orders trade at the best

price currently available at the market and are filled instantaneously. Hence, the actual execution

price of a market order is subject to the current market situation. This aspect of trading is known as

execution price uncertainty. Limit orders are instructions to trade at the best price available but only

if it is not worse than the limit price specified by a trader. The probability that a particular order will

be filled depends on its limit price. There exist two main risks associated with limit order trading:

execution uncertainty, when the market moves away from the submitted limit price and hence the

agent never trades, and ex post regret, when for various reasons prices move towards and through

the limit price. The goals of traders operating in a competitive environment of non-intermediated
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double auction markets are distinct from those of market makers. The fundamental distinction be-

tween the models of dealer quoting and a generic trader problem is that the former is essentially

indifferent to execution and his objective is to set a spread to control his inventory position.1 In limit

order markets agents have multiple reasons to trade and various financial instruments available to

them to execute a particular trade. Primarily, though, each trader entering a non-intermediated

market must decide upon the type of order to use: either a market order or a limit order.

Substantial empirical evidence suggests that limit orders play a dominant role in financial mar-

kets. For instance, Harris and Hasbrouck (1996) find that limit orders generally perform best even

in the presence of a non-execution penalty and market price improvement. According to Guéant

et al. (2012), more than half of all trades, approximately 60%, are obtained passively, that is, orders

fill the queue to trade rather than consume liquidity. Biais et al. (1995) provide an empirical anal-

ysis of the order flow of the Paris Bourse, which represents a pure limit order market. They find

that traders’ strategies vary with market conditions, with orders submitted inside the quotes more

frequently at times when spreads are wide. The motivation to choose a limit order over a market

order in real markets is obfuscated by various subtle effects, for example: the discrepancy in trans-

action fees,2 the option to submit multiple orders simultaneously, the existence of several distinct

markets for the same asset, and the possibility to withdraw the order. Some of previous theoretical

studies are based on the division of traders into two main groups: liquidity suppliers that trade with

limit orders, and liquidity demanders that have stronger immediacy preferences (see, for example,

the articles of Foucault et al. (2005); Harris (1998); Rosu (2009)). In contrast, other frameworks,

including Handa and Schwartz (1996); Parlour (1998) and Foucault (1999) to mention a few early

works, endogenise the choice between market and limit order placement. In this chapter I expand

the latter part of the literature and develop a framework where depending on the current market

state the trader sets out either to provide or to consume liquidity.

In practice, even though investment and trading decisions are formulated jointly, they are usu-

ally analysed and accomplished somewhat in isolation. The present model reflects precisely such

allocation of tasks since it does not take into account the portfolio the trader holds and how the

outcome of his trading operations affects the balance and the value of his portfolio. Instead, the

model assumes that the agent enters the market with a given trading goal and his task is to devise

an optimal execution strategy given market characteristics at the time of his arrival. The set of

information available to traders is an important issue in this context. There is abundant empirical

evidence in the market microstructure literature suggesting that information asymmetries between

agents shape market dynamics and that price movements are often triggered by information updates.

1The dealers choose optimally the spread that maximises their expected gains from trading with uninformed liquidity
traders net of expected losses incurred by trading with informed.

2Maker/taker market microstructure, for instance, encourages liquidity provision by offering a fee discount when a
limit order is submitted and penalises liquidity consumers by higher charges.
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A number of early studies showed that the information component of the bid-ask spread is slender;

according to Huang and Stoll (1997), on average it compounds less than 12% of the spread. Yet,

more contemporary findings indicate that the information component is significant and amounts

for as much as 80% of the spread (Gould et al., 2010). Information asymmetry is usually defined

in a fairly broad sense and it does not necessarily imply, for instance, any form of legal or illegal

insider trading. Thus, simply because the tools through which market participants assess the market

vary, they draw different predictions from the same market conditions. However, superior or rather

heterogeneous information is not the only basis for trading, as was demonstrated by Milgrom and

Stockey (1982). On this basis, information effects per se are excluded from the present analysis.

The model incorporates traders’ individual expectations of the future asset price, while leaving the

grounds for this valuation beyond the scope of the present study.

In this chapter I consider the problem of a trader who has to liquidate a position in an actively

traded asset within a given period of time and forms his strategy based upon the market dynamics

represented by the bid and ask prices. Building upon the framework of Iori et al. (2003), I provide

a conceptual improvement by incorporating an exogenous limit order execution factor – an expo-

nential random delay. Moreover, I derive a static solution to the limit order trading problem for the

quadratic utility preferences and examine how different risk perceptions affect the optimal strategy

of a trader in a limit order market and his waiting time. This formulation proves more advantageous

both in terms of interpretation and the ease of potential calibration to data. Furthermore, I explain

the non-transient bid-ask spread and identify the determinants of its width in equilibrium.

The remainder of this chapter proceeds as follows. Section 2.2 reviews relevant theoretical

and empirical literature. Section 2.3 describes the market in which traders submit their orders,

outlines the clearing mechanism and formulates the problem of a risk-averse trader operating in this

market. In Section 2.4 I look at the distribution of limit order trading times implied by this market

design. Subsequent Section 2.5 and Section 2.6 explore the properties of the optimal strategy and

two special cases respectively. Section 2.7 reports comparative statics analysis for the key model

drivers. Finally, the existence of equilibrium spread and appropriate conditions are discussed in

Section 2.8. The chapter concludes in Section 2.9 with a brief summary and suggestions for further

research.

2.2 Literature Review

There is an extensive literature on the subject of optimal order submission strategies in limit order

markets. The main distinction between the theoretical approaches adopted in various studies lies

in the definition of a limit order execution mechanism and, consequently, the resulting probability

distribution.
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Equilibrium analysis of order-driven markets has been realised by Chakravarty and Holden

(1995); Foucault (1999); Foucault et al. (2005); Goettler et al. (2005); Kumar and Seppi (1994);

Parlour (1998) and Rosu (2009). All of these models are variants of a dynamic multi-agent se-

quential bargaining game where heterogeneous traders derive their best response order submission

strategies. Parlour (1998) starts from the premise that the probability of execution of a sell limit

order depends on the arrival of buy market orders and that the relative attractiveness of buy market

orders depends on the relative attractiveness of buy limit orders, and concludes that execution prob-

abilities of buy and sell limit orders are determined jointly over time. In situations when prices are

fixed, which holds in equilibrium, this framework suggests that optimal order placement is contin-

gent upon a single factor – the distribution of agents’ impatience characteristic. Allowing for market

fluctuations, Foucault (1999) describes the asset price via a binomial model and assumes that limit

orders are valid only for one period, therefore, at each point in time the book is either full or empty.

In this setting the probability of a limit order execution is endogenous and part of the execution risk

arises from the next trader’s order type. The focus on equilibrium analysis of the optimal behaviour

yields numerous implications that are coherent with the documented market observations, and these

models have proved especially useful for policy-makers. However, the non-synchronous nature of

trading in real markets challenges this approach: while in equilibrium all market participants should

get zero profits, the depth of a real limit order book is usually insufficient to drive average expected

profits to zero.

A separate branch of optimal order placement literature, where individual order submissions

are encapsulated in the asset price dynamics, was initiated by Cohen et al. (1981). In their seminal

paper, Cohen et al. (1981) propel the theoretical analysis of the optimal choice between market

and limit orders and build a framework where the probability of order execution is contingent upon

future price movements and associated probability densities. Trading takes place when the trajec-

tory of the best quote crosses the barrier determined by the limit price for the first time. Cohen

et al. (1981) model the underlying security price with a compound Poisson process, which, by very

definition, invokes a jump in the probability of execution: if a time-constrained trader is willing to

buy a stock via a limit order and chooses a limit price infinitely close to the current best ask, his

probability of trading never attains unity. This property permitted to establish a so-called gravita-

tional pull effect: when the bid-ask spread is narrow, the benefit of a price improvement with a limit

order becomes small compared to the risk of non-execution, so traders are pulled to use market

orders instead. Consequently, Cohen et al. (1981) argue that a limit order strategy is not always

superior to trading with market orders and that refraining from submitting any order might even be

the most sensible option. This model adequately captures the trade-off between a favourable price

and a higher order execution probability and, in this sense, draws a line between market and limit
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orders.3 Cohen et al. (1981) further demonstrate that as the order arrival rate increases the Poisson

process converges to a Wiener process, eliminating the discontinuity in the execution probability

function. The model setup, however, is too complex to obtain a closed-form solution and their

analysis remains mainly qualitative.

Langnau and Punchev (2011) concentrate deliberately on the issue of adequate price modeling

in a public limit order book. Adopting the results of Kou and Wang (2003), they compare the

implications of a pure diffusion and a double exponential jump diffusion (DEJD) mid-point price

specifications, with the appealing memorylessness property and leptokurtic returns in the latter case.

They arrive at a closed-form solution for the first passage time with distinct expressions for buy and

sell strategies in the DEJD case. As a main finding, Langnau and Punchev (2011) establish that the

DEJD price specification accommodates the asymmetric shape of a limit order book as well as a

fat-tailed distribution of log-returns and is compatible with equilibrium market conditions, whereas

the log-normal price specification is not. However, Langnau and Punchev (2011) do not address

directly the optimal trading problem. Although DEJD prices complicate parameter calibration, it is

potentially beneficial from the tractability viewpoint and I reserve this for future research.

Given the analytical complexity of any setting with jumps in prices, it seems reasonable to

examine the problem of optimal strategy within the context of a continuous time diffusion price.

There are several examples of this approach in the financial and econometric literature. For in-

stance, Iori et al. (2003) show that despite its obvious shortcomings, log-normal prices still replicate

optimal limit order strategies that are coherent with traders’ behaviour observed in financial market.

A mean-reverting price specification, particularly relevant for commodities, depicts an interesting

cross-over effect: the optimal value of the strategy increases with the speed of reversion for urgent

expiry times, while decreases for longer trading horizons. Nevertheless, pure first passage time

models such as this cannot justify the existence of the spread due to inability to differentiate be-

tween a marketable limit order and a market order, or more precisely, to distinguish between the

time-to-first-fill and completion time of a trade.

An attempt to preserve the appealing mathematical lightness of first passage time models and

bridge it with the notion of imperfect liquidity was made by Harris (1998). Harris (1998) improves

the framework with pure diffusion prices by adding a supplemental criterion – an aggregated factor

of the degree of execution difficulty. The degree of difficulty in limit order execution is defined as

an additional barrier which a limit price has to pass before a limit order is filled. Therefore, it is not

sufficient to become the best price on the same side of the market, a limit order has to supersede

this best price: for instance, a sell limit order is executed when the submitted limit order price is

lower than the best ask less the difficulty parameter. Two execution mechanisms were juxtaposed:

3Angel (1994) uses a similar concept to model limit order submissions in a market where order arrival is described
by a standard Poisson process.
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with certainty and with some probability. Using a comparative statics analysis based on a numerical

solution, Harris (1998) confirms that the probability of order execution depends positively on this

difficulty factor for both schemes. An alternative stylised interpretation of the problem is given by

Hasbrouck (2006). Assuming that traders on the opposite side of the book are ascribed with un-

observed reservation prices, a random collateral barrier that follows an exponential distribution is

analysed. Hasbrouck (2006) argues that the number of potential counterparties decreases as the dis-

tribution of reservation prices becomes more skewed, making the optimal strategy more aggressive.

Although very valid, the theoretical approaches presented by Harris (1998) and Hasbrouck (2006)

have certain limitations. Disentangling the impacts of these external factors, i.e. distribution of

reservation prices or the degree of execution difficulty, from other determinants of order aggressive-

ness and actual trading times poses a serious inference challenge. Instead, I introduce a tractable

parameter to characterise limit orders which can actually be estimated from observable data.4

2.3 The Model

Consider the problem of an investor who has a position in a traded asset which has to be liquidated

within a pre-specified time horizon. One option the agent has is to use a market order and trade

at the best available price at once. Alternatively, he can submit a limit order and hope to trade at

a more favorable price. In a double auction market a transaction occurs when a market order hits

the quote on the opposite side of the book. Assume that there is no information asymmetry and

future price dynamics depend only upon public information. Without loss of generality, the ensuing

analysis focuses on the problem of a seller.

A trader is alloted the task of selling one unit of an asset and has to complete the trade by

deadline T . In order to optimise the price he is willing to adopt a limit order strategy and takes into

account a penalty for the non-execution event. The current price of the security is determined by

the best bid b0, the highest buying price, and the best ask a0, the lowest selling price in the market.

Choosing to trade at the market, the agent receives an immediate profit. If the agent adopts a limit

order strategy, he places an order at his preferred limit ask price Ka. Assume that the trader cannot

revise his limit order before expiry, however, it is possible to convert to a market order at maturity

if his limit order was not filled. Therefore, if his limit order is not executed within the horizon T ,

the agent has to sell the asset at the best available price that guarantees immediate trading.5

Imperfect liquidity is introduced by a random delay in execution. When a trader submits a sell

4For instance, in 2005 the SEC adopted Rule 605 requiring all market centers to disclose certain order execution
information, thus facilitating post-trade transparency. This regulation requires, among other things, to make publicly
available information on the order execution speed.

5The assumption that order size is one unit ensures that the market will absorb the trade. However, one should
bear in mind that this does not necessarily hold for large orders and switching to market orders at maturity might inflict
significant price discounts.
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limit order at Ka to the book, he is competing with other potential sellers, or the best ask process at.

Placing a limit order far from the current quotes implies a more intense competition and increases

the chances that the opportunity to trade will not arise before expiry time. Limit orders in the book

are executed according to a first-in first-out protocol. However, once the limit order of an agent

becomes the best price in the market, a random execution delay ensues. The primary source of

delay comes from the possibility that another trader places an order ahead of the trader in question.

An impatient trader can arrive and put a more aggressive limit order at a marginally lower price.

If this happens, the patient trader loses the price priority while retaining the time priority at his

price. Unless there is a fundamental market shock, this price distress should quickly recover and

his order will trade soon. In other words, the delay indicates the time it will take for the price to

return to the trend. Also, the delay in trading may happen due to the fact that somebody else might

have put an order at exactly the same price but earlier than the agent in question. This is a salient

feature of markets with hidden liquidity, since traders normally have no information about invisible

quote depth. As a result, even when placing an order at a given price traders have no capability to

assess how long it will take to fill hidden orders ahead of them. In this model the delay is usually

insignificant relative to the trader’s timescale, but there is a small probability that the delay will be

sufficiently long and hence will considerably distort the schedule of the agent’s trading. Therefore,

in this market the transaction occurs with an unforeseen delay ε which is independent of the asset

prices and is sampled from an exponential distribution with constant intensity λ, that is ε ∼ exp (λ).

Clearly, in most cases, once the market is trading close enough to the quote that the agent has

previously submitted, it will not move away swiftly. This market design implies, as will be shown

later, that a non-transient bid-ask spread arises from the costs of waiting.

In a situation with a random delay the agent cannot bear additional risk at maturity, hence he is

forced to use a market order instead and sell the security at bT . Submitting a limit order at at any

price greater than the best bid is not a sure trade and given that the distribution of the random delay

is equivalent for any price, the trader has no incentive to place the order inside the spread, i.e. below

a0. This strategy yields the following expression for the discounted terminal payoff:

Vλ
(
Ka;~ν

)
= e−δ(τ+ε)KaI{τ+ε≤T } + e−δT bT I{τ+ε>T }, (2.1)

with τ = inf{t ≥ 0 : at = Ka} and ε ∼ exp(λ).

Numerous studies solve for the optimal strategy from the standpoint of a risk-neutral agent.

However, if risks cannot be hedged away, the trader is concerned not only with expected payoffs

but also with the range where future payoffs might lay; thus, he should account for the variance in

the future wealth. The trader with risk aversion coefficient ϕ determines his optimal limit price K∗a
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by maximising the mean-variance utility:

EUλ(Ka;~ν, ϕ) ≡ max
Ka≥a0

{
E

[
Vλ(Ka;~ν)

]
− ϕ · Var

[
Vλ(Ka;~ν)

]}
. (2.2)

The final decision of a trader is formed through comparison of b0, the price at which he can close

the position instantaneously, and the maximum expected mean-variance utility EUλ(K∗a;~ν, ϕ) that

can be attained via a limit order at the optimal price K∗a .

Despite the presence of a delay, this market is sufficiently liquid and the price dynamics are

described by a continuous process. A pair of stochastic log-normal processes bt and at describe the

trajectories of the bid and ask prices in the book respectively:6

dbt = µbbtdt + σbbtdWb
t , (2.3)

dat = µaatdt + σaatdWa
t , (2.4)

where Wa
t and Wb

t are ρ-correlated standard Brownian motions, E
[
dWa

t dWb
t

]
= ρdt. This frame-

work is primarily concerned with short-term decisions when market conditions do not change sub-

stantially, so the assumption of deterministic price trends is viable.7

2.4 The Distribution of Trading Times

This section examines the properties of waiting times implied by market dynamics and the trader’s

submissions. Define the time-to-fill of a limit order as θ = τ + ε, where τ is the time it takes to

become the best price and ε is a random delay in order execution. The probability density function

of the time-to-fill, as depicted in Figure 2.1, exhibits a negative exponential shape with a peak.8

As the intensity rate λ increases, the peak becomes more pronounced, implying that faster order

execution is more likely other things equal. In other words, higher liquidity reduces the variance of

the time-to-fill.

The relationship between the distribution of trading time in a market without delay and in a

market with a random delay is stated in the following proposition.

Proposition 2.4.1. Let P (τ ≤ t) be the cumulative distribution of limit order time-to-fill in a per-

fectly liquid market, then the cumulative distribution function of waiting times in a market with

6The best quotes contain sufficiently rich information to form a trading strategy. Kozhan and Salmon (2012), for
instance, show by means of an FX market that little value is extracted from the data beyond the best quotes, especially
with the advent of algorithmic trading.

7The evaluation of the spread non-negativity conditions is given in Appendix D.
8The absence of a peak near zero in the results obtained by Lo et al. (2002) can be partially attributed to the discrete

nature of the data, whereas the result of the model given in this chapter applies to continuous time.
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Figure 2.1: The probability density function of the time-to-fill of a sell limit order at Ka/a0 = 1.01. Results
are shown for parameters in Table 2.2.

moderate delays P (θ ≤ t) is approximated by

P (θ ≤ t) = P (τ ≤ t) −
x/λ

σat
√

t
n
(

x − A1σ
2
at

σa
√

t

)
. (2.5)

The probability density function of the time-to-fill in a market with moderate delays P (θ ∈ dt) is

proportional to the probability density of the time-to-fill in a perfectly liquid market P (τ ∈ dt):

P (θ ∈ dt) = P (τ ∈ dt)
1 − (x2 − A2

1σ
4
at2 − 3t)/λ

2σ2
at2

 , (2.6)

where x = ln
(

Ka
a0

)
and A1 =

µa−σ
2
a/2

σ2
a

.

Proof. See Appendix A. �

Proposition 2.4.1 complies with the intuition that the difference in limit order execution is most

sensitive to market liquidity when medium-length maturities are concerned, since both equations

(2.5) and (2.6) pertain a non-monotonic dependence on time t.

Further, the statistics in Table 2.1 reflect the impact of a random delay on the time-to-fill. Taking

into account that delays are independent of prices, the mean time-to-fill is calculated as E[θ] =

E[τ] + E[ε]. As Figure 2.2(a) reveals, the average waiting time θ̄ grows linearly with the distance-

to-fill of a limit order. However, the contribution of the market liquidity parameter λ is very small

and there is no marked difference in the submitted limit price. Given that the distribution of the time-

to-fill is considerably skewed, its mean value is not an informative statistic. Figure 2.2(b) shows

the mode time-to-fill θ̂, that is the most common value, for a range of admissible limit prices. For
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Figure 2.2: The characteristics of the most common time-to-fill of sell limit orders submitted at different
prices Ka ≥ a0: (a) the average time-to-fill, (b) the mode time-to-fill, (c) the median time-to-fill. Results are
shown for parameters in Table 2.2.

any level of liquidity, the more aggressive a limit order strategy, the shorter is the mode execution

time. The mode of the sum of independent variables is the sum of their modes and since the

mode of an exponentially distributed random variable is zero, the framework does not distinguish

between the most common time-to-fill θ̂ and the most common first passage time τ̂. Further, I plot

in Figure 2.2(c) the median of the time-to-fill θ50%, which indicates the waiting time before limit

order execution that occurs with 50% probability. I observe, for instance, that if a trader submits

a sell order at 2% above the ask in an almost perfectly liquid market (λ = 48), then he is equally

likely to transact earlier or later than his horizon of five days. In a market with distorted liquidity

(λ = 1) the trader must use a more aggressive order at 1.7% above time zero best ask to achieve this.

As Figure 2.2(c) demonstrates, the median trading time increases as orders become more passive,

and the higher the liquidity, the shorter the median time-to-fill. One possible interpretation of these

results is that imperfect market liquidity requires more patience from traders.

In their empirical study based on survival analysis of the institutional brokerage limit-order

dataset Lo et al. (2002) observe exponentially distributed trading times. Cho and Nelling (2000)

suggest that given market orders arrive as a non-homogeneous Poisson process the execution times

of limit orders follow a Weibull distribution. The estimations from a duration model based on

Cho and Nelling (2000) provide a good fit of empirical observations by an exponential probability

density as well as Weibull. It is noteworthy then that my theoretical result is compatible with a
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Table 2.1: The average descriptive statistics of the execution delay and the limit order time-to-first.

Statistic first passage time delay time-to-fill

mean τ̄ =
ln

(
Ka
a0

)
µa−σ

2
a/2

ε̄ = 1
λ θ̄ =

ln
(

Ka
a0

)
µa−σ

2
a/2

+ 1
λ

mode τ̂ =

√
4 ln

(
Ka
a0

)2
(µa−σ

2
a/2)2

+9σ4
a−3σ2

a

2(µa−σ
2
a/2)2 ε̂ = 0 θ̂ =

√
4 ln

(
Ka
a0

)2
(µa−σ

2
a/2)2

+9σ4
a−3σ2

a

2(µa−σ
2
a/2)2

median τ50% : P (τ < τ50%) = 1
2 ε50% = ln 2

λ θ50% : P (θ < θ50%) = 1
2

Weibull distribution specification for a shape parameter smaller or equal to unity.

Empirical research also reveals that there is a correlation between execution time and limit order

prices and the causality of this relationship is bilateral. Tkatch and Kandel (2006) find a significant

causal impact of expected execution time on investors’ decisions regarding the order type choice.

Lo et al. (2002) reveal that limit order execution times increase as limit prices become more passive

and move further away from the quotes, which is partially an outcome of the price priority rule.

According to my market setup, the expected time-to-fill is longer for sell limit orders at higher limit

sell prices. Moreover, it captures how changes in liquidity levels alter the distribution of limit order

execution times: median times-to-fill prolong in a market with delays in contrast to the perfect

liquidity case. This pattern echoes the findings of Lo et al. (2002), who estimate the cumulative

probability densities of the actual limit order execution times and compare it to their hypothetical

counterpart calculated as the first hitting times of geometric Brownian motion. The latter appears

to understate largely expected trading times. Lo et al. (2002) extensively discuss the histograms

of empirical time-to-execution for limit orders, which exhibit exponential distribution and differ

from the analytical benchmark case not only in one or two moments but over their entire support.

Therefore, without analysing directly how order placement of a certain trader affects the market,

the model with a random delay in limit order execution grasps the statistical properties of trading

times and relates the expected time-to-fill to order aggressiveness. Overall, the timescale immanent

to this framework conforms to the known empirical findings.

2.5 Optimal Strategy

The risk-averse trader formulates his optimal strategy in two steps: (i) choose the optimal limit

price K∗a , and (ii) compare the expected utility at K∗a to a market order at b0. In other words, the

trader goes with the strategy which yields the highest expected utility. The following proposition

provides the power function of a limit order payoff.

Proposition 2.5.1. Let the market bid and ask prices follow positively correlated log-normal stochas-
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tic processes (2.3) and (2.4). Denote the power function of the profit from selling a unit of security

via a limit order by G(Ka;~ν, γ) ≡
[
Vλ(Ka;~ν)

]γ. The expected value of EG(Ka;~ν, γ) for a limit price

Ka ≥ a0 in a market with a random delay in order execution ε ∼ exp(λ) is given by9

EG(Ka;~ν, γ) = Kγ
a

λ

λ + γδ

(Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
− e−(λ+γδ)T

(Ka

a0

)A1+A3

N
(
−x − A3σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A3

N
(
−x + A3σ

2
aT

σa
√

T

)
+ bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T

N (
x − A4σ

2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

)
(2.7)

+ e−λT

(Ka

a0

)A4+A5

N
(
−x − A5σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A4−A5

N
(
−x + A5σ

2
aT

σa
√

T

) ,
where x = ln

(
Ka
a0

)
and the constants A1 =

µa−σ
2
a/2

σ2
a

, A2 =

√
(µa−σ

2
a/2)2+2γδσ2

a

σ2
a

,

A3 =

√
(µa−σ

2
a/2)2−2λσ2

a

σ2
a

, A4 =
µa−σ

2
a/2+γρσaσb

σ2
a

, A5 =

√
(µa−σ

2
a/2+γρσaσb)2−2λσ2

a

σ2
a

;

with the parameter constraints λ ∈
[
0; (µa−σ

2
a/2)2

2σ2
a

]
and ρ ≥ 0.

Proof. See Appendix B. �

Consider the case when a limit order to sell is submitted at the current ask. The expected value

of this strategy is

EVλ(Ka = a0;~ν) = a0
λ

λ + δ

(
1 − e−(λ+δ)T

)
+ b0 e(µb−δ−λ)T . (2.8)

This expression suggests that the longer the mean delay ε̄ = 1/λ, the smaller the weight attached to

the profit from using a limit order at the current ask a0, the first term, and the larger the contribution

of a market order submitted at maturity, the second term. In the extreme case of illiquidity when

λ = 0, that is, when the delay is infinitely long, the expected profit from selling the asset equals the

discounted expected best bid at maturity limλ→0 EVλ(Ka = a0;~ν) = e−δT E [bT ]. In fact, no limit

order will trade before the maturity if λ = 0. More precisely, formula (2.8) reveals that the expected

utility does not depend on Ka, instead, it equals exactly the expected utility of a market order at

time T :

lim
λ→0

EUλ(Ka;~ν, ϕ) = b0 e(µb−δ)T − ϕb2
0 e2(µb−δ)T

[
eσ

2
bT − 1

]
. (2.9)

Furthermore, an agent prefers a market sell order upon maturity at price bT per share instead of

9Using the first and second moments of the expected profit from selling, the expected utility is calculated as
EUλ(Ka;~ν, ϕ) = EG(Ka;~ν, 1) − ϕ

(
EG(Ka;~ν, 2) −

[
EG(Ka;~ν, 1)

]2
)
.
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submitting a market order immediately at b0 if his risk-aversion is very lenient and satisfies:

ϕ ≤
e(µb−δ)T − 1

e2(µb−δ)T b0
(
eσ

2
bT − 1

) . (2.10)

It follows from here that the trader’s patience is guided by the trend on the opposite side of the limit

order book: if the drift of the best bid µb is high enough, many traders are motivated to provide

liquidity by filling the limit order book with orders to sell.

The closed-form representation (2.8) given in Proposition 2.5.1 is valid for 0 ≤ λ ≤ λ̄. This

constraint on the delay intensity rate λ̄ arises from the distribution properties of the first passage

time of at.10 However, the maximum value λ̄ imposes a strong liquidity restriction, as the numerical

example in Section 2.7 reminds.11 I use numerical integration methods to calculate the expected

utility and find the optimal limit price for intermediate values of λ̄ < λ � ∞.

2.6 Special Cases

In this section I highlight a number of limiting cases that are consistently incorporated into the

developed framework. In particular, I demonstrate that the model of a limit order market with

a random execution delay permits perfect liquidity. Furthermore, two important special cases of

this model allow to isolate two types of risks inherent to limit orders: I investigate the range of

admissible limit prices chosen by traders when there is no time pressure, and when the volatility of

the asset prices approaches zero.

2.6.1 Perfect Liquidity

Infinitely high levels of λ are pertinent to perfectly liquid markets, which simultaneously implies

that the first passage time of any limit order placed in the book is equivalent to its time-to-fill. The

following proposition provides the valuation formula of a selling strategy via a limit order in the

case of perfect liquidity.

Proposition 2.6.1. Let the market bid and ask prices follow ρ-correlated log-normal stochastic

processes (2.3) and (2.4). Denote the power function of the profit from selling a unit of security

via a limit order by G(Ka;~ν, γ) ≡
[
Vλ(Ka;~ν)

]γ. The expected value of EG(Ka;~ν, γ) for a limit price

Ka ≥ a0 in a market with a small random delay in order execution ε ∼ exp(λ) converges to the

10As explained in Appendix B, the condition λ < λ̄ is due to the restriction of one of the natural parameters of the
inverse Gaussian distribution of the trading time.

11The analytical examination of expected utility boundaries for intermediate liquidity levels is carried out in Ap-
pendix E.
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value

lim
λ→∞
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)
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a
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2
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σ2
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.

Proof. See Appendix C. �

This result replicates the valuation formula derived in Iori et al. (2003) for the market where

limit orders trade upon achieving the beginning of the queue on the relevant side of the book.

Accordingly, in an infinitely liquid market a trader will resolve to a limit order at aT in the non-

execution event rather than pick the best buying order at bT . In particular, this article explores the

properties of optimal order placement in cases of a zero and positive constant spread. My model

demonstrates, however, that the setting of Iori et al. (2003), where a limit sell order is executed as

soon as it matches the current best ask, actually requires a zero bid-ask spread, i.e. at = bt, ∀t in

equilibrium, as Section 2.8 emphasises. The work of Langnau and Punchev (2011) supports this

conclusion, since the authors prove that there is no spread in a market where prices follow geometric

Brownian motion unlike the market with jumps in prices.

2.6.2 Infinite Time Horizon

Consider the case of infinitely long time horizon. Both for illiquid and liquid markets, the power

function of selling an asset with a limit order reduces to:12

lim
T→∞

EGλ(Ka;~ν, γ) =
λ

λ + γδ
Kγ

a

(
Ka

a0

)A1−A2

. (2.12)

Notice that there is a monotonic increasing relationship between the limit price Ka and the

power function (2.12). This means that both the expected profit and the variance grow with Ka.

Once the time pressure is removed, the penalty which incurs paying the spread at maturity simply

vanishes for a risk-neutral trader and encourages him to submit Ka as far as possible. However,

since variance increases faster than the mean value, for a risk-averse trader the risks of a limit order

strategy will outweigh the benefits for high limit prices and he will switch to a more aggressive

order placement. Also, the limit given in expression (2.12) is smaller than Kγ
a , since Ka ≥ a0 and

12In case λ ≤ λ̄ it follows from the result in Proposition 2.5.1. For the case λ > λ̄ I apply the Laplace integral
approximation in Lemma 2.9.1 for fixed λ and T → ∞. The condition that guarantees the convergence is γ(µb + (γ −
1)σ2

b/2 − δ) ≤ λ and it holds for a wide range of parameters.
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A2 > A1 for any values of the parameters, the discrepancy being especially stark when the liquidity

λ is low. Hence, for certain parameters the trader will even prefer to use a market order to sell the

asset straightaway.

2.6.3 No Price Uncertainty

When the volatility of the underlying security approaches zero, its price drifts at a constant rate per

unit of time. Therefore, the maximum that the best ask can attain prior to maturity is known to be

aT = a0eµaT , and the best bid is bT = b0eµbT . The moment when the limit sell order Ka hits the

quote is calculated as τ̃ =
ln(Ka/a0)

µa
. In this situation the trader bears no price risk and the only risk

he faces is linked to the non-execution of his order due to delays.13

lim
σ→0

EGλ(Ka;~ν, γ) =
λ

λ + γδ
Kγ

a

(Ka

a0

)−γδ/µa

− e−(λ+γδ)T
(

Ka

a0

)λ/µa
 + bγ0e(γ(µb−δ)−λ)T

(
Ka

a0

)λ/µa

.

(2.13)

Considering the deterministic nature of prices, the trader will optimise his strategy only over

the subset of limit prices from the interval a0 ≤ Ka ≤ a0 · eµaT , to ensure that τ̃ ≤ T .

2.7 Numerical Example

2.7.1 Baseline Parameters

The values of parameters used in the numerical example are summarised in Table 2.2. I set the

time-zero best ask in the book equal to £1000 with the initial spread of £5. The discount factor in

this market is 5% per annum with 10% expected drift and 20% annual volatility, and a weak positive

correlation in prices. It follows immediately from the assumption of no information asymmetry that

all traders are equally informed about the value of the security. The bid and ask prices represent

valuation on demand and supply sides of the same asset and should not diverge significantly at any

point in time. Given these considerations, I work with the cases when the drifts of bid and ask are

the same in order to preserve stationarity of the spread.14 The time horizon is 5 days in a benchmark

case, with the average delay length 1/8 of a trading day,15 and the risk-aversion parameter 0.01.

Using analytical expressions (2.11) and (2.8) for the expected payoff in a perfectly and imper-

fectly liquid markets respectively, I find the optimal limit price at which a trader should submit

his order to achieve the maximum level of expected mean-variance utility. Further, I implement

13EGλ(Ka;~ν, γ) = E
[
Kγ

a e−γδ(τ̃+ε)I{ε≤T−τ̃} + bγT e−γδT I{ε>T−τ̃}

]
= Kγ

a e−γδτ̃
∫ T−τ̃

0
e−γδελe−λεdε + bγ0eγ(µb−δ)T

∫ ∞
T−τ̃

λe−λεdε =

Kγ
a e−γδτ λ

λ+γδ

(
1 − e−(λ+γδ)(T−τ̃)

)
+ bγ0eγ(µb−δ)T e−λ(T−τ̃) and substituting τ̃ yields the result in (2.13).

14Condition µa = µb implies that a process bt/at is a martingale and E [bt/at] = b0/a0.
15The value of the boundary liquidity rate λ̄ = 1.193 · 10−4 translates into the average expected delay of ε̄ =

8382.4 days which is substantially larger than the maturity 5 days, therefore, any limit order submission is extremely
likely to result in converting into a market order at maturity.
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Table 2.2: Baseline parameters of the market with imperfect liquidity.

Parameter Value

initial prices a0 = £1000, b0 = £995
drift µa = µb = 10% p.a.
volatility σa = σb = 20% p.a.
discount factor δ = 5% p.a.
time horizon T = 5 days
delay intensity λ = 8 day−1

price correlation ρ = 0.1
risk aversion ϕ = 0.01

numerical integration with recursive adaptive Simpson quadrature rule to obtain the solution to the

optimisation problem for medium levels of liquidity. I then examine the impact of various model

parameters on the optimal decision of a trader. In order to increase the efficiency of the numeri-

cal procedure, I set a precision grid equal to £0.25 and discretise the solution obtained from the

continuous time model.

The optimal limit order price that corresponds to the baseline case is K∗a = £1008.75. The

average time-to-fill of this limit order is θ̄ = 44.8917 days with the average first passage time of

τ̄ = 44.7667 days and ε̄ = 0.125 days mean delay in execution. The most likely delay is zero,

however, the shape of exponential distribution impairs the relevance of mean value for my analysis,

as was demonstrated in Section 2.4. The median time-to-fill is θ50% = 1.12 days with a trivial

median delay of ε50% = 0.0866 days. Lastly, the equilibrium spread, formally defined and discussed

in Section 2.8, is equal to s̃ = £0.0175 in the baseline case.16

In anticipation of the discussion about the effects of various market parameters on the optimal

order placement I look at the shape of the expected quadratic utility function. A straightforward

interpretation of the drift is to link it to the extent of traders’ optimism or pessimism about future

price movements based on past market performance. The greater the expected surge in the asset

price, the higher the chances of a sell limit order receiving a fill before expiry.17 Concerning trading

in a risky asset, a drift higher than the discount factor δ implies a rise in stock price. This, in turn,

deems limit orders more attractive for the investor who is willing to sell.

I compare the expected utilities of a risk-neutral and risk-averse traders. The expected profit

that a risk-neutral agent attains by engaging with the limit order book is the same for any limit price

16The sensitivity of limit order strategy with respect to market parameters is studied for the size of the bid-ask spread
at time zero a0 − b0 that exceeds the equilibrium level s̃. As Section 2.8 later notes, it is never optimal to use a market
order at time zero under these circumstances, which eliminates the need to explicitly compare the optimal limit order
expected utility and the payoff of an immediate market order.

17If µ ≤ σ2/2 then the probability density function of the first passage time is defective and its integral over [ 0,∞)
does not attain unity. Consequently, the unconditional probability that a limit order will never get filled is strictly positive.
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Figure 2.3: The expected utility of a sell limit order strategy for a risk-neutral trader as a function of the limit
price: (a) no execution delay (a0 = b0 = 1000), (b) with a random execution delay (a0 = 1000, b0 = 995).
Results are shown for parameters in Table 2.2.
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Figure 2.4: The expected utility of a sell limit order strategy for a risk-averse trader as a function of the limit
price: (a) no execution delay (a0 = b0 = 1000), (b) with a random execution delay (a0 = 1000, b0 = 995).
Results are shown for parameters in Table 2.2.
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he might choose to submit, if the expected return of the underlying security equals the risk-free

rate, as illustrated in Figure 2.3(a). If the price trend is downward sloping the best choice would

be to sell at the current prevailing price, while an upward trend implies that a trader should use an

infinitely high price. This relationship matches the result obtained by Iori et al. (2003), who prove

for a market without spread that: (i) if µ > δ the trader always waits until maturity (K∗a = ∞), (ii) if

µ < δ the trader sells today with a market order, and (iii) if prices are martingales (µ = δ) the trader

can submit any price Ka ≥ a0. In contrast, the expected utility of a trader selling via limit orders in a

less liquid market retains a concavo-convex shape for a range of risk aversion coefficients, including

ϕ = 0 (Figure 2.3(b) and Figure 2.4(b)).

2.7.2 Comparative Static Effects

Taking the effect of the drift parameter separately, notice that the optimal K∗a in a situation without

delay and no risk aversion is much more sensitive to the change in the price drift µ. In effect,

the conclusion to be drawn from Figure 2.3(a) and Figure 2.4(a) is that perfect liquidity implies

a binary choice: either to trade at the current quote or submit an infinitely high limit sell price.

Once a random delay perturbs execution speed, the optimal limit price K∗a increases linearly with

µ, as Figure 2.5(a) clearly depicts, while perfect liquidity assumes a continuum of limit prices

K∗a = {a0 ∨∞}. Denote µ̂ the highest price drift for which the optimal selling strategy is a limit

order at the current ask a0. Other things being equal, the threshold drift, beyond which an agent

switches to a more passive limit price is predictably moving rightward as risk aversion raises; this

threshold actually lies in a negative domain for tolerant traders with ϕ ≤ 0.02. Thereupon, in a

market with imperfect liquidity a trader tends to choose a more passive strategy for certain values

of the price drift, while the optimal decision of the same trader in an absolutely liquid market under

equivalent circumstances is not uniquely defined.

One of the most crucial determinants of the optimal decision for a risk-averse trader is the bid-

ask spread. The comparative static result in Figure 2.5(b) suggests that the limit price diminishes

as the spread at the time of order placement increases. This reaction is induced by the penalty paid

at maturity in the non-execution event: if the trader submits an order at a certain price Ka then the

probability of its execution is fixed and the utility from using this limit order is declining whereby

the spread increases. In their limit order market overview Parlour and Seppi (2008) argue that when

spreads are tight, various types of agents use market orders, whereas only impatient traders resort

to aggressive orders at times when spreads are wider. My stylised model emulates the tendency

of incoming limit orders to cluster around best quotes when the spread is large, or, in the extreme,

resort to a market order straightaway should the utility of the latter exceed the expected payoff

from the optimal limit order strategy. In addition, Foucault et al. (2005) show through a dynamic

equilibrium approach that impatient traders consume available liquidity, while more patient traders
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Figure 2.5: The optimal limit sell price for a risk-averse trader in a market with a random execution delay
as a function of (a) the price drift, (b) the initial spread (in units of ask), (c) the execution delay intensity, (d)
the bid-ask correlation, and (e) the time horizon. Results are shown for parameters in Table 2.2.
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supply it. In my model, a relatively patient trader is characterised by a longer time horizon and

higher risk tolerance. Therefore, a negative relationship between the optimal limit sell price and the

spread size is anticipated for the trader who is bound by a time constraint.

Figure 2.5(c) demonstrates the effect of another driver of the optimal limit price – the execution

delay intensity,18 which characterises market liquidity. The more risk-averse the trader, the smaller

the absolute impact of delay characteristic on the optimum. When liquidity is too low the limit

price sticks at the best ask, while for intermediate levels of liquidity there is a positive relationship

between λ and the optimal price K∗a . This is an intuitively appealing result: an increase in the

intensity rate λ augments the likelihood of a zero delay and reduces the variance of the time-to-fill,

thus, other things being equal, leading to a shorter completion time of a trade. The inclusion of

risk tolerance does not change the implication of imperfect liquidity, judging from a qualitative

perspective: as anticipated, an increase in ϕ decreases the optimal K∗a .

Further, I analyse the effect of the correlation between the paths of best bid and ask prices. In

a market with a random delay higher correlation coefficient reduces gradually the optimal limit sell

price that the agent submits (Figure 2.5(d)). If the bid and ask are moving in parallel and the limit

order is not filled before maturity, then the agent’s penalty is confined to the spread size. Essentially,

the correlation controls the width of the spread. Equal drifts and a perfect correlation in bid and ask

trajectories yields the situation of a constant spread. High correlation implies less uncertainty about

the spread size in the future, so the trader gets impatient and prefers more aggressive strategies to

avoid paying the spread at maturity since the time zero spread is large compared to, for instance,

its equilibrium level. When the correlation is low, the spread can narrow or widen at maturity,

therefore, the agent is more willing to trade with a limit order instead.

Order aggressiveness decreases as the maturity extends (Figure 2.5(e)) since longer time hori-

zons imply higher chances that the ask at reaches the barrier represented by the trader’s limit price

K∗a , in accordance with the behaviour shown in Figure 2.2. Bloomfield et al. (2005) report similar

findings; in an experimental market they observe that liquidity-motivated traders rely primarily on

limit orders but resolve to market orders as their trading horizons approach expiry. The length of

a trading horizon is an attribute of the trader’s impatience, hence my model implies that patient

traders are inclined to supply liquidity to the market and place orders further away from the quotes.

Moreover, the optimal strategy of a risk-averse trader in an illiquid market is apparently less respon-

dent to a change in expiry time, so the impact of coefficient ϕ is that waiting for too long becomes

equivalent to selling straightaway in terms of expected utility. This is also consistent with the spe-

cial case of infinite time horizon discussed earlier in Section 2.6: when the time to maturity is very

long, the order choice is more aggressive and not contingent upon maturity.

The findings illustrated in Figure 2.5 suggest that optimal limit order submissions in a market

18The exact formula for the power utility (2.8) for small λ ≤ λ̄ is used here to obtain the optimal submission price.
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with imperfect liquidity tend to cluster reasonably close to the current best quote. This result is

robust for a acceptable range of market parameters as confirmed by the sensitivity analysis presented

above and relates to the humped shape of a limit order book extensively discussed in the literature

(see Alfonsi et al. (2010); Biais et al. (1995); Potters and Bouchaud (2003); Rosu (2009); Weber

and Rosenow (2005)).

2.8 The Equilibrium Spread

The width of the spread in financial markets is determined by the interactions of heterogeneous

agents that populate them. In quote-driven markets the bid-ask spread is charged by the market

maker in order to cover the expenses incurred by trading against better informed agents. The ex-

planation of a positive spread in non-intermediated double auction markets is more subtle. The

literature justifies it in several ways: information asymmetry which was briefly mentioned above,

gravitational pull effect depicted by Cohen et al. (1981), variations in the state of the book and

traders asset valuations, trading costs, which in turn comprise direct costs such as commissions,

transfer taxes, order submission and account service fees, and indirect costs – the difference be-

tween the price at which the transaction was actually carried and a certain fair price. The random

delay concept absorbs all these nuances which, in essence, generates the distinction between trading

with a limit order and a market order.

Cohen et al. (1981) examine this issue in detail and show that a positive market spread is incum-

bent to this market microstructure. According to Cohen et al. (1981), the equilibrium spread in a

dynamic trading system is “the bid-ask spread at which, for the next instant of time, the probability

of the spread increasing is equal to the probability of the spread decreasing.” They emphasise that

equilibrium does not guarantee that the market will eventually settle at this equality, rather that it

is more likely that the price will move towards this condition than in the opposite direction. This

interpretation implicitly assumes that price movements already incorporate liquidity changes. On

the other hand, Harris (2003, p. 304) advocates that in a non-intermediated market the equilibrium

spread is “the spread which ensures that traders are indifferent between using a limit order and a

market order.” The relation between market parameters and the effect they have on traders’ strate-

gies jointly determine the bid-ask spread. Concrete market parameters motivate traders either to

provide or to consume liquidity. I adopt the latter definition since it accommodates appropriately

the notion of the execution delay that is central to my model. I further reveal that it is precisely

the deviation from the perfect liquidity case inflicted by large delays in limit order execution that

stipulates the spread size.

Definition 2.8.1 (Equilibrium Spread). In a dynamic trading process the equilibrium market spread

is the bid-ask spread such that the expected utility from trading via a limit order at the optimal limit

33



2. Optimal Trading and the Bid-Ask Spread under Imperfect Liquidity

price is equal to the utility from an immediate market order. Let s̃ = at − bt,∀, then the equilibrium

spread s̃ satisfies

s̃ = a0 − EUλ( K∗a;~ν, ϕ
∣∣∣ s̃), (2.14)

where EUλ(Ka;~ν, ϕ) is a mean-variance utility function defined in (2.2) and K∗a is the optimal limit

price.
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Figure 2.6: The equilibrium bid-ask spread as a function of (a) liquidity, and (b) risk-aversion. Results are
shown for parameters in Table 2.2.

The equilibrium spread for the set of baseline parameters in Table 2.2 is computed via a nu-

merical optimisation.19 It has been discussed in the empirical literature that the main determinants

of the spread size are competition for liquidity and risk aversion of market participants (Ranaldo,

2004). The higher is the competition among traders to provide liquidity, the tighter is the observed

bid-ask spread, whereas the degree of traders’ risk aversion stipulates a wider spread. As depicted

in Figure 2.6(a), the equilibrium size of the spread s̃ diminishes and eventually attains zero as the

level of liquidity λ increases, thereby decreasing the expected delay. Also, Figure 2.6(b) shows that

the equilibrium spread increases, as expected, with the degree of risk aversion ϕ.

In my model, following the definition, when the actual bid-ask spread is higher than its equi-

librium level, selling at the market brings very low profit, therefore, the trader will prefer to submit

a limit order. At the same time, as Figure 2.5(b) depicts, the larger is the current spread, the more

aggressive is the limit order strategy. This two-fold behaviour is grounded to the mechanism where

19The problem is solved in three steps. First, substitute b0 = a0 − s and calculate the expected utility of limit
orders submitted at various prices Ka ≥ a0 for a large range of spreads s ≥ 0: K∗a(s) = arg maxKa≥a0 EUλ( Ka;~ν, ϕ

∣∣∣ s).
Second, determine the optimal limit price for each spread size and obtain an optimal limit price as a function of a spread
K∗a = K∗a(s) for a range s ≥ 0. Third, find the pair of limit price and spread that satisfy condition (2.14).
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the trader, that expects a price increase, avoids a market order at time zero, but places an aggres-

sive limit order at Ka = a0 which has the highest chance to trade soon, and uses a market order at

maturity if the former does not get filled.

Although this result is obtained from the standpoint of a seller, in this setting the pattern for

the buyer would be symmetrical. Moreover, since the limit orders are convertible in this model, a

seller has to monitor both sides of the book. In other words, a market design where a limit order

is executed immediately the moment it becomes the best price on its side requires a zero bid-ask

spread.

2.9 Conclusions

In this chapter I develop a model of optimal order placement that is consistent with empirical find-

ings of market microstructure literature. The central feature of this study is a random delay parame-

ter, which defers limit order execution, characterises liquidity and justifies the non-transient bid-ask

spread in double auction markets. With the aid of analytical and numerical solutions, I investigate

the impact of execution delay on order submission patterns and the equilibrium bid-ask spread. The

framework is based on observable market dynamics which facilitates potential application to actual

data.

This framework simultaneously benefits from mathematical lightness and explains the trade-

off between immediacy and a favourable transaction price. In contrast with standard first passage

time models of trading, it captures the fundamental difference between the time required to reach

the beginning of the queue on the relevant side of the market and the completion time of a trade.

The distribution of the time-to-fill of limit orders conforms to the empirical distributions of trading

times, and its variance decreases with liquidity. The mean-variance utility function permits adequate

risk assessment for a strategy involving limit order trading, therefore, this approach allows to model

the behaviour of heterogeneous investors. In addition, I demonstrate accounting for traders’ risk

aversion in strategy valuation eliminates submissions in the extremes of the book and thus provides

empirically more coherent results. The results of comparative statics suggest that the introduction

of a random delay factor alleviates the impact of various market conditions on the optimal limit

price the trader submits and explains the clustering of limit order in the proximity of the current

quotes. Notably, it is not only the magnitude but the mere presence of delay that alters the nature of

the relationship.

Furthermore, I define the equilibrium spread as the bid-ask spread such that the expected utility

from trading via a limit order at the optimal limit price is equal to the profit from an immediate mar-

ket order. The model rationalises two more stylised facts: the equilibrium bid-ask spread decreases

with liquidity, but increases with agents’ risk aversion.
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The solution is provided for a static problem but can be easily applied to multi-period submis-

sion steps and solved in the manner of Harris (1998). However, I expect the results not to change

qualitatively once a trader is allowed to revise his strategy a finite number of times. Moreover, the

model is tailored to moderate size trades, whereas large trades should be examined differently since

they potentially entail serious price impacts when market orders are used to execute the trade. There

is a separate branch of optimal trading literature on the order splitting issues which is adjacent to

my framework (Alfonsi et al., 2010; Almgren and Chriss, 2000; Bertsimas and Lo, 1998; Løkka,

2013; Obizhaeva and Wang, 2013). Though most of order splitting is concerned with market order

trading, in a recent paper by Guéant et al. (2012), the authors propose a novel approach of splitting

a large trade using limit orders. Also, the choice of order type does not have to be restrictive. Cont

and Kukanov (2012) discuss the properties of order splitting between market and limit orders and

show that in case of a single exchange the amount that the trader executes via a limit order is in-

dependent of the total order size. These are potential directions for the future development of my

framework.
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Appendix A Proof of Proposition 2.4.1

First, I write a log-normal process as at = a0eXt with Xt =
(
µa − σ

2
a/2

)
t + σaWt. Then the first

passage time is τ = inf{ t ≥ 0| Xt = x} with x = ln (Ka/a0). Denote the maximum of the Xt over a

time period T as MX
T = max{Xt| 0 ≤ t ≤ T }. By the reflection principle ∀ x ≥ 0 the problem of

optimal stopping time is equivalent to

P (τ ≤ t) = P
(
MX

t ≥ x
)
.

The cumulative distribution of the maximum of a Brownian motion with drift ξ and volatility ν and

x ≥ 0 equals

P
(
MX

t ≤ x
)

= N
(

x − ξt

ν
√

t

)
− e2ξx/ν2

N
(
−x − ξt

ν
√

t

)
, (2.15)

and the probability density is

f (t) =
|x|

√
2πν2t3

e
−(x−ξt)2

2ν2t . (2.16)

Since the prices follow a geometric Brownian motion, the first passage time has an inverse

Gaussian distribution with the probability density function f (τ) given by (2.16) with parameters

ν = σa and ξ = µa − σ
2
a/2. The delay variable follows an exponential distribution with a positive

parameter λ, so its probability density function is f (ε) = λe−λε. I denote the time-to-fill in the

presence of a random delay in limit order execution by θ = τ + ε and obtain its distribution:

P (θ ≤ t) =

∫ t

0
f (τ)

∫ t−τ

0
f (ε)dεdτ

=

∫ t

0
f (τ)

∫ t−τ

0
λe−λεdεdτ =

∫ t

0
f (τ)

(
1 − e−λ(t−τ)

)
dτ

=

∫ t

0
f (τ)dτ − e−λt

∫ t

0
eλτ f (τ)dτ. (2.17)

The first term of this expression is independent of λ and equals exactly the probability density

function of the first passage time, while the second term accounts for the random delay. However,

if parameter λ takes large values, then the integrand of the second term is not finite. I find the limit

of the second term for high λ using Laplace’s method.

Lemma 2.9.1. Define an integral

I (λ) =

∫ b

a
h(τ)eλg(τ)dτ, (2.18)

where [a, b] is a finite interval and functions h(τ) and g(τ) are continuous. Suppose function g(τ)

attains a maximum on [a, b] at either endpoint, τ0 = a or τ0 = b, and is differentiable in a neigh-
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borhood of τ0, with g′(τ0) , 0 and h(τ0) , 0. Then the leading term of the asymptotic expansion of

the integral (2.18) , as λ→ +∞, is given by

I (λ) =
h(τ0) · eλg(τ0)

λ |g′(τ0)|
. (2.19)

I apply Lemma 2.9.1 to functions g(τ) = τ and h(τ) =
|α|

τ
√
τ
n
(
α+βτ
√
τ

)
with integration limits a = 0,

b = t. Function g(τ) attains the highest value at τ0 = b = t and g′(τ0) = 1, therefore, I obtain from

formula (2.19):

∫ t

0
eλτ
|α|

τ
√
τ

n
(
α + βτ
√
τ

)
dτ =

|α|

t
√

t
n
(
α+βt
√

t

)
· eλt

λ · |1|
= eλt |α|

λt
√

t
· n

(
α + βt
√

t

)
. (2.20)

With α = x/σa and β = −A1σa, I now rewrite expression (2.17) as follows:

P (θ ≤ t) = P (τ ≤ t) −
x/λ

σat
√

t
n
(

x − A1σ
2
at

σa
√

t

)
, (2.21)

under on the probability space (P,Ω,F) with x = ln
(

Ka
a0

)
and A1 =

µa−σ
2
a/2

σ2
a

.

Note that the probability density of first passage time P(τ ≤ t) is defined in equation (2.16). Tak-

ing the derivative of the second term in expression (2.21) with respect to t, I arrive at the probability

density function of limit order time-to-fill θ:

P (θ ∈ dt) =
x

σat
√

t
n
(

x − A1σ
2
at

σa
√

t

) 1 − (x2 − A2
1σ

4
at2 − 3t)/λ

2σ2
at2


= P (τ ∈ dt)

1 − (x2 − A2
1σ

4
at2 − 3t)/λ

2σ2
at2

 . (2.22)

It follows immediately from (2.22) that when the expected delay approaches zero, time-to-fill is

equivalent to the time it takes to reach the front of the queue: limλ→∞ P (θ ∈ dt) = P (τ ∈ dt).

Appendix B Proof of Proposition 2.5.1

Deriving an analytical expression for the power function of the limit order strategy payoff requires

to calculate EG(Ka;~ν, γ) ≡ E
[
Kγ

a e−γδ(τ+ε)I{τ+ε≤T } + bγT e−γδT I{τ+ε>T }
]
. I split this expression into

two components: J1 ≡ E
[
Kγ

a e−γδ(τ+ε)I{τ+ε≤T }
]

and J2 ≡ E
[
bγT e−γδT I{τ+ε>T }

]
. Assuming that the

stopping time and delays are independent, I implement the integrated expectations formula,20 and

20E(X) = E(E( X|Y))

38



2. Optimal Trading and the Bid-Ask Spread under Imperfect Liquidity

arrive at the following expression:

J1 = Kγ
a E

[
e−γδ(τ+ε)I{τ≤T }I{ε≤T−τ}

]
= Kγ

a E
[
e−γδτI{τ≤T }E

[
e−γδεI{ε≤T−τ}

∣∣∣ τ]]
= Kγ

a

∫ T

0
e−γδτ f (τ)

∫ T−τ

0
e−γδε f (ε) dεdτ. (2.23)

The probability density function of the first passage time f (τ) is given in (2.16); the delay

variable follows an exponential distribution with f (ε) = λe−λε. Therefore, I simplify the integral in

(2.24):∫ T

0
e−γδτ f (τ)

∫ T−τ

0
e−γδε f (ε) dεdτ =

∫ T

0
e−γδτ f (τ)

[∫ T−τ

0
e−γδελe−λεdε

]
dτ

=

∫ T

0
e−γδτ f (τ)

λ

λ + γδ

(
1 − e−(λ+γδ)(T−τ)

)
dτ

=
λ

λ + γδ

[∫ T

0
e−γδτ f (τ) dτ − e−(λ+γδ)T

∫ T

0
eλτ f (τ) dτ

]
.

Using equation (2.16) with ν = σa and ξ = µa − σ
2
a/2, I rewrite the first term as

J1 = Kγ
a

λ

λ + γδ

∫ T

0
e−γδτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ

− e−(λ+γδ)T
∫ T

0
eλτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ

 . (2.24)

Since the following equality holds for the normal density

e−φtn
(
α + βt
√

t

)
= e−αβ+α

√
β2+2φn

α + t
√
β2 + 2φ
√

t

 , (2.25)

with α = x/σa, β = −(µa − σ
2
a/2)/σa and φ = γδ I rearrange the first component of J1 as

∫ T

0
e−γδτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ =
|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A1+A2)n

(
x + A2σ

2
aτ

σa
√
τ

)]
dτ,

where A1 =
µa−σ

2
a/2

σ2
a

and A2 =

√
(µa−σ

2
a/2)2+2γδσ2

a

σ2
a

.

Finally, using the identity∫ T

0

1

t
√

t
n
(
α + βt
√

t

)
dt =

1
|α|

[
N

(
− |α|
√

T
− sgn (α) β

√
T
)

+ e−2αβN
(
− |α|
√

T
+ sgn (α) β

√
T
)]
, (2.26)
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substituting α = x/σa, β = A2σa and Ka ≥ a0, I get

|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A1+A2)n

(
x + A2σ

2
aτ

σa
√
τ

)]
dτ =

(
Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
(2.27)

+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
.

The second integral in J1 is modified via the following identity which holds for the values

λ ≤ β2/2:21

eλtn
(
α + βt
√

t

)
= e−αβ+α

√
β2−2λn

α + t
√
β2 − 2λ
√

t

 . (2.28)

Applying this equality to the second term in (2.24), I obtain

∫ T

0
eλτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ =
|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A1+A3)n

(
x + A3σ

2
aτ

σa
√
τ

)]
dτ,

where A3 =

√
(µa−σ

2
a/2)2−2λσ2

a

σ2
a

. Using formula (2.26) with α = x/σa, β = A3σa and Ka ≥ a0

|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A1+A3)n

(
x + A3σ

2
aτ

σa
√
τ

)]
dτ =

(
Ka

a0

)A1+A3

N
(
−x − A3σ

2
aT

σa
√

T

)
(2.29)

+

(
Ka

a0

)A1−A3

N
(
−x + A3σ

2
aT

σa
√

T

)
.

Combining results (2.28) and (2.30) I arrive at the final expression for the first term:

J1 = Kγ
a

λ

λ + γδ

(Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
− e−(λ+γδ)T

(Ka

a0

)A1+A3

N
(
−x − A3σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A3

N
(
−x + A3σ

2
aT

σa
√

T

) .
Note that the constraint λ̄ ≡

(
µa − σ

2
a/2

)2
/2σ2

a coincides with one of the two natural parameters

of an inverse Gaussian distribution. Given log-normality of asset prices, the first passage time of

τ = inf{t ≥ 0 : at = Ka} has an inverse Gaussian distribution which belongs to the exponential

family. The set of values for which the probability density function is finite on the entire support is

called the natural parameter space. In particular, for the random variable with the inverse Gaussian

probability density fX(x;ω1, ω2), there are two natural parameters η = {−
ω2
2ω2

1
;−ω2

2 }.

Before calculating the second term J2, I rewrite the bid and ask equations (2.3) and (2.4) to

21eλtn
(
α+βt
√

t

)
= eλt 1

√
2π

e−
1
2

(
α+βt
√

t

)2

= 1
√

2π
e−

α2+β2 t2+2αβt−2λt2
2t = 1

√
2π

e
− 1

2

 α+

√
β2−2λt
√

t


2

−αβ+α
√
β2−2λt

= e−αβ+α
√
β2−2λn

(
α+t
√
β2−2λ
√

t

)
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express these processes in terms of a two-dimensional Brownian motion (W1,W2):

dat = at
(
µadt + σ̄adW̄t

)
dbt = bt

(
µbdt + σ̄bdW̄t

)
,

where σ̄a = (σa, 0) and σ̄b =
(
σbρ, σb

√
1 − ρ2

)
. Therefore,

at = a0e(µa−|σ̄a |
2/2)t+σ̄aW̄t

bt = b0e(µb−|σ̄b |
2/2)t+σ̄bW̄t .

Notice that if bt is a log-normal process then bγt is also log-normally distributed. Applying Ito’s

formula to this process I aarive at

dbγt = bγt

(
γµb +

γ(γ − 1)
2

σ2
b

)
dt + γbγt σ̄bdW̄t. (2.30)

And applying Ito’s lemma once again I get bγT = bγ0e(γµb−γσ
2
b/2)T+γσ̄bW̄T . Now I rewrite the second

term

J2 = e−γδT E
[
bγ0e(γµb+γ(γ−1)/2σ2

b)T+γσ̄bW̄T−γ
2σ2

b/2T · I{ε>T−τ} ·
(
I{τ>T } + I{τ≤T }

)]
= bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T E∗
[
I{τ>T } + I{ε>T−τ}I{τ≤T }

]
= bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T
(
E∗

[
I{τ>T }

]
+ E∗

[
I{τ≤T }E∗

[
I{ε>T−τ}

∣∣∣ τ]])
= bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T
(∫ ∞

T
f (τ) dτ +

∫ T

0
f (τ)

∫ ∞

T−τ
f (ε) dεdτ

)
, (2.31)

where expectation is calculated under probability measure P∗ defined by Radon-Nikodym derivative

ηT = dP∗
dP = eγσ̄bWT−γ

2 |σ̄b |
2/2T . As Girsanov theorem states, W̄∗t = W̄t − γσ̄bt is a two-dimensional

Brownian motion under P∗, so I rewrite the process Xt defined in Appendix A as

XT = (µa − σ
2
a/2)T + σ̄a

(
W̄∗T + γσ̄bT

)
= (µa − σ

2
a/2 + γρσ − aσb)T + σ̄aW̄∗T ,

implying a drift ξ∗ = µa − σ
2
a/2 + γρσaσb under P∗.

The first integral in (2.31) is the probability that the first passage time exceeds horizon T , which

is given in formula (2.15) for ν = σa and ξ∗:

∫ ∞

T

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2 + γρσaσb

)
τ

σa
√
τ

 dτ = N
(

x − A4σ
2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

)
,

(2.32)
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where A4 =
µa−σ

2
a/2+γρσaσb

σ2
a

. Furthermore, simplifying the last term in (2.31) yields

∫ T

0
f (τ)

∫ ∞

T−τ
f (ε) dεdτ =

∫ T

0
f (τ)

[∫ ∞

T−τ
λe−λεdε

]
dτ

=

∫ T

0
f (τ) e−λ(T−τ)dτ = e−λT

∫ T

0
eλτ f (τ) dτ.

I substitute the probability density function f (τ) with volatilityσa and drift ξ∗ = µa−σ
2
a/2+γρσaσb

and using property (2.28) obtain

∫ T

0
eλτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2 + γρσaσb

)
τ

σa
√
τ

 dτ =
|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A4+A5)n

(
x + A5σ

2
aτ

σa
√
τ

)]
dτ,

(2.33)

where A5 =

√
(µa−σ

2
a/2+γρσaσb)2−2λσ2

a

σ2
a

and λ ≤ (µa − σ
2
a/2 + γρσaσb)2/2σ2

a. Given the parameters

values α = x/σa, β = A5σa and Ka ≥ a0, I write an explicit expression for this integral as shown in

formula (2.26)

|x|
σa

∫ T

0

1
τ
√
τ

[
ex(A4+A5)n

(
x + A5σ

2
aτ

σa
√
τ

)]
dτ =

(
Ka

a0

)A4+A5

N
(
−x − A5σ

2
aT

σa
√

T

)
(2.34)

+

(
Ka

a0

)A4−A5

N
(
−x + A5σ

2
aT

σa
√

T

)
.

Using (2.32) and (2.34),

J2 = bγ0 eγ(µb+(γ−1)σ2
b/2−δ)T

N (
x − A4σ

2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

)
+ e−λT

(Ka

a0

)A4+A5

N
(
−x − A5σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A4−A5

N
(
−x + A5σ

2
aT

σa
√

T

) .
Thus,

EG(Ka;~ν, γ) = Kγ
a

λ

λ + γδ

(Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
− e−(λ+γδ)T

(Ka

a0

)A1+A3

N
(
−x − A3σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A3

N
(
−x + A3σ

2
aT

σa
√

T

)
+ bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T

N (
x − A4σ

2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

)
+ e−λT

(Ka

a0

)A4+A5

N
(
−x − A5σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A4−A5

N
(
−x + A5σ

2
aT

σa
√

T

) ,
with A1 =

µa−σ
2
a/2

σ2
a

, A2 =

√
(µa−σ

2
a/2)2+2γδσ2

a

σ2
a

, A3 =

√
(µa−σ

2
a/2)2−2λσ2

a

σ2
a

, A4 =
µa−σ

2
a/2+γρσaσb

σ2
a

,
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A5 =

√
(µa−σ

2
a/2+γρσaσb)2−2λσ2

a

σ2
a

and ∀ λ ∈
[
0, λ̄

]
,

where λ̄ = min
{

(µa−σ
2
a/2)2

2σ2
a

,
(µa−σ

2
a/2+γρσaσb)2

2σ2
a

}
.

Appendix C Proof of Proposition 2.6.1

I find the limit of the expected utility using Laplace’s integral approximation method. Using the

result in (2.20), I approximate the second integral in (2.24) and the integral in (2.33) for the cases

when λ ≥ β2/2 and identity (2.28) does not hold. It is easy to show that for high values of λ the

power utility is approximately

EG(Ka;~ν, γ) � Kγ
a

λ

λ + γδ

(Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
− e−γδT

x/λ

σaT
√

T
n
(

x − A1σ
2
aT

σa
√

T

)]
(2.35)

+ bγ0 eγ(µb+(γ−1)σ2
b/2−δ)T

N (
x − A4σ

2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

)
+

x/λ

σaT
√

T
n
(

x − A4σ
2
aT

σa
√

T

)]
,

where x = ln
(

Ka
a0

)
, A1 =

µa−σ
2
a/2

σ2
a

, A2 =

√
(µa−σ

2
a/2)2+2γδσ2

a

σ2
a

, A4 =
µa−σ

2
a/2+γρσaσb

σ2
a

. Further, noting that

constants A1, A2 and A4 are independent of λ, I obtain that in a perfectly liquid market

lim
λ→∞

EG(Ka;~ν, γ) = Kγ
a

(Ka

a0

)A1+A2

N
(
−x − A2σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A2

N
(
−x + A2σ

2
aT

σa
√

T

)
+ bγ0 eγ(µb+(γ−1)σ2

b/2−δ)T

N (
x − A4σ

2
aT

σa
√

T

)
−

(
Ka

a0

)2A4

N
(
−x − A4σ

2
aT

σa
√

T

) .

Appendix D Spread Non-Negativity

Rewrite the bid and ask processes defined in (2.3) and (2.4) as bi-dimensional ρ-correlated geomet-

ric Brownian motions

at = a0e(µa−|σ̄a |
2/2)t+σ̄aW̄t

bt = b0e(µb−|σ̄b |
2/2)t+σ̄bW̄t
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where W̄t = (W1t,W2t), σ̄a = (σa, 0) and σ̄b =
(
σbρ, σb

√
1 − ρ2

)
. The probability of a negative

spread is given by P(bt/at > 1) for any t ∈ [0,T ], therefore, I obtain

bt

at
=

b0

a0
e(µb−µa−(|σ̄b |

2−σ2
a)/2)t+(σ̄b−σ̄a)·W̄t (2.36)

with (σ̄b − σ̄a) =
(
ρσb − σa, σb

√
1 − ρ2

)
. Denote the drift of this process by µz = µb − µa − (σ2

b −

σ2
a)/2 and the volatility by σz =

√
σ2

a + σ2
b − 2ρσaσb, then the log-normal process in (2.36) is

bt/at = b0/a0eZt with Zt = µzt +σzW̃t. Further, denote the maximum of this Brownian motion with

drift as MZ
T = max {Zt| 0 ≤ t ≤ T }. The probability of bt exceeding at at any time t between 0 and T

is equivalent to the probability that MZ
T will be higher than z = ln(a0/b0), or

P
(
MZ

T ≥ z
)

= N
−z + µzT

σz
√

T

 +

(
a0

b0

)2µz/σ
2
z

N
−z − µzT

σz
√

T

 . (2.37)

Regarding the analysis presented in Section 2.7, the probability of bt crossing at until T , i.e.

while the trader’s limit order stays in the book is approximately 0.7945 for the baseline model

parameters (Table 2.2). However, since the trader cannot revise his limit order strategy before

maturity, all that matters for him is that the probability of the bid price bt crossing the limit price

Ka is lower than the probability of a limit order at the same price, or:

P (θa ≤ T ) > P (τb ≤ T ) , (2.38)

where θa = τa + ε is the time-to-fill of a limit order at Ka (with τa = inf{ t ≥ 0| at = Ka} and

a random delay ε) and τb = inf{ t ≥ 0| bt = Ka} is the time when the bid reaches Ka. Define

MXa
T = max{Xa

t

∣∣∣ at = a0eXa
t ∪ 0 ≤ t ≤ T } and MXb

T = max{Xb
t

∣∣∣ bt = b0eXb
t ∪ 0 ≤ t ≤ T }. Substituting

the first probability from (2.17) and applying the reflection principle to both probabilities I arrive at

the following condition

P
(
MXa

T ≥ ln (Ka/a0)
)
− e−λT

∫ T

0
eλτa f (τa)dτa > P

(
MXb

T ≥ ln (Ka/b0)
)
. (2.39)

This condition holds in the numerical example in Section 2.7 provided that random delay is plausi-

ble ε � T .

Appendix E Utility Boundaries Analysis

In order to assess the range of values that the expected utility (2.2) takes for intermediate levels of

liquidity, I compute its upper and lower bounds of EG(Ka;~ν, γ) ≡ E
[
Kγ

a e−γδ(τ+ε)I{τ+ε≤T } + bγT e−γδT I{τ+ε>T }
]
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for λ̄ < λ � ∞. The general form of the integral I need to bound is∫ T

0
e−λ(T−τ) f (τ)dτ, (2.40)

where the density is f (τ) =
|α|

τ
√
τ
n
(
α+βτ
√
τ

)
and λ takes large values. It is easy to see that

∀τ ∈ [0,T ] : e−λ(T+τ) ≤ e−λ(T−τ) ≤ 1,

and since f (τ) is a bounded function I have∫ T

0
e−λ(T+τ) f (τ)dτ ≤

∫ T

0
e−λ(T−τ) f (τ)dτ ≤

∫ T

0
f (τ)dτ.

For the upper bound I apply identity (2.26)∫ T

0
f (τ)dτ =

∫ T

0

|α|

τ
√
τ

n
(
α + βτ
√
τ

)
dτ

= N
(
−α + βT
√

T

)
+ e−2αβN

(
−α − βT
√

T

)
. (2.41)

In order to calculate the lower bound I first use property (2.25)

e−λ(T+τ) f (τ) = e−λT |α|

τ
√
τ

[
e−λτ n

(
α + βτ
√
τ

)]
= e−λT |α|

τ
√
τ

e−αβ+α
√
β2+2λn

α + τ
√
β2 + 2λ
√
τ

 ,
then property (2.26) to get∫ T

0
e−λ(T+τ) f (τ)dτ = |α| eα(ψ−β)−λT

∫ T

0

1
τ
√
τ

n
(
α + ψτ
√
τ

)
dτ

= e−λT
[
eα(ψ−β)N

(
−α + ψT
√

T

)
+ e−α(ψ+β)N

(
−α − ψT
√

T

)]
, (2.42)

where ψ =
√
β2 + 2λ.

The full expression for expected power utility is

EG(Ka;~ν, γ) = Kγ
a

λ

λ + γδ

∫ T

0
e−γδτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ (2.43)

− e−(λ+γδ)T
∫ T

0
eλτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2

)
τ

σa
√
τ

 dτ

︸                                                             ︷︷                                                             ︸
I2
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+ bγ0eγ(µb+(γ−1)σ2
b/2−δ)T

∫ ∞

T

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2 + γρσaσb

)
τ

σa
√
τ

 dτ

+ e−λT
∫ T

0
eλτ

|x|
σaτ
√
τ

n

 x −
(
µa − σ

2
a/2 + γρσaσb

)
τ

σa
√
τ

 dτ

︸                                                                      ︷︷                                                                      ︸
I4

.

As shown in the the proof of Proposition 2.5.1, the first and the third integrals have analytical

expression for all values of parameters. I apply formula (2.42) to the second term I2 in (2.43) with

α = x/σa and β = −A1σa determine its upper bound

−I2 ≤ −e−(λ+γδ)T

(Ka

a0

)A1+A6

N
(
−x + A6σ

2
aT

σa
√

T

)
+

(
Ka

a0

)A1−A6

N
(
−x − A6σ

2
aT

σa
√

T

) , (2.44)

where A6 =

√
(µa−σ

2
a/2)2+2λσ2

a

σ2
a

, and formula (2.41) to determine its lower bound

−I2 ≥ −e−γδT
N (
−x − A1σ

2
aT

σa
√

T

)
+

(
Ka

a0

)2A1

N
(
−x + A1σ

2
aT

σa
√

T

) . (2.45)

Similarly, I apply formula (2.41) to the fourth term I4 in (2.43) with α = x/σa and β = −A4σa

to determine its upper bound

I4 ≤ N
(
−x − A4σ

2
aT

σa
√

T

)
+

(
Ka

a0

)2A4

N
(
−x + A4σ

2
aT

σa
√

T

)
(2.46)

and formula (2.42) to find the lower bound

I4 ≥ e−λT

(Ka

a0

)A4+A7

N
(
−x + A7σ

2
aT

σa
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σa
√

T

) , (2.47)

where A7 =

√
(µa−σ

2
a/2+γρσaσb)2+2λσ2

a

σ2
a

.

Finally, substituting (2.44) and (2.46) I obtain an upper bound of expected power utility:

EGU(Ka;~ν, γ) = Kγ
a

λ

λ + γδ

(Ka
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(
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)
+
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)
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+ bγ0eγ(µb+(γ−1)σ2

b/2−δ)T . (2.48)
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Using results (2.45) and (2.47) I obtain a lower bound of expected power utility:

EGL(Ka;~ν, γ) = Kγ
a

λ

λ + γδ
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√
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.

The values of the power function EG(Ka;~ν, γ) fall, by construction, between boundary functions

(2.48) and (2.49). However, the interval given by EGU(Ka;~ν, γ) and EGL(Ka;~ν, γ) appears to be

rather wide, and these boundary functions do not produce an accurate solution to the problem (2.2).

Figure 2.7 indicates that these boundary functions have different monotonicity regions in terms of

limit prices compared to the expected utility curve.
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Figure 2.7: The expected utility of a sell limit order strategy for a risk-averse trader and with upper and
lower bounds as functions of the limit price: (a) no execution delay (a0 = b0 = 1000), (b) with a random
execution delay (a0 = 1000, b0 = 995). Results are shown for parameters in Table 2.2.
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Chapter 3

The Luring Opacity of a Limit Order
Market

3.1 Introduction

Market transparency is the topic of ceaseless discussion in microstructure research and regulation

as it perturbs market efficiency and the concept of fair pricing. There are two types of transparency:

pre-trade transparency relates to publishing up-to-date information about quotes and orders, and

post-trade transparency – to information about executed trades. Limit order markets, the majority

of which operate through electronic trading books, are considered to be highly transparent trading

vehicles. A typical electronic market is represented by a stream of market orders and two queues

of limit orders: a queue of agents willing to sell an asset and a queue of agents willing to purchase

it. Normally, most of the trading volume is concentrated around the best quotes – the bid (highest

buying) and ask (lowest offer) prices, as depicted in Figure 3.1(a). A market order is executed

immediately upon its arrival, while a limit order is available in the book until a matching order

arrives or it is cancelled by the trader himself. Both market and limit order arrivals cause asset price

movements, therefore, traders perceive new orders as information signals about the future asset

value.

There are multiple ways in which traders can communicate their intentions to other market

participants. In this respect, buying or selling large volumes of security requires comprehensive

exposure management since it can produce a significant price impact1 and affect execution prices.

On the one hand, the major benefit of proactive trading via limit orders is in attracting traders with

latent trading interests which, other things being equal, leads to faster trade execution and lower

1See studies by Cont et al. (2012); Hasbrouck (1991); Iori et al. (2003); Potters and Bouchaud (2003); Saar (2001)
and Weber and Rosenow (2005) for comprehensive investigations about price impact in order-driven markets – statistical
properties, shape and decomposition of the price impact function. Saar (2001), for instance, uncovers the asymmetry
between buy and sell side impact and its determinants.
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trading costs. On the other hand, substantive order exposure often entails costs which are caused

by opportunistic or parasitic traders who build their strategies to profit at the expense of exposed

traders. Parasitic traders are uninformed traders in the usual sense of the term since they do not

posses any private information about the fundamental value of the asset.2

(a) The displayed limit order book. (b) The actual limit order book.

Figure 3.1: The typical shape of an average limit order book.

Intuition suggests that agents with a good insight about true market conditions favour less trans-

parent trading because their private knowledge is preserved better in such environments; while those

agents who do not have information advantages usually benefit from transparency. Nevertheless,

it is never possible to infer the full amount each market participant intends to buy or sell from

available data even in a perfectly transparent exchange. Modern electronic double auction markets,

with a few technical differences, augment this natural asymmetry by permitting traders to conceal

partly or entirely their limit order size by submitting an iceberg order, which, as the name indicates,

enables the trader to keep a fraction of his order size temporarily hidden.3 Each iceberg order has

a fixed limit price, a disclosed quantity – the total amount of shares to buy or sell, and a peak –

the order size publicly displayed in the electronic trading book. Once the peak of an iceberg or-

der is executed, the order is renewed by the same amount and the remaining quantity is reduced

accordingly. In this manner iceberg orders assist exposure control and retain price priority with a

sacrifice in time priority. Iceberg orders add depth to the displayed limit orders at given prices and,

as a result, create two market layers: a visible volume and a shadow volume, where the latter is

temporarily invisible and mimics the former (Figure 3.1(b)). Such microstructure, whereabout a

part of the information about the current state of the book is not available to trading participants,

belongs to the category of opaque markets.
2One type is order anticipators who aim to predict the impact of other traders’ orders on the market price. They also

classify into front runners, sentiment-oriented technical traders and squeezers depending on the sort of information they
rely on. Another type is bluffers: rumormongers who disseminate false information and price manipulators who trade in
order to confuse other traders.

3If the order size is completely omitted, the order is called hidden. This distinction, however, does not affect the
narrative of this chapter and both terms are used somewhat interchangeably unless specified otherwise.
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The depth of hidden layers in opaque markets has been repeatedly investigated from an empiri-

cal perspective by many researchers. On the basis of numerous studies covering different time spans

on different trading venues the estimates of volumes hidden in limit order books range from rea-

sonably low to high. The discrepancies in these estimates are partly due to specific microstructure

characteristics of each market. Nonetheless, they largely suggest that hidden volume is not trivial,

according to the findings collated in Table 3.1 and Figure 3.2.

Table 3.1: The summary of hidden volume estimates from empirical studies.

Study Market Year Variable Percent
D’Hondt et al. (2004) Euronext 2002 depth at best 5 45%
Bessembinder et al. (2009) Euronext Paris 2003 order volume 44%
Aitken et al. (2001) ASX 1993 order volume 28%
Tuttle (2006) Nasdaq 2002 inside depth 22%
Hasbrouck and Saar (2009) INET 2004 all executed orders 15%
Frey and Sandås (2009) XETRA 2004 non-marketable orders 9%
Esser and Mönch (2007) XETRA 2002 total ask volume 8.24%

For example, Aitken et al. (2001) found that hidden orders represented approximately 28% of

the volume on the Australian Stock Exchange in 1993. D’Hondt et al. (2004) document that hidden

depth on Euronext Paris accounts for more than 45% of the total depth at the five best quotes and,

according to Tuttle (2006), hidden liquidity in 100 Nasdaq stocks represented 22% of the inside

depth in 2002. Drawing from more recent findings, hidden orders account for more than 15% of all

orders executed on INET (Hasbrouck and Saar, 2009) and 9% of non-marketable orders in XETRA

are iceberg orders (Frey and Sandås, 2009). On the extreme end of opacity spectrum lie dark pools

with no market depth feed, where all trades are completely anonymous. Given lenient regulation of

dark trading, these markets are steadily gaining popularity among large investors.

Figure 3.2: The empirical estimates of hidden liquidity in cumulative market volumes.

Although abundance of hidden liquidity is undeniable, there is little theoretical guidance on
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the role of and necessity for iceberg orders. Existing studies on hidden liquidity form two main

branches: they either analyse the impact of iceberg orders on market quality, or devise optimal

implementation schemes of iceberg orders while treating the hidden volume in the book as a pri-

ori beneficial. In this chapter I take a step aside from these two main directions of research and

complement the literature by analysing the attractiveness of opaque markets to traders. Given that

increasingly large volumes are traded on dark or semi-dark venues, it is necessary to comprehend

how observable market conditions drive the willingness of traders to participate in such markets.

Hence, in this chapter I develop a stylised model of trade execution in a market with hidden depth.

I establish the optimal order submission timing of a risk-neutral trader in response to the observed

order flow. Although the reduced transparency influences the trader’s ability to predict market direc-

tion, he submits his order rather quickly, particularly, if the security is traded actively in the opaque

market. At the same time, the trader seems to engage in riskier strategies in darker markets, being

satisfied with a weaker belief to commit to trade. Furthermore, I demonstrate that the likelihood

of choosing a wrong strategy due to market opacity escalates when transparency declines. This

framework contributes to the existing literature by implementing a real option approach which to

date remains novel in the market microstructure research area. In a broader sense this model relates

to the topic of market fragmentation as it explains why many traders prefer to remain in lit markets,

whereas others are lured by opacity.

The remainder of this chapter proceeds as follows. Section 3.2 reviews relevant theoretical and

empirical literature and lays out the motivational grounds of the framework. Section 3.3 describes

the design of a market in which a risk-neutral trader seeks to execute his trade. Section 3.4 pro-

vides the solution to the optimal stopping problem in the form of a threshold policy and carries

out the sensitivity analysis with respect to various market conditions, followed by the error anal-

ysis in Section 3.5. Section 3.6 illustrates the main implications of the model with a numerical

example, examining the sensitivity of the optimal strategy to the change in market conditions, order

submission timing, and the probabilities of misjudging the demand for the security. Section 3.7

summarises the main findings achieved in this framework and outlines potential extensions.

3.2 Literature Review

In order to understand the consequences of imperfect market transparency induced by hidden liq-

uidity, it is crucial to recognise its beneficiaries. Iceberg orders ascribe important flexibility to limit

order usage since they enable agents to reduce market impact of their trades, which is particu-

larly vital for large order sizes. However, iceberg orders assist better execution in terms of more

favourable price, but at the expense of longer trading times. In essence, iceberg orders represent a

special type of dynamic trading strategy. Large trade execution via iceberg orders is closely related
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to the order splitting problem when agents optimise the price and the fraction of the quantity to

reveal at specific time intervals over their trading horizons.4 In this context, any iceberg order is a

naive splitting strategy since both the price and the quantity of each order renewal remain constant.

As informed traders usually strive to conceal their knowledge, it is convenient to think that

these agents are predominant users of iceberg orders, treated as a specific type of limit orders. It is

generally perceived that informed traders worry that their information advantage wears off as time

goes by, hence they are expected to exhibit more aggressive behaviour in the market. For instance,

Kaniel and Liu (2006) show by means of a modified Glosten-Milgrom (1985) type equilibrium

model that, in contrast with the traditional assumption adopted in the literature, informed traders

are prone to use limit orders subject to the time horizon allocated for execution. This is especially

pronounced when the information they possess is long-lived. At the same time, iceberg orders are

also more likely to be used by less informed traders since the latter have weaker predictions of

future securities prices.

The empirical evidence on this aspect is blurred. Anand and Weaver (2004) establish that

informed traders rely more frequently on hidden orders in case of low non-execution risks, given

that they are usually very impatient and benefit most from managing price impact of their trades. On

the contrary, Aitken et al. (2001) find that hidden orders are primarily used by uninformed traders

to reduce adverse selection costs when picked off by parasite traders. In other words, the results

from empirical research seem to deviate from market to market, suggesting no clear indication on

the relationship between traders’ information scope and their propensity to hide the true order size.

The theoretical work by Madhavan et al. (2005) on this subject suggests that greater transparency

can disincentivise traders and reduce liquidity, while Baruch (2005) shows how expanding public

information in a limit order market with smart limit order traders and a dealer can enhance liquidity.

In fact, the motivation to use iceberg orders is primarily driven by the liquidity demand rather than

information, an argument supported by the work of DeWinne and D’Hondt (2007), Frey and Sandås

(2009) and Pardo and Pascual (2012).

This conclusion, however, does not diminish the importance of information asymmetry and its

effect on market performance. Higher market transparency mitigates to some extent information

asymmetry among market participants, thus in principle lowering adverse selection costs incurred

by traders and the volatility of prices by removing “noise”. A number of empirical comparative

studies investigate the repercussions of regulatory changes that reduce market transparency by fa-

cilitating the use of undisplayed orders. Anand and Weaver (2004) examine the data from the

Toronto Stock Exchange, where hidden orders were banned in 1996 and then restored in 2002, and

demonstrate that hidden liquidity does not adversely impact market quality as measured by quoted

4See, for instance, Almgren and Chriss (2000); Bernhardt and Hughson (1997); Løkka (2013); Obizhaeva and Wang
(2013).
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depth. Moreover, spreads and quoted depth are not affected by the abolition of hidden orders. In

line with these results, Aitken et al. (2001) observe in the Australian Stock Exchange that setting a

stricter pre-trade transparency rule, i.e. forcing to display larger fraction of the order size, thins the

order book and slackens total trading volumes. The common insight that many studies seem to share

is that tighter regulatory requirements motivate traders to consume liquidity rather than fill the limit

order book, but not leave the market completely (DeWinne and D’Hondt, 2007; Frey and Sandås,

2009). Indeed, Frey and Sandås (2009) argue that although diluted market transparency require-

ments imply lower transaction costs and better execution, iceberg order users gain at the expense of

limit order users. This tendency is perfectly plausible since markets with hidden liquidity are associ-

ated with longer time-to-fill of orders, according to Bessembinder et al. (2009). Accompanying the

ample evidence on increased transparency events, studies that analyse the implications of reverse

microstructure amendments, when markets go partially or completely dark, document that ensuing

changes in market quality are of a smaller magnitude. In particular, Henderhott and Jones (2005)

observe that spreads widen producing alongside a positive externality on parallel markets as order

flow “spills over”. Therefore, it is important to distinguish between cases of transparency weak-

ening and reverse policies: the repercussions of these events may differ substantially, in the sense

that liquidity restores and trading costs lower to a smaller extent once transparency is re-installed.

Some markets are arguably more suitable than others for inferring the relationship between pre-

trade transparency rules, traders’ information sets and their propensity to hide due to disparities in

market architectures. For instance, constraints on the maximum undisplayed fraction of order size

determine indirectly the average order size and, if too high, they would discourage smaller traders

from the market.

In the context of reduced transparency all traders are aware of hidden volumes sitting in the

book and this certainly affects their strategic behaviour. The question is how accurately traders are

able to evaluate the true market depth. Among possible indicators are aggressiveness of visible

orders and the order arrival rate which, in turn, affects the competitiveness of the market. With

respect to developed methodologies, Bessembinder et al. (2009) propose a logit and tobit approach

to identify the presence of iceberg orders in the market by using publicly available variables such

as order arrival rates, spread and recent transaction sizes, and visible market depth. In an extension

of DeWinne and D’Hondt (2007) and Bessembinder et al. (2009), Frey and Sandås (2009) devise

an efficient algorithm for iceberg order detection based on the examination of order flow patterns as

well as iceberg peak sizes and the number of executed peaks: this algorithm misclassifies ordinary

limit orders as iceberg orders with an average frequency of only 1%. Furthermore, recent literature

documents a growing popularity of so-called fleeting orders that are withdrawn almost immediately

after submission and are characterised by particularly large sizes. For instance, Hasbrouck and Saar

(2009) find evidence in support for their search hypothesis: traders place aggressive orders inside
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the spread to catch hidden liquidity. Yet another way to discover the presence and the full size of

an iceberg order is to use a large fill-or-kill market order: if sufficient volume is available the order

will be executed rightaway and cancelled otherwise. It follows from here that if iceberg orders

are detectable then choosing to trade via iceberg orders reveals more information than splitting via

limit or market orders. Therefore, profusion of iceberg orders suggests that the signaling property,

as Frey and Sandås (2009) refer to this phenomena, adds value to the strategy.

A number of theoretical frameworks model optimal exposure decisions of traders that operate in

opaque markets, including, for instance, Esser and Mönch (2007) and Cebiroğlu and Horst (2011).

Their results show that the probability of a certain trader to use a hidden order is higher, the smaller

the revealed size and the larger the total size of his order. Among other determinants of order

exposure distinguished in empirical research are the depth of a limit order book, the bid-ask spread,

and the time of the day. Frey and Sandås (2009) document a feedback effect: the greater is the

volume executed against iceberg orders the more market orders are used.

3.3 The Model

Consider a double auction market that operates through an electronic trading book, where limit

orders are recorded but full volume is not known to the marketplace. The level of undisclosed

liquidity generated by iceberg orders is never publicly revealed, not even post-execution. All traders

participating in this market are aware of hidden liquidity but cannot measure it directly.

The shape of the limit order book and iceberg order processing are illustrated in Figure 3.3.5

Let, for instance, seller X have an iceberg order recorded in the book with the displayed order

size Xdisp, the peak of the iceberg, and the remaining volume to trade, Xhid, hidden. This order is

currently at the best ask, as depicted in Figure 3.3(a). All the orders on top of X have time priority

since they were submitted earlier. Once these orders are executed, Xdisp becomes the first in the

queue (Figure 3.3(b)). When the visible order of trader X is fully filled (Figure 3.3(c)), this order

is immediately renewed with the same amount Xdisp and is put behind all visible orders at this

price in the book; the hidden volume is then reduced accordingly X′hid = Xhid − Xdisp, as shown in

Figure 3.3(d).

Consider a risk-neutral trader who intends to sell his position in this security market. Denote

an exogenous latent variable γ that indicates the true demand for the asset in the opaque market

and ultimately determines at what price the agent executes his trade. The trader intends to submit

a sell limit order to this market at his preferred price, but if the demand is poor he switches to a

market order instead.6 Suppose that the timescale of the trader is narrow, so that the best bid B and

5In fact, my stylised framework abstracts from a concrete shape of a limit order book and models only the order flow.
However, it is instructive for the analysis to examine the iceberg order mechanism in relation to the visible order flow.

6In real markets in this instance the trader would not only suffer from selling at a lower price, but usually he would
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(a) (b)

(c) (d)

Figure 3.3: The mechanism of iceberg order peak release and gradual execution. Light colors indicate
hidden volume.

the spread s remain constant, and the best ask is A = B + s.7 If the demand for the asset is strong

(γ = 1), the trader will sell the asset at a higher price A; if, on the contrary, the demand is weak

(γ = 0), he will execute the trade at a lower price B. The order is submitted at a sunk cost C ≥ 0 and

cannot be revised or cancelled. These sunk costs represent a certain brokerage fee or, alternatively,

one could think of this trader as a speculator who is conceiving a round-trip trade and C stands for

his initial costs of purchasing the asset. The trader enters the market and monitors the order flow to

decide when to place his order. I use the framework originally introduced by Thijssen et al. (2004)

to model the investment choice under uncertainty in the context of information streams.

The order flow in this opaque market is composed of three order types: market orders, new

passive orders, and renewals of old passive orders, i.e. of previously submitted iceberg orders. An

additional buy order that appears in the limit order book indicates a good signal in terms of the true

market demand, whereas an incoming sell order intensifies competition among sellers and hence is

perceived as a bad signal. This interpretation applies to all market and limit orders. Orders arrive

incur additional switching costs such as limit order cancellation and other fees.
7Suppose that the market absorbs any volume at the best quotes, which can be achieved by a market maker who is

responsible for guaranteeing sustainable depth at the quotes, or by assuming a substantial population of agents queuing
at these quotes, as in the model of Seppi (1997).
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at random points in time and follow a Poisson process with the rate λ. However, the market is not

transparent, so the appearance of a passive order can be due to either a new limit order placement,

with or without a hidden part, or a release of the subsequent iceberg order tranche. In the first case

the total volume on the respective side of the market increases, whereas in the latter case the overall

market depth remains unaltered. The probability of a change in the real market depth depends on

the true state of the market γ. Assign θ ∈ (0, 1) to the probability of a new order submission, thereby

1 − θ is the probability that an additional volume of the existing iceberg order is disclosed. This

parameter is the clarity of the signal generated by the order flow and, in essence, it characterises

the degree of market transparency: if the probability of new order submission is closer to unity, the

hidden layer is insignificant, whereas with lower values of the probability θ hidden depth in this

opaque market is substantial.

According to the theoretical and empirical findings of Handa et al. (2003), agents assess the

thickness of the book by comparing current market depth on the buy side relative to the current

market depth on the sell side, and both sides of the book are important in shaping the trading

strategy of an agent. More precisely, as suggested by Ranaldo (2004), order aggressiveness depends

positively on the volume available on the same side of the book and negatively – on the opposite

side. Define the visible order imbalance ht as the number of buy limit orders less sell limit orders

displayed in the book at time t. Using the imbalance as a proxy, the trader evaluates the demand for

security and hence the likelihood of selling via a passive strategy at a preferred price. If buy orders

prevail (ht � 0), then the trader believes that the demand exceeds supply and he can sell his asset at

A. Conversely, if sell orders dominate the book (ht � 0), the trader infers that the demand for this

security is insufficient and he will execute at B to recover part of his costs. If the true demand for

the asset in the opaque market is high, three events are possible at the next time instant:

(i) No order arrives with probability 1 − λdt.

(ii) A new buy order arrives with probability θλdt. This directly indicates an increase in the

demand, since market orders deplete the sell side and alleviate competition among asset sup-

pliers, while fresh limit or iceberg orders extend the queue on the buy side and intensify

competition among buyers, encouraging them to seek immediacy.

(iii) An old sell iceberg renews with probability (1 − θ)λdt, triggered by a buy market order that

was placed at the previous time step. This indicates a decrease in the demand, since the trader

cannot distinguish between old and new passive orders.

Therefore, the visible order imbalance ht in a market with high demand is represented by the pro-
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cess:

dht =


1 with probability θλdt

0 with probability 1 − λdt

−1 with probability (1 − θ)λdt

(3.1)

Otherwise, if the true demand is low, the visible order flow mirrors this dynamics. The conditional

expected increment in visible order imbalance is given by E[dht| γ] = sgn{γ − 0.5} · (2θ − 1).

Therefore, when the probability of a new order is 50%, the order arrival is not informative to the

trader.

Due to uncertainty and lack of transparency, the trader cannot evaluate the true demand from

market data, or predict future prices for that matter. He infers the demand for the asset from order

arrivals that affect the visible buy-sell imbalance and constructs his belief pt about the probability

of a high demand for the asset. Upon entering the market the trader contemplates a prior belief p0

that the demand for the asset is strong, which, in turn, implies a better chance of selling the security

at a high price A. Over time, he learns what type of orders are predominantly submitted – buy or

sell orders – and updates the posterior belief accordingly. Observing the order flow and gaining

experience from the market, he adjusts his belief in more favourable execution according to Bayes

rule:

pt := p(ht) =
P(ht| γ = 1)P(γ = 1)

P(ht| γ = 1)P(γ = 1) + P(ht| γ = 0)P(γ = 0)
=

θht p0

θht p0 + (1 − θ)ht (1 − p0)
,

or in a concise form

pt =
θht

θht + ξ(1 − θ)ht
, (3.2)

where ξ = (1 − p0)/p0. Given that the conditional belief pt is a monotonic function of order

imbalance ht for any fixed parameters p0 and θ, there exists an inverse function:

ht := h (pt) =
ln

(1−pt
pt

)
− ln ξ

ln
(

1−θ
θ

) . (3.3)

This implies that the problem can be formulated both in terms of visible order imbalance and in

terms of the trader’s posterior belief in a high demand and preferable execution.

In this framework, uncertainty is resolved over time, so eventually the trader will sell the asset.

As soon as the trader places his order, the true state of the market γ is discovered: in case the

demand is high, the limit order receives a fill; otherwise, if the demand is weak, the trader urges to

sell at the best available market price. In reality it might take some time before the market reaches

the limit price level A = B + s or to execute the full amount of the limit order. However, I abstract
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from this to preserve the tractability of the model. The expected utility of the trader, conditional

upon his ex ante belief in a high demand p0, is expressed as follows:

U (ht) = p(ht) · (B + s) + (1 − p(ht)) · B −C = p(ht) · s + B −C. (3.4)

The trader’s objective is to maximise his expected discounted utility. Taking into account a

risk-free rate r > 0 and the available information set Ft, the trader solves the following optimal

stopping problem to determine the best time for the order placement:8

U∗ (ht) = sup
τ≥t

E
[
e−rτU (hτ)

∣∣∣Ft
]
. (3.5)

The structure of the model incorporates the dual nature of signals. The first aspect is the pa-

rameter λ which governs order arrival. This parameter is a measure for the quantity of orders, since

1/λ denotes the average time between two submissions. The other component is the probability

θ of signal accuracy. This parameter is a measure for the quality of information embedded in the

order flow. Given that the trader is learning about market conditions according to Bayes rule, the

parameter θ explicitly affects the direction and the speed of long-run convergence of his belief. In a

more transparent environment θ > 0.5, the belief in a high demand for asset converges to one or to

zero if the true market demand is strong or weak, respectively. Whereas in a darker market, θ < 0.5,

the belief in a high demand for asset reaches zero if the true market demand is strong and one if

the true market demand is weak. If the signals are noisy, θ = 0.5, the trader is better off by making

the decision immediately by using his ex ante belief p0. As will be demonstrated in Section 3.4,

quantity and quality together determine the threshold belief in a high demand that the trader needs

to reach to make the order placement optimal.

3.4 Optimal Policy

In this section I first derive optimality conditions and then discuss the impact of various factors on

the trader’s optimal submission time choice.

Proposition 3.4.1. The utility maximisation problem of a risk-neutral trader (3.5) admits an ana-

lytical solution in the form of a threshold policy: the trader enters the market and submits his order

as soon as his posterior belief in a strong demand for the asset exceeds the probability threshold

p∗ =

[( s
C − B

− 1
)
Π + 1

]−1
, (3.6)

8If there is no order imbalance ht = 0, the trader’s belief in a strong demand equals exactly his prior p(0) = p0.
Moreover, in the absence of learning, that is pt = const, the optimal stopping problem essentially disappears, and the
trader always submits his order immediately to resolve the uncertainty regarding true demand.
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where

Π =
r + (1 − 2θ)

(
λ(1 − 2θ) +

√
r2 + 2rλ + λ2(1 − 2θ)2

)
2r(1 − θ)

. (3.7)

Proof. See Appendix A. �

Note that optimal belief threshold p∗ can take any real value, but order imbalance is an integer.

Thus the trader submits his order as soon as the net number of good signals reaches h∗ = dh(p∗)e.9

I interpret the threshold policy as follows: while the trader’s belief in a high demand pt is below

the threshold level p∗, he is unsure that the market will drift towards his sell limit price and is better

off by refraining from placing orders. Once the visible order imbalance crosses the threshold h∗, the

trader becomes convinced enough about favourable market conditions, pays the fee C and issues

a sell limit order at A with a conversion to a market order at B in the worst case. Therefore, an

increase in the threshold p∗ signifies that the trader waits longer and gathers more signals before

placing his order. I present below a comparative static analysis of the threshold p∗ with respect to

key market parameters embraced by this model. The analysis reveals that the threshold p∗ is lower

when buying orders prevail, the fees are higher, execution prices are lower, the spread is tighter,

and transparency is higher. However, the impact of discount factor and liquidity level is determined

in conjunction with the transparency level. The proof of the following propositions is obtained

through simple calculus and is provided in Appendix B.

Proposition 3.4.2. The threshold belief in a high demand for the asset, p∗, decreases with the

selling price B and the spread s, and increases with the market entrance fee C.

This result is in line with the objective of a risk-neutral agent to maximise the expected utility.

If the market offers a better valuation of the asset in terms of prices A and B, then independently

of the volume and imbalance, the agent will submit an order earlier, i.e. require a lower p∗. The

size of the bid-ask spread determines the relative attractiveness of a limit order trade compared to

execution at the market. If the spread is wide, the trader will act quicker in terms of his conviction

to seize a potentially profitable opportunity. At the same time, if participating in the opaque market

is costly, the trader will require stronger confidence in a sufficient demand, so he will wait longer

until buy orders dominate substantially the sell side of the book.

Proposition 3.4.3. The threshold belief in a high demand for the asset, p∗, increases with market

liquidity λ in a more transparent market θ > 0.5 and decreases in a darker market θ < 0.5.

If orders are submitted to the market more frequently but they are not indicative of the total

market depth (θ < 0.5), the trader will place his order sooner. Essentially, under these circumstances

he will be indifferent what type of orders they are – market orders, ordinary limit orders or iceberg

9For any z ∈ R, the ceiling function f (z) = dze is the smallest integer greater or equal to z.
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orders. In other words, even if the demand is not going to increase, the fact that the security is

actively traded can reassure the agent to place his order and expect an execution at a preferred price

A. On the other hand, if the market is relatively transparent (θ > 0.5) and the order flow is intensive,

he waits longer until the book becomes more asymmetric.

Proposition 3.4.4. The threshold belief in a high demand for the asset, p∗, decreases with the

discount rate r in a more transparent market θ > 0.5 and increases in a darker market θ < 0.5.

The discount rate impacts the optimal threshold p∗ in the opposite direction as compared to

liquidity: if transparency is low, then the larger the discount rate, the higher the threshold belief p∗

and the starker visible imbalance towards the buy side is required by the trader to justify his order

submission. When the trader eventually believes that the demand is sturdy and pays C to prompt

his order into the book, he bears the risk of executing at B ≤ C. If r is high, the loss C − B in the

adverse scenario declines as time goes by, hence the threshold increases. Similarly, given that this

risk declines with opacity and guessing the real market depth makes the preferable execution more

likely ceteris paribus, a higher discount rate makes the trader more impatient to collect his revenues.

Proposition 3.4.5. The threshold belief in a high demand for the asset, p∗, increases with the degree

of market transparency θ.

On the one hand, if hidden depth is slim and the trader is initially pessimistic that a market

can absorb his order. On the other hand, with higher degree of market transparency θ, the signal

becomes more clear and for a given intensity of order arrival the trader will have to wait less to

reach the threshold h∗ in terms of actual time. This result appears counterintuitive but is explained

by the double source of uncertainty in this model. Basic intuition suggests that in a market with a

high demand when the signals embedded in the order flow become more informative, the order to

trade will be placed sooner. However, in this model uncertainty has three dimensions: the degree

of market transparency θ, the random arrival of orders λ, and the trader’s uncertainty about the true

state of the limit order book as a latent variable. While higher transparency reduces uncertainty

about the depth of the book, it will never be eliminated completely.

The overall conclusion is that the optimal strategy implies that traders are attracted by markets

with reduced transparency when the entry barriers are low, the spread is wide, execution prices

and liquidity are high and opacity is significant. I further discuss these results in application to my

numerical example in Section 3.6 and relate them to the evidence obtained from empirical literature.

3.5 Downsides of Market Opacity

The aim of this section is to offer several metrics that weigh up trader’s chances of choosing an

inappropriate strategy in a market with hidden liquidity. It is worth noting that the probabilities of
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such errors are often related to time constraints imposed on traders.10

So far I assumed that the trader is prepared to wait indefinitely until his belief in a high demand

reaches the desired level. Suppose now the trader has a certain deadline by which he must decide

whether to submit an order to the market with reduced transparency or not. Pressured by a deadline,

the trader might avoid placing an order in the opaque market if he will not collect enough positive

signals in terms of visible order imbalance and hence relinquish profitable trading opportunity. This

adverse scenario occurs if the threshold h∗ is not attained with a certain time span T given that the

demand is high. The probability of h < h∗ for any 0 < T < ∞ is

PN(T, h∗) = 1 − h∗
(
1 − θ
θ

)−h∗/2 ∫ T

0

e−λt

t
· Ih∗

(
2λt

√
θ(1 − θ)

)
dt, (3.8)

where Ih(·) is a modified Bessel function. In this optimal timing model the trader eventually places

his order. Therefore, the further away the expiry T , the less likely the trader to forego trade execu-

tion at a favourable price A. In order to assess which time constraints are plausible and which are

too stringent, it is appropriate to calculate the expected time of order placement:

E[τ∗] = h∗
(
1 − θ
θ

)−h∗/2 ∫ T

0
e−λt · Ih∗

(
2λt

√
θ(1 − θ)

)
dt. (3.9)

Furthermore, assuming that the demand in the opaque market is solid, there is an expression for the

conditional expected submission time:

E[τ∗γ=1] = h∗
θh∗ + ξ(1 − θ)h∗

(1 + ξ)
√

(θ(1 − θ))h∗

∫ T

0
e−λt · Ih∗

(
2λt

√
θ(1 − θ)

)
dt. (3.10)

Hence, imposing a deadline on the trader can force him to quit the opaque market prematurely.

Worse still, in the absence of a deadline factor hastening the trader to make a decision, he might

get overconfident about the market demand simply because his ability to read signals is weak. I

evaluate whether the chances of this misjudgement are trivial or not by calculating the probability

that the trader submits his order while the true demand is low. This probability equals the ex ante

probability of reaching the threshold h∗ despite insufficient volume in the book:11

PY (h0, h∗) =

(
θ

1 − θ

)h0−h∗

. (3.11)

The probability PY (h0, h∗) decreases when transparency parameter θ improves. This probability

coincides with the probability of converting to a market order at the price B, so the probability that

the order will trade at A = B + s is 1 −
(
θ

1−θ

)h0−h∗
. An alternative interpretation of a premature

10The derivations required for the following error analysis are collected in Appendix C.
11The derivation of this probability is presented in Delaney and Thijssen (2011).
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order placement probability PY (h0, h∗) on the aggregate level is that even if all traders intended

to provide liquidity to opaque markets, PY (h0, h∗) is a fraction of traders who end up consuming

liquidity instead.

3.6 Numerical Example

To illustrate the analytical results obtained in previous sections I examine these properties through a

numerical example with the baseline parameters summarised in Table 3.2. The sunk costs of placing

the order are £92, the expected market price of the asset is £90, the limit price is £10012 and cash

flows are discounted with factor r = 1%. On average two orders appear in the book per time period,

and the probability of a new order is 70%. The trader has no insider knowledge of the market: he

observes no order imbalance and assumes initially equal chances of a high and low demand.

Table 3.2: Baseline parameters of the opaque market.

Parameter Value
submission fee C = £92

bid price B = £90
spread s = £10

order arrival rate λ = 2
incoming order type γ = {0 ∨ 1}

probability of a new submission θ = 0.7
discount rate r = 0.01
prior belief p0 = 0.5

order imbalance h0 = 0

In this benchmark case the transparency is reasonably high with 70% probability of a new

order. The threshold probability belief is p∗ = 0.9218, which implies that the trader wishes to get

more convinced before submitting his order and the required visible order imbalance is h∗ = 3 (or

h(p∗) ≈ 2.9112). The ex ante probability of converting to a market order is almost negligible at

7.87 %. However, the probability that the trader does not place his order and misses a profitable

execution opportunity is contingent upon his trading horizon. Given that the trader requires 3 net

positive signals in terms of visible order imbalance to submit an order to the opaque market, if he

allocates 2 periods to reach a decision, expecting to observe 4 orders during this time, then he makes

a wrong choice with probability 64.13%.

Three limiting cases help to locate the baseline case on the spectrum of transparency regimes.

First, it is easy to see that when θ = 0.5 the arrival of buy and sell order is equally likely, then the

12The existence of a solution to the optimal threshold policy requires that B + s > C > B.
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threshold

p∗(θ = 0.5) =
C − B

s
= 0.2000

is independent of market parameters other than prices, and order imbalance h∗ is any real number.

After the trader’s belief in a good market reaches 20%, the utility U(p∗) transfers to a region of

positive values given that it equals exactly zero at the optimal threshold and increases monotonically

in p. Second, θ = 0 is the case of a dark market when the entire book depth is unobservable. In these

conditions it is impossible for the trader to assess market depth and thus make an opinion about the

asset demand. In this dark market the trader has a slim chance to guess the true state correctly and

simply minimises his losses. The threshold is relatively low because the trader accrues confidence

too slowly:

p∗(θ = 0) =
r(C − B)

(r + λ)s − λ(C − B)
= 0.0012.

Lastly, θ = 1 represents a genuinely transparent electronic market where the threshold is higher as

compared to two cases above:

p∗(θ = 1) =
(λ + r)(C − B)
rs + λ(C − B)

= 0.9805.

Although in a dark market the trader requires a very low threshold to place his order, while under

perfect transparency – almost certainty of a high demand, in these polar settings the sufficient im-

balance is only one order, that is h∗ = 1. This is an interesting implication: the trader seems to

engage in riskier strategies in an opaque market since he is satisfied with a weaker belief to commit

to trade.

3.6.1 Sensitivity Analysis

In this section I explore the comparative static effects of various market conditions on the optimal

threshold policy. Overall, I observe nonlinear dependencies which are consistent with the theoretical

implications presented in Section 3.4 and confirm certain empirical findings. First, I look at the

impact of a single factor on the optimal threshold in isolation (Figure 3.4). Figure 3.4(a) depicts

that the positive relationship between the fees C and the threshold belief in a high demand p∗ that is

consistent with Proposition 3.4.2: higher costs lead to bigger losses in the adverse scenario, thereby

the trader is more cautious about his order placement in this case.

Figure 3.4(b) reveals that the more aggressive the limit price A relative to expected market val-

uation of the asset B, i.e. the wider the bid-ask spread, the lower is the threshold p∗. In other words,

when the gains from trading via a limit order are substantial, the trader will place his sell order

sooner. This result relates to the notorious gravitational pull effect, which suggests that when the

bid-ask spread tightens, the gains from limit orders diminish pushing traders to demand immediacy,
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Figure 3.4: The effects of market conditions on the probability threshold: (a) the submission fee, (b) the
spread, (c) liquidity, and (d) transparency. The results are given for the parameters in Table 3.2.

and vice versa. Figure 3.5(a) illustrates that this relationship holds for all transparency levels. At

the same time, visible order imbalance required to persuade the trader to accept the non-execution

risk of a limit order is not monotonic in the bid-ask spread. According to Figure 3.5(c), if the mar-

ket is fairly transparent, then h∗ decreases with the spread implying that passive strategy is very

valuable. This tendency is supported by empirical observations that limit orders are preferred at

times when spreads are wide. In a darker market, however, uncertainty is higher, and widening of

the bid-ask spread exacerbates downside risks of a limit order strategy, therefore, the trader needs

stronger positive evidence to place the order.

The intensity of the order flow usually reflects liquidity strength in a market, which undoubtedly

belongs to the list of characteristics that investors evaluate when contemplating whether to join a

market. Figure 3.4(c) depicts that depending on the level of transparency, the order arrival rate

65



3. The Luring Opacity of a Limit Order Market

0
0.25

0.5
0.75

1

2

7

12

17
0

0.25

0.5

0.75

1

θs

p∗

(a)

0
0.25

0.5
0.75

1

10
−2

10
−1

10
0

10
1

10
2

10
3
0

0.25

0.5

0.75

1

θλ

p∗

(b)

0
0.25

0.5
0.75

1

2

7

12

17
−5

0

5

10

15

20

θ
s

h∗

(c)

0
0.25

0.5
0.75

1

10
−2

10
−1

10
0

10
1

10
2

10
3

0

15

30

45

θ
λ

h∗

(d)

Figure 3.5: Joint effects of two factors on the probability threshold: (a) transparency and spread, (b) trans-
parency and liquidity, and the corresponding joint effects on the visible imbalance threshold: (c) transparency
and spread, (d) transparency and liquidity. The results are given for the parameters in Table 3.2.

can have one of the two opposing effects on the threshold p∗. If transparency is high, the more

information arrives per unit of time, the more patient the trader in the sense that he will wait longer

to pay the fee and resolve uncertainty. If transparency is below 50%, higher liquidity prompts

the trader to act faster. In real markets, persistent order flow can be interpreted as a sign of good

execution in the market, so traders might mimic each others strategies. In Figure 3.4(d) for any given

liquidity level, the higher transparency, the more drastic asymmetry towards the inflow of buyers

is required to submit a passive sell order. The compound effect of liquidity λ and transparency θ

in Figure 3.5(b) and Figure 3.5(d) suggests that higher liquidity reinforces the consequences of a
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reduced transparency regime in this double auction market in such a way that if transparency is

reasonably high, then the trader prefers to postpone his order submission and collect more signals.

In contrast, in a darker market higher liquidity motivates the trader to submit his limit order with a

lower confidence in a high market demand, although he raises the imbalance threshold all the same.

Bessembinder et al. (2009) find that hidden orders are more likely when order flow is low,

spreads are wide and the competition on the same side of the book is small. Their study suggests

that traders hide more when their orders are aggressive. Also, hidden orders are more likely for

less liquid firms, essentially confirming that the permission of undisclosed limit orders fulfills its

mission in attracting liquidity. Bessembinder et al. (2009) estimate that on average across firms

44% of order flow in volume is hidden which corresponds to the case of θ > 0.5 in my model and

is consistent with the result that p∗ increases with λ. In other words, for higher liquidity levels

the trader is inclined to postpone his order submission. However, I also find that the relationship

between p∗ and λ is reverse in case of lower transparency levels θ, which is explained by the fact

that if the visible liquidity is sufficiently high, the trader expects total market depth to be large and

submits his order sooner before this volume is exhausted. According to Aitken et al. (2001), the

use of hidden orders increases with the volatility of the stock price and the order value. On the

contrary, hidden orders are used less the larger is the tick size, which is reasonable since front-

running becomes more costly in these circumstances. Though my model does not account for the

stochastic nature of asset prices, and hence the tick size, I observe a similar dependence between

the total hidden depth and the optimal timing of order submission: the lower is the degree of market

transparency θ, implying a larger associated undisclosed volume, the lower the threshold belief p∗

that the trader has to achieve to submit his order. The positive relationship between transparency

θ and the optimal threshold belief p∗ plotted in Figure 3.4(d) holds for various levels of market

liquidity λ.

3.6.2 Error Analysis

As was briefly mentioned in the model outline in Section 3.3, the level of market transparency

governs the limiting behaviour of the learning trader when the number of accumulated signals goes

to infinity. If the degree of transparency is fair (θ > 0.5), then lim
h→+∞

(pt) = 1 and lim
h→−∞

(pt) = 0. This

implies that the more positive signals the agent collects, the more likely he is to commit to trade in

this market. If transparency is poor (θ < 0.5), then lim
h→+∞

(pt) = 0 and lim
h→−∞

(pt) = 1. This case is

associated with a contrarian behaviour: if too many buys arrive to the market, the agent believes that

the hidden depth is too thick, and although the aggregate market demand might be substantial, the

abundance of iceberg orders will prevent the price from moving toward his preferred limit B+ s. So,

in these circumstances the agent will not place his order. Conversely, if mainly sell orders arrive, the

agent concludes that there is a good chance of execution and follows the crowd, hoping that these
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old iceberg orders will be exhausted soon. The probability threshold p∗ exists and is well-defined

for both regimes θ > 0.5 and θ < 0.5.

Recall the probabilities of misjudging the true market demand in Section 3.5. Consider first

the situation where the trader is obliged to close his position with a time constraint T and the true

demand for the asset is high. There is a positive probability PN(T, h∗) that the trader misses the

opportunity to trade in the opaque market at a favourable price A because even if the demand for

the asset is sufficient, the required threshold of visible imbalance h∗ might not be reached before

expiry. The longer is the trader’s horizon T , the slimmer is the probability of missing a more

preferable execution at a high price A, as depicted in Figure 3.6(a). In a more transparent market

the probability of missing a high demand is declining more abruptly once T � 1 (the blue bottom

curve), whereas in the opaque market with the clarity of signal only 30% (the brown top line) the

probability curve is more shallow with a non-trivial chance of mistake even for a patient trader with

a horizon T = 25 periods. Actually, in a darker case the number of net positive signals required to

place the order is twice as high, so for a similar order flow intensity one needs to wait longer simply

to collect any signals.

Further, I plot the expected time of order submission for the time-constrained trader as a function

of market transparency θ (Figure 3.6(b)). The relationship is non-monotonic and non-continuous

due to the discreteness of the order imbalance signals h∗. Figure 3.6(d) depicts clear jumps in the

optimal signal threshold h∗ as a function of market transparency θ. For certain bundles of liquidity

and transparency, this threshold jumps from dh(p∗)e to dh(p∗)e + 1. As p∗ increases with θ, the

signal threshold h∗ is bound to increase as well for low transparency and to decrease otherwise. This

relationship translates directly into expected times E[τ∗] and E[τ∗γ=1]: when there is an upward jump

in h∗, the expected time jumps as well and then continues to decline; with a downward shift in h∗

the expected times of order submission diminish. For each one-unit change in the signal threshold

the expected time jumps roughly by half a period, since the average time between order arrivals in

this opaque market is 1/λ = 0.5. Notably, irrespective of the degree of market transparency, the

trader places his order well before the deadline T = 25. For instance, if θ is large then the trader’s

belief in the high demand becomes stronger with fewer good signals. At the same time, if the order

flow is rather uninformative (θ is only a little above 50%), then just a slight prevalence of incoming

buys is required to believe in a high demand and as a result the trader will submit his order sooner.

Conditional upon a strong demand, order submission happens on average twice as fast: if the trader

has a deadline of 25 periods to execute his trade, then he submits the order much quicker with the

expected time of submission E[τ∗] = 3.7013, and E[τ∗γ=1] = 1.9963 conditional on a high actual

demand in the baseline case.

Finally, I consider a reverse scenario, which occurs with a probability PY (h0, h∗): the market

demand is poor but the agent collects enough positive signals h∗ to commit to trade. In line with
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Figure 3.6: (a) The probability of order placement when demand is weak, (b) the expected times of order
submission for a trading horizon of 25 periods, (c) the probability of no order placement when the demand
is high, and (d) the threshold order imbalance as a function of transparency. The results are given for the
parameters in Table 3.2.

intuition, the more transparent the market is, the smaller the probability of this mistake as Fig-

ure 3.6(c) vividly demonstrates. The brown curve corresponds here to the case when the trader does

not have any preliminary insight about the demand and observes no order imbalance at the start,

exactly as in the benchmark case, whereas the blue curve on top corresponds to the case when the

agent has initial optimistic bias, which certainly makes him more prone to errors in this model.

Again, the jumps in PY (h0, h∗) result from the discontinuities in h∗ (Figure 3.6(d)).

3.7 Conclusions

In this chapter I establish a framework that delineates the decision making process of a risk-neutral

trader in a market with hidden liquidity. Through a real option approach I analyse how various mar-

ket parameters, such as execution prices, submission fees, market liquidity and transparency mould
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the trader’s order placement timing. A risk-neutral trader, who is willing to sell his assets, estimates

the demand using order flow information streams. The true market depth, which determines the

transaction price, is not observed by agents operating in this opaque market. I provide an analyti-

cal solution in the form of a threshold policy, such that once the trader’s posterior belief in a high

demand exceeds this threshold, he immediately submits a limit order to the market. This stylised

theoretical model appears to be one of the first attempts in the literature to challenge investors’

incentives to participate in opaque trading environments.

The model implies that the trader requires less conviction in a high demand before placing an

order once the submission fees diminish or the value of the asset appreciates. This result stems from

the utility-maximising behaviour of the trader. More importantly, the threshold belief increases

with market transparency. This outcome is contingent upon multiple sources of uncertainty in this

framework. Given this, there are intervals of the transparency parameter values when an increase in

the probability threshold is associated with fewer positive signals required to convince the trader of

a strong demand. Therefore, lower transparency motivates traders to submit their orders to the limit

order book quicker; whereas a higher degree of market transparency makes the same agents eager

to postpone order placement until their posterior belief in good market conditions becomes more

solid. In this manner the model establishes some theoretical foundation that justifies how market

opacity can encourage liquidity provision, which, in turn, falls in line with empirical evidence on

the expansion and growing popularity of this type of trading venues. In addition, I show that market

liquidity, measured by incoming order flow intensity, accentuates the effect of transparency on the

optimal threshold belief: when the degree of transparency is above 50%, the threshold increases

with liquidity, while in a more opaque market the trader prefers to wait. This is reasonable since

in the latter case the trader contemplates that there is a substantial hidden volume in the market

coupled with the visible part, while in the former case the fact that most of the market depth is

observable makes him more cautious.

Certainly, under any market conditions encompassed by this model, traders are not insured

against misjudging the market. The error analysis reveals that traders are less inclined to overvalue

the asset demand once any prior biases are removed. Time pressure, however, can pose a significant

risk of missing a profitable execution opportunity. Such risk remains substantial in the opaque

market even for traders with long time horizons.

The present framework assumes that once the order is placed, it will be fully executed at its limit

price or at the market if the demand for the asset is weak. One possible extension of the model is to

introduce a scenario with partial execution at the preferred price and monitor how the optimal policy

will alter. Furthermore, it would be interesting to develop a version of this model with a distinct

stochastic process for the dynamics of order arrival to account for the empirical fact that in opaque

markets liquidity often comes sporadically and in clusters (Lehalle et al. (2012, p.47)). Lastly, the
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model would potentially benefit from incorporating the stochastic nature of the underlying asset

price and linking it to the incoming order flow, as well as the possible revision of the limit price

by the trader. However, this would probably be achieved at the expense of tractability, and it is

likely that an analytical solution could not be obtained and one would need to resort to numerical

methods.
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Appendix A Proof of Proposition 3.4.1

The critical value of the conditional belief in a high demand for the asset, denoted p∗ = p(h∗), is

the point such that the trader is indifferent between execution at a limit price or at the market. That

is, if pt > p∗, the trader is confident that there will be sufficient demand to sell high. Conversely, if

pt < p∗, the trader is not confident enough in the available demand and waits for more information

to arrive. For the simplicity of notation I omit in the proof the time index and write instead h = ht

hereafter. To derive the optimal threshold h∗ it suffices to split the state space into three possible

situations. The first one when the net number of positive signals already exceeds the required

threshold (h ≥ h∗); the second, when the net number of positive signals is much lower than the

requirement (h < h∗ − 1); and the third, when the net number of positive signals is in the optimal

vicinity, so that the optimum can be reached at the next step (h∗ − 1 ≤ h < h∗).

Case 1: h ≥ h∗

In case when current order imbalance exceeds the optimal threshold h∗, the trader immediately

submits his order. So his payoff is

G(h) = p(h) · s + B −C. (3.12)

Consider now the interpretation that the trader attaches to every change in the observable order

imbalance in the opaque market. Given the trader’s interpretations of the order flow signals, he

perceives the visible order imbalance as follows:

dht =


1 with probability

(
θ · I{γ=1} + (1 − θ) · I{γ=0}

)
λdt

0 with probability 1 − λdt

−1 with probability
(
θ · I{γ=0} + (1 − θ) · I{γ=1}

)
λdt

(3.13)

Indeed, given the intensity of the order flow is λ, the book remains unchanged with the prob-

ability 1 − λdt at each instant. The probability of an order arrival is λdt, which can be any of the

three order types within buy and sell category. When a buy order appears, there are two possible

scenarios that lead to this event. First, a completely new buy order is submitted to the book with

probability θ. This can be either a new passive buy order added to the book, with or without a hidden

chunk, or a market buy that reduces the number of competitors on the sell side, thereby, the total

market depth has changed and it is indicative of a strong demand, γ = 1. Alternatively, an existing

buy iceberg order is renewed, triggered by a sell market order that was placed at the previous time

step, with probability 1 − θ and the visible buy depth increases. In this case the overall quantity of

the order volume recorded in the opaque market does not alter but only the extra volume available
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on the buy side is communicated to market participants, while true demand for the asset might be

poor, γ = 0. Similarly, a new sell order of any type is submitted with probability θ given that the

demand is insufficient, γ = 0, and 1 − θ is the chance that an old sell iceberg is refreshed while the

cumulative market demand is high, γ = 1.

Case 2: h < h∗ − 1

In this case, even if the next order to arrive is a buy, visible order imbalance is not going to reach the

optimal threshold. Let the value of the trader’s strategy be equal V1, then at the next order arrival it

must satisfy Bellman equation:

V1 =
E[dV1(h)]

dt
. (3.14)

The value of the strategy at any point in time before order submission must be equal the dis-

counted value at the infinite horizon, or V1(h) = V1/r. On the other hand, the expected change in

the value function with respect to order imbalance dynamics given in (3.13) is

E[dV1(h)]
dt

=


+ V1(h + 1) · (θp(h) + (1 − θ)(1 − p(h)))λdt

+ V1(h) · (1 − λdt)

+ V1(h − 1) · (θ(1 − p(h)) + (1 − θ)p(h))λdt

− V1(h)


/dt,

or

E[dV1(h)]
dt

= λV1(h + 1)
θh+1 + ξ(1 − θ)h+1

θh + ξ(1 − θ)h

− λV1(h)

+ λθ(1 − θ)V1(h − 1)
θh−1 + ξ(1 − θ)h−1

θh + ξ(1 − θ)h .

Equating the two expressions in (3.14) and rearranging, I obtain:

(λ + r)V1(h) · (θh + ξ(1 − θ)h) = λV1(h + 1) · (θh+1 + ξ(1 − θ)h+1) (3.15)

+ λθ(1 − θ)V1(h − 1) · (θh−1 + ξ(1 − θ)h−1).

Further, I denote a function F(h) := V1(h) · (θh + ξ(1− θ)h) and transform the equation (3.16) to

arrive at the equality

λF(h + 1) − (λ + r)F(h) + λθ(1 − θ)F(h − 1) = 0. (3.16)

The ODE (3.16) admits a solution of the form F(h) = A · xh, where A =const and x are the roots
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of the second order polynomial

Ψ(x) = λx2 − (λ + r)x + λθ(1 − θ). (3.17)

The discriminant is D = (λ+ r)2−4λ2θ(1− θ) = r2 + 2rλ+λ2(1−2θ)2 is non-negative ∀θ ∈ R given

both λ and r are positive values. Therefore, both roots of the polynomial Ψ(x) are real numbers:

x1,2 =
(λ+r)±

√
r2+2rλ+λ2(1−2θ)2

2λ ∈ R.

In case the number of sellers signals is very large, limh→−∞ V1(h) = 0, it must hold that A2 = 0,

so the solution is

V1(h) =
A1xh

1

θh + ξ(1 − θ)h . (3.18)

Case 3: h∗ − 1 ≤ h < h∗

In this situation, if an additional buy order appears at the next instant, then it becomes optimal to

submit a limit order. Again, denote the current value of the strategy by V2(h), then V2(h) = V2/r

and another Bellman equation must be satisfied:

V2 =
E[dV2(h)]

dt
. (3.19)

The expected change in the value function is

E[dV2(h)]
dt

=


+ G(h + 1) · (θp(h) + (1 − θ)(1 − p(h)))λdt

+ V2(h) · (1 − λdt)

+ V1(h − 1) · (θ(1 − p(h)) + (1 − θ)p(h))λdt

− V2(h)


/dt,

which reduces to

E[dV2(h)]
dt

= λ (p(h + 1)s + B −C)
θh+1 + ξ(1 − θ)h+1

θh + ξ(1 − θ)h

− λV2(h)

+ λθ(1 − θ)xh−1
1

A1

θh−1 + ξ(1 − θ)h−1

θh−1 + ξ(1 − θ)h−1

θh + ξ(1 − θ)h .

Thus, equation (3.19) comes to

(λ + r)V2(h) · (θh + ξ(1 − θ)h) = λ
(
(B + s −C)θh+1 (3.20)

+ (B −C)ξ(1 − θ)h+1 + θ(1 − θ)xh−1
1 A1

)
.

In order to establish a unique solution two additional criteria have to be satisfied: value matching
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and continuity conditions. These coditions reconcile functions G(h), V1(h) and V2(h) at switching

points and determine the values of the constants in the solution.

1. Value matching condition: V2(h∗) = G(h∗)

Equate the right-hand side term in equation (3.21) and the expression for G(·) in (3.12) multiplied

by (λ + r)(θh + ξ(1 − θ)h) and obtain

λ
[
(B + s −C)θh∗+1 + (B −C)ξ(1 − θ)h∗+1 + θ(1 − θ)A1xh∗−1

1

]
=

(λ + r)
[
(B + s −C)θh∗ + (B −C)ξ(1 − θ)h∗

]
. (3.21)

From here it follows immediately that the constant A1 is

A1 =
(r + (1 − θ)λ)(B + s −C)θh∗ + (r + λθ)(B −C)ξ(1 − θ)h∗

λθ(1 − θ)xh∗−1
1

. (3.22)

2. Continuity condition: V1(h∗ − 1) = V2(h∗ − 1)

Substituting the value of A1 in (4.33) into the expressions for values V1 and V2, I get:

V1(h∗ − 1) =
xh∗−1

1 A1

θh∗−1 + ξ(1 − θ)h∗−1

=
1

λθ(1 − θ)
·

(r + (1 − θ)λ)(B + s −C)θh∗ + (r + λθ)(B −C)ξ(1 − θ)h∗

θh∗−1 + ξ(1 − θ)h∗−1 ,

V2(h∗ − 1) =
λ

λ + r
·

(B + s −C)θh∗ + (B −C)ξ(1 − θ)h∗ + A1θ(1 − θ)xh∗−2
1

θh∗−1 + ξ(1 − θ)h∗−1

=
1

x1(λ + r)
·

(r + (1 − θ + x1)λ)(B + s −C)θh∗ + (r + (θ + x1)λ)(B −C)ξ(1 − θ)h∗

θh∗−1 + ξ(1 − θ)h∗−1 .

I multiply each expression V1(h∗ − 1) and V2(h∗ − 1) by x1λθ(1 − θ)(λ + r) θ
h∗−1+ξ(1−θ)h∗−1

θh∗+ξ(1−θ)h∗ and

equate them to obtain

p(h∗) · (B + s −C) [(r + (1 − θ + x1)λ) − x1(λ + r)(r + (1 − θ)λ)]

= (1 − p(h∗)) · (B −C) [x1(λ + r)(r + λθ) − λθ(1 − θ)(r + (θ + x1)λ)] .

Solving in terms of p∗ := p(h∗) gives

p∗ =

[( s
C − B

− 1
)
Π + 1

]−1
, (3.23)
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where

Π =
λθ(1 − θ)(r + (1 − θ + x1)λ) − x1(λ + r)(r + (1 − θ)λ)

λθ(1 − θ)(r + (θ + x1)λ) − x1(λ + r)(r + θλ)
,

and x1 > θ is the larger real root of the quadratic polynomial

Ψ(x) ≡ λx2 − (λ + r)x + λθ(1 − θ).

Given that all model parameters are non-negative and x1 = (r+λ+
√

r2 + 2rλ + λ2(1 − 2θ)2)/2λ

I simply rewrite the expression for the coefficient Π in a more economical form:

Π =
r + (1 − 2θ)

(
λ(1 − 2θ) +

√
r2 + 2rλ + λ2(1 − 2θ)2

)
2r(1 − θ)

. (3.24)

Appendix B Proof of Proposition 3.4.2–3.4.5

The sensitivity of the optimal threshold p∗ with respect to market characteristics is obtained through

partial derivatives. Also, in order to guarantee that p∗ is a well-defined probability it must hold that

B + s > C > B. Given that the coefficient Π ≥ 0, it follows that the threshold p∗ depends negatively

on the spread s and the bid price B, and positively on costs C:

∂p∗

∂s
= −(p∗)2 ·

Π

C − B
< 0, (3.25)

∂p∗

∂B
= −(p∗)2 ·

Πs
(C − B)2 < 0 (3.26)

and
∂p∗

∂C
= (p∗)2 ·

Πs
(C − B)2 > 0. (3.27)

These relationships are illustrated in Figure 3.7(a)-3.7(c) for the baseline values of parameters (Ta-

ble 3.2). Further, I find the derivatives using the implicit function theorem.

Theorem 3.7.1 (Implicit Function Theorem). Let the function F : R × R → R have a zero in

(x0, y0). If F(x, y) is continuous in the vicinity of (x0, y0) and strictly monotonic in y for any fixed x,

then there exists a continuous two-dimensional interval I = Ix × Iy in the vicinity of (x0, y0) and a

continuous function f : Ix → Iy such that for any point (x, y) ∈ I it holds:

F(x, y) = 0 ⇔ y = f (x). (3.28)
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Figure 3.7: Partial derivatives of the threshold belief with respect to market parameters (blue: θ = 0.7,
brown: θ = 0.3).

Corollary 3.7.1. Suppose that F(x, y) is continuously differentiable, and denote its partial deriva-

tive with respect to x by F′x and the partial derivative with respect to y by F′y. The partial derivative

of the function f (x) is expressed as

f ′(x) = −
F′x(x, f (x))
F′y(x, f (x))

. (3.29)

Therefore, applying the property (3.29) it follows that the derivative of the optimal threshold p∗
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with respect to any factor y is given by

∂p∗

∂y
=
∂p∗

∂Π
·
∂Π

∂y
. (3.30)

First, the partial derivative of threshold p∗ with respect to coefficient Π equals:

∂p∗

∂Π
= −(p∗)2 ·

( s
C − B

− 1
)
< 0. (3.31)

Second, I take the derivative of Π(λ, θ, r) with respect to each of the variables λ, θ and r:

∂Π

∂θ
=
−r2 + r

(
−2λ +

√
r2 + 2rλ + λ2(1 − 2θ)2

)
2r(1 − θ)2

√
r2 + 2rλ + λ2(1 − 2θ)2

(3.32)

−

(
3 − 8θ + 4θ2

)
λ
(
(1 − 2θ)λ +

√
r2 + 2rλ + λ2(1 − 2θ)2

)
2r(1 − θ)2

√
r2 + 2rλ + λ2(1 − 2θ)2

∂Π

∂λ
=

(1 − 2θ)√
r2 + 2rλ + λ2(1 − 2θ)2

· Π(λ, θ, r), (3.33)

and
∂Π

∂r
= −

(1 − 2θ)λ

r
√

r2 + 2rλ + λ2(1 − 2θ)2
· Π(λ, θ, r). (3.34)

Given that ∂p∗

∂Π
< 0, we infer ∂p∗

∂θ ≥ 0, ∂p∗

∂λ = sgn{θ − 0.5} and ∂p∗

∂r = sgn{0.5− θ}, as illustrated in

Figure 3.7(d)-3.7(f).

Appendix C Error Analysis Derivations

In order to derive the probability that the trader does not submit an order while the true state is

good, and the corresponding expected times of submission, I use the distribution functions of the

first passage time. In a similar stochastic problem, Feller (1971, p.479) provides the density function

of the first passage time for the variable that describes the visible order imbalance in my model.

Denote by fh(t) the unconditional probability density function of the imbalance first passage

time:

fh(t) = e−λt h
t

(
1 − θ
θ

)−h/2

Ih
(
2λt

√
θ(1 − θ)

)
, (3.35)

where Ih(·) is a modified Bessel function. Then the probability that h∗ is not reached before T is

calculated as

PN(T, h∗) := P[∀t ∈ [0,T ] : ht ≤ h∗
∣∣∣ h0 = h, γ = 1] = 1 −

∫ T

0
fh(t)dt. (3.36)
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I substitute from (3.35) the probability density fh(t)|h=h∗ and arrive at the formula

PN(T, h∗) = 1 − h∗
(

θ

1 − θ

)h∗/2 ∫ T

0

e−λt

t
· Ih∗

(
2λt

√
θ(1 − θ)

)
dt. (3.37)

Next, using the probability density fh(t) I obtain the expected time of order submission via definition

of the mean value E[x] =
∫

x · f (x)dx:

E[τ∗] := E[τ ≤ T | h = h∗] = h∗
(
1 − θ
θ

)−h∗/2 ∫ T

0
e−λt · Ih∗

(
2λt

√
θ(1 − θ)

)
dt. (3.38)

Lastly, denote by f̃h(t) the probability density function of the imbalance first passage time con-

ditional upon a high true demand:

f̃h( t| γ = 1) = e−λt h
t

θh + ξ(1 − θ)h

(1 + ξ)
√

(θ(1 − θ))h
Ih

(
2λt

√
θ(1 − θ)

)
. (3.39)

Therefore, the expected time of submission given a high true demand is determined by the formula

E[τ∗γ=1] := E[τ ≤ T | h = h∗, γ = 1] = h∗
θh∗ + ξ(1 − θ)h∗

(1 + ξ)
√

(θ(1 − θ))h∗

∫ T

0
e−λt · Ih∗

(
2λt

√
θ(1 − θ)

)
dt.

(3.40)
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Chapter 4

Transparency Regimes in a Market with
Heterogeneous Trading Rules

4.1 Introduction

As a branch of financial market regulation debates, there is a growing literature on the benefits and

pitfalls of reduced market transparency, with a special alacrity regarding iceberg or hidden order

trading. The previous chapter was concerned with the incentives structure of an individual investor

who contemplates trading in a market with hidden liquidity, departing from a premise that such

markets offer, with some probability, better trade execution conditions. The aim of this chapter is to

investigate the problem of limited market transparency using an artificial double auction setup, and

much of the literature reviewed in the previous chapter remains relevant for the present discussion.

In order to understand the regulators’ dilemma in prescribing or banning the use of iceberg

orders, consider a following example. Up until the formal introduction of iceberg orders in public

limit order markets, brokers established their own automated order processing systems that divided

particularly large orders received from the customers into several smaller tranches and then routed

these tranches to the market in succession. For instance, if a broker received an order to sell 10,000

stocks at £25, he would split it up into 10 equal orders of 1,000 stocks each and his automated

system would repeat the submission of these orders to the public limit order book the moment one

of them is fully executed. This strategy permitted to sell the whole amount of stocks preserving

the price of £25 per stock. However, this strategy, without being explicitly known to the exchange,

would not eliminate the risk of being traded through. Indeed, suppose that the market is trading at

£23 − 25 and a seller has an order with a broker for 10,000 shares at £25. If an aggressive buyer

arrived to purchase 2,500 stocks at the market, he would fill 1,000 at £25 and buy the rest from

the next seller, for example, at £26. As a result both parties would have missed the opportunity

of better trade terms: the large seller would have suffered from longer total execution time or only
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partial execution, and the buyer would have bought at a higher price £26 being unaware of a better

price offer. In response to the inefficiency of this large order transmission routine iceberg orders

appeared as an innovation that enabled brokers to hold a full customer order in the public order

book whilst displaying only a small fraction of it. In the above scenario with an aggressive buyer

all 2,500 shares would be purchased at £25, benefiting the buyer by achieving a better price, and

the seller by faster execution, and thus increase overall market liquidity.

Beneficial as iceberg orders seem, they entail a certain trade-off: hidden liquidity affects the

ability of traders to evaluate the true market conditions, making the social advantages of opacity

rather obscure. Recent empirical studies, for instance, Aitken et al. (2001); Anand and Weaver

(2004); Bloomfield et al. (2011); Boehmer et al. (2005); Henderhott and Jones (2005), as well as

theoretical works of Baruch (2005) and Moinas (2010) explore the subject of market opacity and

its influence on market quality. Despite availability of data, there is no consensus in the literature

on the role of imperfect transparency: in certain markets reduced transparency widens the spread

and deteriorates efficiency (Flood et al., 1999; Henderhott and Jones, 2005), other research reports

partially or exactly opposite outcomes (Bloomfield and O’Hara, 1999; Madhavan et al., 2005) or

no significant impact (Aitken et al., 2001). While empirical studies seem to diverge in their con-

clusions partly due to discrepancies in the structures of actual analysed markets, theoretical models

suffer from the rigidity of assumptions. This chapter adopts an agent-based modeling approach that

surpasses the mentioned limitations of empirical and other theoretical frameworks and facilitates

the comparison of various market regimes. Few attempts have been made to date to apply agent-

based modeling approach to the problem of market transparency. In his recent paper Yamamoto

(2011), as one recent example, argues that the level of quote transparency has little influence on

long memory properties of financial data. However, the author concentrates solely on the type of

transparency regime when quote visibility in the limit order book is restricted to the five best prices,

leaving opaque microstructures with hidden and iceberg orders outside his scope.

In this chapter I contribute to the research on pre-trade market transparency. I examine the

consequences that different market depth disclosure policies propagate in an artificial double auction

market where agents use the information about volumes in the limit order book to formulate their

trading strategies. In particular, I contrast an exogenous transparency regime, whereby the exchange

explicitly regulates the number of publicly displayed quotes, to an endogenous transparency regime,

where the amount of displayed volume is determined by traders themselves by means of iceberg

orders. My analysis involves several dimensions which I synthesise into two broad and partly

overlapping research questions.

How is reduced market transparency reflected in order placement?

One crucial aspect of market operations is encoded in the order flow. In an artificial double auction

trading environment with moderately sophisticated agents, I distinguish between market orders, ag-
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gressive and passive limit orders. Based on this classification I estimate the distribution of orders

that are placed to the market conditional upon the preceding order type. Furthermore, I compare

the conditional aggressiveness of orders subject to current market conditions and monitor how fre-

quencies of each order type evolve as market transparency diminishes.

What is the impact of lower pre-trade transparency on market quality?

Among the indicators of market quality I define transaction costs measured by the bid-ask spread

and the liquidity evaluated by such metrics as price impact and execution delay that occurs after

the order became the best price. Moreover, I examine market efficiency and memory properties

embedded in asset returns and order book imbalance. Since there is no clear alignment in the

empirical research regarding the implications of reduced trade transparency, I expand the literature

on the subject and assess the variation of results across different transparency regimes.

The remainder of this chapter proceeds as follows. Section 4.2 presents the design of a market

in which traders submit their orders with the clearing mechanism, and defines market specifications.

Section 4.3 evaluates the capability of this artificial market with heterogeneous traders to replicate

the phenomena that is often encountered in financial markets for different degrees of transparency.

Section 4.4 elaborates the analysis of restricted depth information within four distinct market archi-

tectures and scrutinises the evolution of market quality characteristics: the size of bid-ask spreads,

regularities in the order placement, and market liquidity, assessed by various indicators. Section 4.5

concludes and points out directions for future research.

4.2 Market Setup

4.2.1 The Model

I construct a double auction market for a single non-dividend paying stock where NA heterogeneous

agents trade during a repeated number of rounds, by modifying the prototype model of artificial

market of Chiarella et al. (2009). In each time period t a random agent i is called to trade. This

agent formulates his order placement strategy by (i) relating the current price of the asset to its

fundamental value, (ii) analysing information about the visible market depth, and (iii) assuming

some random component in the asset returns. Assuming that the market reverts to trading at the

fundamental price of the asset p f
t in τ f periods, the trader evaluates in which direction the market is

likely to move given the current price pt. The order imbalance is defined as the signed log difference

between the total amount of stocks demanded Qb
t and offered Qa

t in the market at time t

Dt = sgn
(
Qa

t − Qb
t

)
· ln

1 −
∣∣∣Qa

t − Qb
t

∣∣∣
Qa

t + Qb
t

 . (4.1)
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If the combined volume of orders submitted on the same side as his trading intention is larger than

on the opposite side of the market, the agent realises that there is a tight competition, and that the

chances to trade within his time horizon are slim, hence he is prone to trade more aggressively.

Also, the trader takes into account an aggregated uncertainty factor ξ that is normally distributed

with zero mean and σ2
ξ variance, ξ ∼ N(0, σ2

ξ). Therefore, trader i builds his expectation of the

return on the asset that can be achieved within his time horizon τi according to the following rule:

r̂i
t,t+τi =

1
νi

1 + νi
2 + ηi

νi
1

ln(p f
t /pt)
τ f + νi

2D̄t + ηiξt

 , (4.2)

where D̄t is the average order imbalance over the past τi periods, and coefficients νi
1 , νi

2 and ηi guide

fundamentalist, imbalance and noise components of trader’s i strategy respectively. The forecasted

rate of return r̂i
t,t+τi yields the maximum expected price over a τi periods

p̂i
t+τi = pt exp(r̂i

t,t+τiτ
i). (4.3)

Every trader in this market is risk-averse and holds a portfolio of stocks and cash.1 At each

trading round the trader that was summoned to the market establishes a range of admissible prices.

I assume that short selling is prohibited, hence the maximum price pM at which trader i can place

his order equals his expected price p̂i
t+τi . The lowest price pm at which trader i can place an order is

subject to his budget constraint since borrowing is not available. In addition, there is a price p∗, a

satisfaction level, that makes the current portfolio composition optimal: if the current market price

of the stock is above this level then the trader is willing to sell, otherwise, the trader intends to buy

more stocks. Two propositions below describe the mechanism that guides the trader’s response to

visible order imbalance, depending on the force of imbalance impact, and to the volatility of past

returns on the interval of admissible prices.

Proposition 4.2.1. Assume that in a market with short selling ban and no borrowing available to

the traders the region of admissible buy [pm, p∗] and sell [p∗, pM] prices for a given risk-averse

trader is determined by equations (4.23)-(4.25). Then it follows that

• both the satisfaction price p∗ and the minimum price pm are monotonic increasing in the

maximum expected price pM;

• the sensitivity of the satisfaction price p∗ to pM is higher than the sensitivity of the minimum

price pm to pM.

Proof. See Appendix B. �

1This model bears a close resemblance to the framework described in Chiarella et al. (2009) with the imbalance
factor in place of chartist. For this reason I highlight here only key aspects of the model with emphasis on the role of
order book imbalance. Interested readers are referred to Appendix A of this chapter for a full description of traders’
decision making and order submission routines.
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Proposition 4.2.1 implies that if the trader is optimistic and wishes to sell stocks, then bearing

in mind the current location of the asset price pt, he is likely to place a limit order farther in the

book and wait till the market reaches this price level. However, if the seller is convinced of price

depreciation then he trades at the market. Likewise, buyers that believe in price decline replenish

the book, while optimistic buyers demand immediacy instead. Given this, positive order imbalance

translates into higher price expectations and, therefore, pushes buyers to submit more aggressive

orders and sellers – more passive. Similarly, when sell limit orders prevail in the book and order

imbalance is negative, new incoming sellers are more prone to consume liquidity and buyers are

more likely to provide liquidity to the market. Hence, impatient traders reinforce the trend in

imbalance, and patient agents reverse it.

Proposition 4.2.2. Assume that in a market with short selling ban and no borrowing available to

the traders the region of admissible buy [pm, p∗] and sell [p∗, pM] prices for a given risk-averse

trader is determined by equations (4.23)-(4.25). Then it follows that

(1): if the order imbalance towards buyers increases, the trader is more likely to sell the stocks,

and vice versa;

(2a): if buyers prevail in the limit order book, the trader with a stronger imbalance impact is

more likely to sell the stocks, and vice versa;

(2b): if sellers prevail in the limit order book, the trader with a stronger imbalance impact is

more likely to buy the stocks, and vice versa;

(3): if the volatility of returns increases, the trader is more likely to sell the stocks, and vice

versa.

Proof. See Appendix C. �

The relationship between order imbalance and traders’ propensity to buy or sell the asset sug-

gests that quote transparency intensifies contrarian behaviour among market population. Indeed, if

order imbalance is skewed to one side, then the new agent that arrives to trade is inclined to join the

opposite side of the market.

The resulting mixture of trend-following and contrarian behaviour that stems from Proposi-

tions 4.2.1 and 4.2.2 is rooted to recurring empirical evidence. Ranaldo (2004) discovers that

patient traders seek liquidity when the same side of the book is dense and the opposite side is

slimmer. Lo and Sapp (2005) document a complementary effect: traders switch to more passive

orders if many aggressive traders precede on the same side of the market. In addition, Chiarella

et al. (2009) demonstrate that the behaviour induced on noise traders by CARA preferences implies

that if the noise traders are optimistic, they submit all types of orders symmetrically around the

quotes, whereas pessimistic expectations makes them more likely to buy with limit orders and sell

with market orders. As I reveal in the numerical simulations, when traders take market depth into
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consideration, the book becomes more symmetric and bears closer resemblance to the average book

shape observed in real markets.

4.2.2 Simulations Design

In this section I outline the main features of the simulations and provide a summary of numerical

parameters. The ultimate aim of the present chapter is to trace the reaction of heterogeneous agents

to the availability of information about market depth. In the simulations I juxtapose markets with

four alternative transparency regimes: with no information and full information about the quote

depth, and then with exogenous and endogenous restrictions on displayed market depth. For con-

venience, I label these market environments as Specification 1, Specification 2, Specification 3 and

Specification 4 respectively, as summarised in Table 4.1.

Table 4.1: The definitions of the four market transparency regimes.
Specification Name Description
Specification 1 dark market fundamentalist and noise impact

Specification 2 transparent market fundamentalist, noise and order imbalance impact

Specification 3 quasi-transparent market fundamentalist, noise and order imbalance impact
with only five best quotes visible

Specification 4 opaque market fundamentalist, noise and order imbalance impact
and permission to use iceberg orders

I start by comparing the extreme cases of a dark market, where market depth is not publicly

revealed and traders have no resources to estimate the imbalance Dt,2 and a transparent market,

where traders are aware of all orders sizes sitting in the book. These two markets serve as bench-

marks in my analysis. Naturally, in a transparent market agents observe the depth of an entire limit

order book before trading. While in certain markets such an assumption is perfectly viable (e.g.

NYSE OpenBook), many other exchanges (e.g. Tokyo Stock Exchange, Euronext Paris) restrict the

available information to the five best quotes on each side of the book at any time. The objective that

trading venues pursue by imposing this restriction is to attract more traders and avoid price manip-

ulation by placing misleading orders. Therefore, in one of the simulation specifications I consider

a quasi-transparent market with an exogenous restriction where traders formulate their strategies

according to the same principle as in a transparent market but with an extra condition imposed on

their information set: they calculate order imbalance Dt based only on the visible depth of the five

best quotes on the buy side and the five best offers on the sell side at time t.

Lastly, suppose that the use of iceberg orders, which allow traders to fix the limit price and leave

a fraction of the order size temporarily hidden, is permitted in the market. I introduce a market rule
2All agents have a zero weight of imbalance component νi

2 = 0,∀i in equation (4.2).
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whereabout any trader may hide their full order size subject to an imposed minimum size.3 This

market layout is referred to as an opaque market throughout the discussion.4 Any trader in this

opaque market can take advantage of an iceberg order to manage his exposure. The algorithm of

order submission is similar to the basic model of Section 4.2.1 with an additional step to determine

the appropriateness of splitting via an iceberg order. I set the minimum iceberg order peak size

equal to the current average order size on the relevant side of the book. Therefore, if agent i was

randomly called to trade in round t and picked a price p, so that, for example, pm ≤ p ≤ at, he would

pursue a passive buy strategy. This trader then compares his demand for stocks to the average buy

order size in the book Q̄t. If the amount of stocks that the trader wishes to purchase is below the

mean size of visible buy limit orders, then he submits an ordinary limit buy order; otherwise, the

trader uses a soft approach and places an iceberg order at price p with the peak size Q̄t(1 + u),

where u ∼ U(0, 1) is a standard uniform random variable. As a result, the depth of the limit order

book is only partly observable and traders are forced to use just visible volumes to assess the order

imbalance and predict the future asset price.5

The summary of the parameter values adopted in numerical simulations of the four described

market layouts is given in Table 4.2 below. There is a fixed population of NA agents in the market,

who are initially allocated a random amount of stocks uniformly distributed on the interval S 0 ∈

[0,NS ] and an amount of cash C0 ∈ [0,NS p0] with a maximum number of shares NS per trader and

the common risk aversion factor ϕ. The starting price is p0 = £400 and the price grid is determined

by the minimum tick size ∆. The noise term ξt is normally distributed with dispersion σ2
ξ . Agents

trade sequentially and in a random order. When called to trade, an agent determines his price

interval [pm, pM] and draws any price p from that interval with an equal probability. If the trader

already has an outstanding order in the book, it is replaced by a new one. Agents do not revise or

cancel their orders prior to expiry otherwise. The trading horizons of agents are determined by a

factor τ, so that the average horizon is approximately two trading days τd of 100 trading sessions. I

assume that the fundamental asset value is a white noise with volatility σξ. During active trading,

the price reverts to the fundamental value in 20 days. The fundamental price, order imbalance and

noise impact coefficients are drawn from three independent exponential distributions for the entire

population of traders: νi
1 ∼ exp(1/σν1), νi

2 ∼ exp(1/σν2), ηi ∼ exp(1/ση), ∀i = 1,NA, and are fixed

during the course of trading. I run the simulations for a large set of values σν1 and σν2 in order to

study the influence of different ratios between fundamentalist, imbalance and noise components on

3 This assumption is compatible with requirements of many exchanges. For instance, the minimum peak size of an
iceberg order on Euronext is 10 times the unit of trading.

4I define the concrete iceberg order submission scheme, while the mechanism of iceberg order execution and peak
release are duly explained in Chapter 3.

5 It is not feasible to draw a rigorous comparison between the degree of transparency of Specification 3 and Speci-
fication 4: in the opaque market a potentially larger fraction of market volumes is displayed, however, the information
about the orders that cluster around the best quotes is usually of higher importance since most of the trading happens
there.
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Table 4.2: Key input parameters of the numerical simulations.

Parameter Value
number of agents NA = 5000
number of stocks NS = 50
initial fundamental price p f

0 = £300
risk aversion ϕ = 0.1
time horizon τ = 200
reversion horizon τ f = 20τd

day length τd = 100
noise volatility σξ = 0.001
fundamentalist impact σν1 = 0.1
imbalance impact σν2 = 0.0037
noise impact ση = 0.01
tick size ∆ = £0.005

price, order flows and the book, and establish that the results are robust within a fair interval from

baseline values.

Each simulation run consists of 200,000 rounds. Since every market simulation commences

with an empty limit order book, I discard the first 100,000 rounds and analyse the data from the

remaining 100,000 rounds, which comprises 1,000 trading days. The profile plots and descriptive

statistics of key time series for one simulation run of each specification are presented in Appendix F.

In order to gauge how transparency regimes affect the collective behaviour of heterogeneous traders

and what emergent market properties they generate, I replicate each simulation 100 times and com-

pute average estimates of the key market statistics. In the subsequent sections I discuss the results

of my numerical experiments in relation to empirical facts from double auction markets and to the

principal research questions.

4.3 Stylised Facts

In this section I examine the ability of the market with heterogeneous trading rules to reproduce a

number of stylised facts that are frequently detected in financial markets. In particular, I evaluate

how the degree of market transparency alters the likelihood of abnormal price fluctuations, path

dependence in order submissions, and other memory properties.

4.3.1 Abnormal Returns

The mean return is effectively zero under all specifications, whereas the diapason of returns expands

significantly once traders have the opportunity to account for a limit order book depth to form their
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expectations of the future stock price (Table 4.3). As in the model of Chiarella et al. (2009) with

noise, fundamentalist and chartist components, the reason for large price oscillations in a partially

and fully transparent cases is the antagonistic effect of fundamentalist and imbalance components

that override traders’ expectations once a big price change occurs. However, in contrast with a

quasi-transparent market which leads to the greatest amplitude of returns, the opaque microstructure

helps to tame large price swings.

Table 4.3: Summary statistics of returns and order flow under four transparency regimes. The results repre-
sent averages over 100 simulation runs.

Quasi-
Dark Transparent

Transparent
Opaque

Returns
min -0.0215 -0.0541 -0.0528 -0.0274
max 0.0246 0.0500 0.0559 0.0289
mean 0.0000 0.0000 0.0000 0.0000
s.d. 0.0014 0.0024 0.0024 0.0013
skewness 0.2320 -0.1527 0.1850 0.0842
kurtosis 18.8458 33.7944 34.9786 40.4401

Order Flow
no. of orders 96,966.1 96,982.5 97,005.3 72,563.7
average order size 24.30 24.04 24.11 29.57

average BM 29.20 28.10 28.10 37.51
average BL 22.18 23.18 22.95 25.74
average SM 32.05 30.41 30.67 39.54
average SL 19.38 19.66 19.61 23.64

Though on average it is impossible to profit from trading in any of the considered markets,

the opaque market offers the highest probability of receiving abnormal returns, as indicated by

the kurtosis. Notably, only the transparent market embraces two empirical facts in the financial

markets: asymmetric chances of receiving positive and negative returns and non-trivial probability

of abnormal returns. This is a convenient result since a similar setup but with chartist impact in place

of order imbalance impact, the model of Chiarella et al. (2009) could not replicate this empirical

stylised fact of higher likelihood of negative returns.

4.3.2 Order Placement Patterns

In the simulations I distinguish between six classes of orders: a buy market order (BM), or an

intention to buy the asset at a price higher or equal to the current best ask; a sell market order (SM),

or an intention to sell the asset at a price lower or equal to the current best bid; buy limit orders

placed inside the current bid-ask spread (aBL) and below the current best bid (pBL), and sell limit
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orders placed inside the current bid-ask spread (aSL) and above the best ask (pSL).

The general observation about the order placement is that the availability of information about

book depth has no discernible effect on order flow in a transparent or a quasi-transparent market in

that neither the cumulative number of submitted orders, nor the average order size change substan-

tially. As indicated in Table 4.3, under these two transparency regimes the average size of aggressive

orders diminishes, albeit insignificantly, and is accompanied by a marginal increase in the average

size of passive orders. In an opaque market, the intensity of the order flow abates, though it is

compensated by an increase in the average size of submitted orders.

First, I examine the order submission patterns to verify whether traders respond adequately to

the observable state of the limit order book. More precisely, I check how order placements change

depending on the market conditions against empirical inference that was consolidated in the work

of Ranaldo (2004). Using order and transaction data from the Swiss Stock Exchange, which is

a pure order-driven electronic stock market with no market maker, Ranaldo (2004) estimates a

probit model and uncovers several determinants of order aggressiveness framed as the following

properties:

P1: The wider the spread, the weaker the order aggressiveness.

P2: The higher the volatility, the stronger the order aggressiveness.

P3a: The thicker the book on the buy (sell) side, the stronger the order aggressiveness

of the incoming buyer (seller).

P3b: The thicker the book on the sell (buy) side, the weaker the order aggressiveness

of the incoming buyer (seller).

According to analytical results derived for Proposition 4.2.2, these properties hold on individ-

ual level for every trader. In order to verify the capability of the artificial market to reproduce these

properties on aggregate, I compute the frequencies of all six order types submissions given the value

of the corresponding market parameter. For instance, for the bid-ask spread variable I first count

the frequencies of all order types submitted when the current spread is tight, then order frequencies

when the spread at the time of submission is wide. Small and large sizes of the spread are defined

against the average spread. In each simulation run I calculate the probability of submitting a con-

crete order when the parameter, e.g. the spread, is high minus the probability of the same order

submission when the parameter is low.

As reported in Table 4.4, I detect the correlation between order aggressiveness and the spread

size (P1) across all markets independently of the transparency degree: the spread widens, traders

rely more on limit orders (the probability of orders inside the spread increases, and outside the

spread decreases) and less on market orders. According to Ranaldo (2004), the volatility of returns

and order aggressiveness move in the same direction. Also, I find that P2 holds only for sellers of

the asset in all four cases. However, in contrast with the empirical evidence, higher volatility
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4. Transparency Regimes in a Market with Heterogeneous Trading Rules

encourages buyers to fill the book. The asymmetry between the behaviour of patient buyers and

sellers, who seek to close their positions quickly, is caused by the CARA preferences.6 Regarding

P3a and P3b, evidently, traders’ submissions are affected by market depth only when it is disclosed

to them to a certain extent. Once the information about the market depth becomes public and every

agent can evaluate the demand and supply for the stock – precisely in a transparent market and with a

bias in a quasi-transparent and opaque markets, – then traders start placing orders further away from

the mid-point price and the shape of the book resembles a real market.7 In this sense, accounting

for market depth provokes a certain feedback effect. In transparent and quasi-transparent cases,

an incoming buyer has a higher probability to use a market order and an incoming seller has an

increased chance of trading via a passive limit order as the demand for asset increases. Concerning

the aggressiveness of the order flow, the last two rows in Table 4.4 read that in an opaque market

the more liquidity traders observe the higher is their propensity to provide liquidity by placing more

passive orders.

Another aspect that characterises market quality is certain regularities or path dependences in

order submissions. I examine the order flow pattern using an approach similar to Biais et al. (1995),

who uncovered in their empirical study of Paris Bourse data a number of important properties

including the so-called diagonal effect, whereabout orders of the same type tend to follow each

other, so that the diagonal elements of the conditional distribution matrix have the highest weights.

Typical conditional distributions of orders in the four markets are given in Table 4.5. Each estimate

in this table stands for the number of times that the order type in row i was submitted after the

order type in column j throughout 1,000 trading days. Dividing frequencies in each row by the

total number of orders of the corresponding type, I convert to probabilities and then calculate a

percentage deviation of a conditional probability of a particular order type from the unconditional

probability of this order type. Along each column, the most likely order sequence is printed in bold.

The last column shows the unconditional probabilities of six order types. Although the diagonal

effect may not be a universal property of real markets, it is worth verifying its relation to the degree

of quote transparency. The described evaluation method proves convenient for this purpose.

Overall, the diagonal effect is dissipated in my artificial marketplaces, unlike Biais et al. (1995),

6Higher volatility does not affect the expectations of the trader directly, but alters the region of admissible prices
defined by pm and p∗. According to Proposition 4.2.2, the subinterval of buy prices becomes shorter than the subinterval
of sell prices proportional to the total interval length pM − pm when the spot volatility is high. Consequently, it is more
likely that the current market price of the security lies in the subinterval of selling prices (above p∗), and if the trader
intends to purchase the asset, he submits a passive buy limit order.

7In this model, as Chiarella et al. (2009) duly explain, a market with pure noise traders is characterised by a substan-
tial asymmetry of a limit order book towards the buy side, which is a consequence of CARA preferences. This imbalance
partly evens when traders become aware of the fundamental asset value and then orders cluster around the best quotes. In
my version of the model the positive skewness in returns, however, is not removed, as was pointed out for a dark market.
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Table 4.5: Percentage deviations of order type probabilities conditional on the previous order type from
their unconditional probabilities in the last column. The results represent averages over 100 simulation runs.

Dark market
BM aBL pBL SM aSL pSL Unconditional

BM 28.0 2.5 -8.5 -35.4 1.6 14.3 16.61
aBL 24.4 -1.9 -10.4 3.7 -4.8 -7.3 11.22
pBL -34.6 2.4 11.9 22.2 4.2 -7.7 23.50
SM -34.8 0.7 10.5 26.3 3.9 -8.3 17.09
aSL 6.1 -0.0 -4.8 19.4 -4.5 -13.1 11.06
pSL 25.2 3.2 -8.1 -36.8 3.2 16.1 20.53

Transparent market
BM aBL pBL SM aSL pSL Unconditional

BM 35.0 3.5 -12.3 -39.0 -2.3 14.5 15.89
aBL 33.6 -6.2 -11.9 2.1 -9.0 -4.9 9.17
pBL -37.6 1.6 14.1 24.6 6.6 -9.0 25.74
SM -42.6 2.5 13.3 35.1 9.3 -13.1 15.51
aSL 6.3 -5.2 -3.6 26.7 -6.7 -12.8 9.18
pSL 23.0 2.2 -7.4 -32.3 -0.6 12.7 24.51

Quasi-Transparent market
BM aBL pBL SM aSL pSL Unconditional

BM 35.9 5.2 -13.6 -40.7 -0.8 16.7 16.06
aBL 30.8 -5.5 -11.9 3.0 -7.3 -4.9 9.40
pBL -36.4 0.3 14.2 24.4 5.0 -9.7 25.80
SM -41.4 0.7 13.9 33.8 6.7 -13.3 16.09
aSL 5.6 -5.5 -3.3 26.4 -5.4 -14.1 9.46
pSL 26.0 4.1 -9.2 -35.8 0.3 15.3 23.19

Opaque market
BM aBL pBL SM aSL pSL Unconditional

BM 31.8 3.7 -11.0 -34.2 1.8 13.2 16.79
aBL 27.5 -6.4 -9.5 2.1 -9.2 -5.4 8.27
pBL -32.9 1.4 11.7 23.6 3.7 -8.9 26.07
SM -35.8 2.5 11.2 29.3 5.1 -11.4 17.51
aSL 10.5 -5.9 -4.9 17.2 -8.3 -10.0 8.08
pSL 23.8 2.5 -7.9 -30.1 1.7 12.8 23.27

where it emerges so evidently.8 This said, I observe significant path dependence in market orders

equally for buyers and sellers, which is further facilitated by increased market transparency. Se-

ries of passive limit orders are slightly more rare, though such orders are still more likely to arrive

in batches rather than independently. Chordia et al. (2002) document that positive returns tend to

8I translate the order classification of Biais et al. (1995) into my order classification in Appendix E.
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be continued, whereas negative returns most frequently provoke market reversals. This evidence

corresponds to a weakening diagonal effect in the domain of sellers: while buys – especially ag-

gressive market orders – tend to arrive one after the other and push the transaction price up, sell

orders appear to be less likely to cluster in this manner. The differences in estimated conditional

order distributions in Table 4.5 suggest that quote transparency generates stronger regularities in

order submissions, although the magnitude of discrepancies across four market specifications is not

dramatic.

The justification of the diagonal effect, according to Biais et al. (1995), is at least threefold:

(1) strategic order splitting, (2) imitation, or (3) similar expectations. Any conscious imitation or

strategic behaviour is redundant in the present model, hence the sole reason for traders to copy each

other is some kind of herding mechanism, facilitated by matching expectations. All traders possess

the same market depth information and have identical fundamental asset valuation. On the other

hand, an order placed by the previous trader always affects the expectations of the one arriving

after him by changing the depth and possibly the distance to the fundamental price. In the case with

visible order imbalance the heterogeneity in trading rules amplifies, resulting in larger discrepancies

in the future price expectations and distinct order placement across agents. Therefore, in the absence

of intentional imitation between market participants this framework captures these similarities in

traders’ order placements. Moreover, this artificial market reproduces fairly symmetric conditional

distribution of order types alike Paris Bourse data of Biais et al. (1995).

In terms of unconditional probabilities, as shown in the right column in Table 4.5, most of

the traders are liquidity providers in the environments with and without market depth information.

Notice, however, that the order flow is more symmetric in the former case. Concerning the un-

conditional probabilities of six order types in an opaque market, I compare the distribution to the

empirical data from Paris Bourse in Biais et al. (1995) and the Australian Stock Exchange in Hall

and Hautsch (2006), both of which permit the use of hidden orders for large trades.9 In the data

from Paris Bourse, the sellers, and most impatient ones, outnumber the buyers. On the contrary,

out of five stocks from the Australian Stock Exchange analysed by Hall and Hautsch (2006) buyers

dominate in two markets compared to fairly symmetric order flows in the other three. In terms of or-

der flow pattern and overall order flow aggressiveness the simulated opaque market bears the closest

resemblance to the market for News Corporation shares: the proportions for buy and sell order are

symmetric with a large fraction of passive limit orders. In their recent study of 100 stocks listed on

INET in 2004, Hasbrouck and Saar (2009) find that not only limit orders compose the bulkiest part

of the order flow, they also tend to have larger size than market orders. However, in many instances

limit orders are cancelled within seconds after submission, and these fleeting, or flash orders usually

exceed in size the limit orders that remain patiently in the book awaiting execution. This empirical

9See Table 4.12 and Table 4.13 in Appendix E.
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evidence overturns the traditional treatment of limit orders as passive liquidity provision strategies.

Instead, such application of big limit orders embodies aggressive liquidity-seeking behaviour that

depletes the order book and harms market liquidity. Therefore, given the bias of fleeting orders, it

is hard to retrieve the strength or liquidity streams from empirical data.

Further, the estimates in Table 4.5 indicate that the probability of market orders in a quasi-

transparent market increases accompanied by a small increase in the probability of orders inside

the spread, that is, aggressive limit buys (aBL) and sells (aSL). In the study of Yamamoto (2011),

where traders react to the order imbalance by means of probabilistic switching mechanism, once

the information about order volumes recorded in the book becomes limited, the use of market

order slightly escalates in comparison to a perfect transparency case. Similarly, in my framework,

once traders are constrained to observe only the best quotes, market orders accrue a slightly higher

share in the order flow relative to perfect transparency. This partially explains a little revival in the

trading activity: in this market a higher number of transactions leads to a faster turnaround of assets.

Comparison between a transparent market and an opaque market confirms the empirical findings of

Frey and Sandås (2009) that the use of market orders intensifies as a reaction to increased opacity.

4.3.3 Memory Properties

Memory in the financial time series stipulates predictability of future market dynamics, thereby

it creates a relevant argument for the topic of market efficiency. I examine the memory effects

in three variables which have an immediate impact on agents’ order placement: returns, absolute

returns and order imbalance. Figure 4.1 depicts the autocorrelation functions for 1 to 100 lags in

returns and imbalance for the four model specifications. The total order imbalance variable pertains

a strong memory, as Figure 4.1(a) demonstrates. The memory decays faster for the dark market

and is most persistent for the transparent market. Reducing market transparency helps to diminish

the long term path dependence in the order imbalance, whereas permitting the use of iceberg orders

decreases the short term memory as well. I calculate Ljung-Box statistic to test the significance of

the autocorrelation effect in the series:

QN(ω) = N(N + 2)
ω∑

τω=1

ρ2
τω,N

N − k
∼ χ2

1−α,ω, (4.4)

where ρτω,N is the sample autocorrelation coefficient for lag τω and N is the sample size. Based on

Ljung-Box test I find that serial autocorrelations in absolute returns and in order imbalance remain

statistically different from zero for all 100 included lags and further. The simulation outcomes of

Yamamoto (2011) also confirm substantial persistence in order imbalance both for transparent and

quasi-transparent market setups. Moreover, Lillo and Farmer (2004) detect long memory in the

order flow, particularly in the signs of submitted orders, for a range of stocks listed on the London
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Stock Exchange and sampling years. This result is connected to my artificial markets in two ways.

First, it justifies the autocorrelations in Figure 4.1(a). Take, for example, successive arrival of sell

orders: limit orders add depth to the sell side and increase the order book imbalance, as defined

in equation (4.1); market orders absorb the volume on the buy side which again has a positive

impact on Dt. Second, the order signs memoryness echoes the discussion of the diagonal effect in

submitted order sequences. In their review of the statistical evidence on long memory in order flow

Mike and Farmer (2008) argue that long memory property in order signs has a profound impact

on price dynamics and induces a power law distribution with high probabilities of extreme returns.

They explain it by order splitting and other dynamically optimised strategies, whereas in my setup

it is rather the unconscious herding caused by matching price expectations that is responsible for

the correlation in buy and sell volumes.
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Figure 4.1: Autocorrelation functions of (a) order imbalance, (b) returns, and (c) absolute returns series
estimated as averages over 100 simulation runs for each of the four specifications.

On the contrary, Figure 4.1(b) shows that there is no persistent correlation in returns apart

from the first few lags, which implies informational efficiency regardless of the degree of market

transparency. The negative autocorrelation in returns for small lags is caused by the bid-ask bounce,

generated by the impatient traders who demand liquidity. This effect is the smallest for the market

with no depth information and the market with a hidden layer, which is explained by the thicker

limit order book in both of these market setups. The correlations are statistically significant up to

up to lag 67, 75 and 72 in the dark, transparent and quasi-transparent markets respectively, and only

for the first 27 lags in the opaque market at a 5% confidence threshold. Therefore, the memory
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in returns dissipates most quickly in the opaque market where hidden depth is created by iceberg

orders. Regarding the autocorrelation in absolute returns that is usually interpreted as a proxy of

volatility, Figure 4.1(c) shows a positive dependence in the absolute returns even for distant lags.

Overall, the higher the transparency, the stronger the memory in absolute returns. However, the

impact of restricting the info only to the five best quotes is somewhat ambiguous since it intensifies

the long memory in absolute returns compared to the full depth visibility case. The combination of

uncorrelated returns and significant positive dependence in absolute returns quantifies the volatility

clustering.10

In addition to the autocorrelation analysis I apply a less conventional method to screen the

long memory properties in asset returns and volatility. I calculate the modified rescaled range

statistic that was proposed by Lo (1991) as an improvement over the original Mandelbrot (1972)

test. This nonparametric test is more appropriate in the context of stark departures from the normal

distribution in the data. The test also allows to discard conveniently short period memory and

concentrate mainly on long term correlations. The test statistic is given by:

Q̃n(ω) =
1

√
Vn(ω)

max
1≤k≤n

k∑
ik=1

(
xik − x̄n

)
− min

1≤k≤n

k∑
ik=1

(
xik − x̄n

) , (4.5)

where n < N is the subsample size drawn from N-observations sample, x̄n is the subsample mean,

Vn is the subsample variance, and the covariance parameter Vn(ω) is calculated using subsample

autocorrelation coefficients ρτω,n for each lag τω as Vn(ω) = Vn + 2
∑ω
τω=1

ω+1−τω
ω+1 ρτω,n. The esti-

mate of statistic Q̃n(ω) is adjusted to the subsample size by calculating the coefficient βn(ω) that

determines the result of the modified rescaled range test:

βn(ω) =
ln Q̃n(ω)

ln n
. (4.6)

In case βn(ω) < 0.5, there is a mean reversion in the data series. If βn(ω) > 0.5 there is a positive

correlation in the data and a long memory property.

Applying the modified rescaled range test, I monitor the evolution of memoryness in absolute re-

turns for various time horizons. The strong dependence in absolute returns depicted in Figure 4.2(a)

supports the volatility clustering phenomena from real financial markets: there is a slow decay in

the serial correlation of the volatility of asset returns. As more lags ω are omitted, the coefficient

βn(ω) decreases and slowly approaches the benchmark level 0.5, which indicates that memory of

distant past absolute returns taken in isolation fades away, hence the spot volatility of returns is

independent in the long term. In other words, periods of high volatility in returns are followed by

10In terms of graphical analysis, (Figure 4.6(b), Figure 4.7(b) and Figure 4.8(b)) depict clustering in returns series
under three transparency regimes, compared to the more monotonous variability of returns in the dark market in Fig-
ure 4.5(b)).
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periods of low volatility. The clustering is very poor in the dark market, which is indicated by low

values of β|r|,n(ω) even for small lags, in contrast with transparency regimes where all or part of the

book volume is revealed to traders.
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Figure 4.2: Modified rescaled range test coefficient of (a) absolute returns for various lags (error bars
computed over 100 simulations), (b) returns in a transparent market with all lags included, and (c) absolute
returns in a transparent market with the optimal number of discarded lags. The subsample size is 5,000 time
steps.

The choice of the truncation lag ω for the long memory examination requires some considera-

tion. On the one hand, the parameter ω cannot be very small to avoid the prevalence of short term

correlations which may be substantial. On the other hand, several Monte Carlo studies, including

Lo and MacKinley (1989) and Andrews (1991), have shown that inappropriately large ω relative to

the subsample size can distort the convergence properties of the estimator βn(ω) in a finite sample

and deem the test inadequate. I apply the criterion suggested by Lo (1991) to select the optimal
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number of lags:11

ωopt =


(
3n
2

)1/3  2ρ1,n

1 − ρ2
1,n

2/3 , (4.7)

where n is the subsample size and ρ1,n is the first lag autocorrelation estimate. Taking this rule as a

guideline, I investigate how the intensity of order imbalance impact on traders’ price expectations

affect the memoryness of returns and absolute returns interpreted as latent volatility. The results

across the three market specifications with partial or full quote visibility are reasonably similar, thus

I present just the estimates for the transparent case. Figure 4.2(c) depicts the standard rescaled range

coefficient for asset returns with all lags included as a function of imbalance impactσν2 . When order

imbalance impact is meagre, the returns clearly exhibit a mean reversion pattern. However, some

positive correlation emerges as the standard deviation of imbalance weight of imbalance grows

above 0.005. The short term dependencies in absolute returns converge to zero at the horizon ωopt =

15, according to (4.7).12 The graph of modified rescaled range coefficient in Figure 4.2(b) shows

that even for low values of imbalance component there is a long memory effect, albeit moderate.

Higher weight of imbalance in traders’ price predictions, at the same time, translates into more

persistent long range dependencies in the absolute returns which match empirical findings (Lo,

1991). The inclusion of a sizable imbalance weight is therefore an important aspect of this model,

given that it allows to replicate more accurately real market dynamics. In addition, this analysis

highlights that the combination of baseline parameters for my artificial market implies memoryless

returns (the confidence interval of βr,5000(ω = 0) overlaps with 0.5 in this instance), and strong

long term correlations in absolute returns (β|r|,5000(ω = 15) ≈ 0.62). The model is also robust with

respect to reasonable changes in σν2 , as follows from Figure 4.2(c) and Figure 4.2(b).

4.4 Markets Quality Analysis

In this section I explore the consequences of reduced pre-trade transparency regimes on the market

quality characteristics and discuss the main findings of my simulation analysis.

4.4.1 Price Discovery and Transaction Costs

The comparison of transaction price trajectories generated independently in the four markets re-

veals that the availability of market depth information decreases the mean transaction price. As

the preliminary order flow analysis has demonstrated, full quote transparency mitigates traders’

aggressiveness, limit orders tend to be smaller and more scattered in the book. The estimates in Ta-

ble 4.6 reveal that the average transaction price deviates substantially from the fundamental value in

11The underlying assumption of this rule is that the data conform to an autoregressive process of order one.
12The autocorrelation coefficient ρ1,5000 is approximately 0.3.
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the transparent market because agents that demand immediacy in this market trade through several

limit orders straightaway, skipping gaps in the book. Hence, patient traders, that submit their orders

inside the book and make no revision, suffer from the winner’s curse, for instance: once a buyer

reaches the front of the bidding queue, he gets a quick fill by an impatient seller, but the valuation of

the asset has been changed already, hence the buyer receive a bad price. The restriction of displayed

depth to the five best quotes in a quasi-transparent market only exacerbates these departures.13 This

rise in the volatility of prices as well as returns afflicts risk-averse investors and leads to a decline

in the market activity, measured by the total number of executed trades and the cumulative trading

volume over the whole 1,000-days period. In contrast, the opaque environment assists price dis-

covery and the average transaction price remains close to the fundamental stock value. According

to the mechanism of traders’ expectations formulated in Proposition 4.2.2, sellers are motivated to

hide their order size to alleviate the selling pressure and thus draw more buyers to the market, and

vice versa for the buyers. This mechanism translates into higher efficiency in the opaque market

relative to both transparent and quasi-transparent markets.

Table 4.6: Statistics of the bid-ask spread, trading volumes and prices under four transparency regimes. The
results represent averages over 100 simulation runs.

Quasi-
Dark Transparent

Transparent
Opaque

Spread
mean 0.40 0.68 0.67 0.46
s.d. 0.38 0.68 0.69 0.42

Transactions
no. of trades 73,746.4 67,948.6 69,297.9 74,453.6
trading volume 1,004,221.9 889,381.9 919,896.9 957,324.7

average trade size 13.62 13.15 13.28 12.86
average trade price 189.15 186.26 185.30 189.39
average fundamental price 191.45 191.45 191.45 191.45

Yet, a more dramatic consequence of enhanced quote transparency is the widening of the bid-ask

spread by almost 70% compared to the dark market. Furthermore, my experiments show that ex-

ogenous restriction of transparency only accentuates the negative effect on transaction costs proxied

by the spread. The contrast in evidence for the transparent and quasi-transparent markets is coher-

ent with the adverse selection argument. On the contrary, in the opaque environment transaction

costs, estimated by the bid-ask spread, decrease substantially and stimulate trading activity, as can

be deduced from an increase in cumulative transactions. This result is in line with the experimental

13Figure 4.6(a) and Figure 4.7(a) illustrate this for the time series of the transaction price superimposed on the funda-
mental price.
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findings of Bloomfield and O’Hara (1999) and the empirical study of Madhavan et al. (2005).14 The

authors claim that full transparency augments the problem of adverse selection and thereby widens

the spreads. From this viewpoint, lower levels of transparency introduced by iceberg order trading

improve market quality.

4.4.2 Liquidity Indicators

In the comparative examination of transparency regimes, I apply several methodologies to evaluate

the key aspects of market liquidity, such as depth, breadth and resilience of the limit order book,

and immediacy.

Market Depth

In terms of visible market depth, any increase of book transparency has an advantageous impact.

I observe that full disclosure of market depth as well as endogenous disclosure regulation in the

opaque market have a positive effect on the balance between total buy and sell volumes in the book.

The effects of reduced pre-trade transparency on the book depth and trading volumes coincide with

the effects documented by Aitken et al. (2001) and Anand and Weaver (2004) in their recent empir-

ical research of the Australian and Toronto Stock Exchanges respectively. The visible order book

imbalance in a quasi-transparent market is almost zero on average, whereas the overall imbalance

is more inclined towards buyers and reverts to the level of the dark market. Thereby, restricting the

visibility of the book unilaterally generates more uncertainty, the asset value depreciates and more

buyers queue in the book.

Most of the trading in the markets occurs near the best quotes, however, even full pre-trade

transparency does not remove the imbalance between the buy and the sell depth. With only few

quotes displayed, the risk of non-execution is mitigated by the agents’ over-reaction to the observed

imbalance and drastic price swings become less rare. The visible volume in the opaque book is well

balanced between the buy and sell sides as in a quasi-transparent setting. The displayed volume

accounts for approximately 42% symmetrically for buyers and sellers even though hidden volume

is more likely to be created on the buy side of the limit order book than on the sell side or inside the

spread. The fluctuations in the visible order imbalance are minor relative to the outcomes of the rest

model specifications. The balance between aggregate demand and supply improves: an average gap

between buy and sell volumes shrinks to 7% of the total market depth in the opaque market, while

in a quasi-transparent market the cleavage accounts for 21%.

14My experiments do not control for the direction in transparency regime changes, which proves essential in the
empirical implementation of transparency rules. Anand and Weaver (2004), for instance, show that a ban and a subsequent
reintroduction of iceberg orders cause different market reactions. With this caveat in mind, I only compare the correlations
between the direction of the transparency regime change and the ensuing movements in market indicators.
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Table 4.7: Statistics of market depth and imbalance under four transparency regimes. The results represent
averages over 100 simulation runs.

Quasi-
Dark Transparent

Transparent
Opaque

Visible Imbalance
mean 0.00 0.2537 0.0700 0.0923
s.d. 0.00 0.6787 0.7221 0.4816
Total Imbalance
mean 0.3619 0.2537 0.3568 0.1514
s.d. 0.7346 0.6787 0.7291 0.6424

Visible Book Depth
average buy depth 0.00 855.52 80.48 339.43
average sell depth 0.00 555.80 83.68 290.08
average book depth 0.00 1,411.32 164.16 629.51
Total Book Depth
average buy depth 615.93 855.52 811.16 812.11
average sell depth 404.31 555.80 523.55 699.42
average book depth 1,020.24 1,411.32 1,334.71 1,511.52

Conditional Order Aggressiveness

Order flow is an undoubtedly rich source of information regarding liquidity motives of market

participants. In order to dissect these liquidity patterns I assign order sequences into the following

categories:

• undercutting/boom of liquidity provision (UB),

• resilient liquidity (RS),

• transient liquidity (TR), and

• depletion of liquidity (DL).

The grouping of 36 possible order placement events into these four categories is visually repre-

sented in Table 4.8. Property UB is the aggregate probability of those order sequences when there

is an intensive stream of limit orders added to both sides of the book, or there is undercutting of

passive limit orders by aggressive limit orders suggesting a tight competition for liquidity provision.

The second property RS unites the events whereupon a passive order succeeds an aggressive order:

when the latter sweeps liquidity at the best quote or quotes, then a new order arrives to replenish

consumed liquidity. Transient liquidity TR is a mirror situation to resilient liquidity: if a limit or-

der improves market depth, the ensuing trader fills orders on the same side of the market. Lastly,

property DL indicates a chain of aggressive trades.

For the quantitative assessment of the defined patterns I sum unconditional probabilities of

those events that fall within the corresponding group as highlighted in Table 4.8. As follows from
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Table 4.8: The diagram of liquidity provision patterns based on conditional order distributions.
BM aBL pBL SM aSL pSL

BM DL – DL TR
aBL
pBL

– UB RS UB

SM DL TR DL –
aSL
pSL

RS UB – UB

Table 4.9: The estimates of liquidity provision patterns based on conditional order distributions. The results
represent averages over 100 simulation runs.

Quasi-
Dark Transparent

Transparent
Opaque

UB 43.85 46.96 45.90 43.02
RS 13.12 12.76 13.02 13.46
TR 12.13 11.87 12.10 12.37
DL 10.90 9.58 10.02 11.51

Table 4.9, there is no marked difference in the distribution of the four patterns across transparency

specifications. Property UB is the most prominent in all market types, which is line with the fact that

order flow is mostly composed of passive orders that fill a limit order book. Also, UB is higher in

a dark and opaque markets: indeed, the rotation among the traders that who place orders inside the

book indicates increased competition among traders to provide liquidity, as registered in cumulative

trading volumes. Property TR is a little stronger in a market with partial information about the

volumes, suggesting that liquidity is sporadic. However, with iceberg order release mechanism in

hindsight, a large market order triggers multiple iceberg renewals which inflates TR figure, while the

true transience of liquidity is actually weaker. The resilience property of the book mildly subsides

as agents gain full information about quote depth and improves in an opaque market. There is a

high demand for immediacy on both sides of the book and arriving agents trade with existing orders

and widen the bid-ask spread, as indicated by property DL.

Liquidity Provision

Unlike quote-driven markets where a market maker is responsible for supplying liquidity, in pure

order-driven markets traders themselves generate liquidity. In this contest the prevalence of passive

orders that fill the book or, on the contrary, aggressive orders that consume market depth provides

an insight into the market liquidity level. I define another liquidity provision indicator as a propor-

tion of the volume available in the book to the total volume of incoming limit and market orders

103



4. Transparency Regimes in a Market with Heterogeneous Trading Rules

combined, hence the value of this indicator is bounded between zero and one. An abundant passive

liquidity in the market with a weak stream of incoming market orders is associated with large liq-

uidity provision ratio, signifying a substantial divergence in the sellers’ and buyers’ valuation of the

asset. A liquidity provision ratio close to zero implies that there is a high demand for immediacy

and insufficient liquidity in the market. A balanced market, therefore, is characterised by a liquidity

provision in the region of 0.5, when there is an active trading with a fair market depth at any point

in time.

Simulation outcomes in Table 4.10 reveal that the transparent market generates the highest liq-

uidity provision coefficient, whereas the quasi-transparent market reconciles the demand and sup-

ply of liquidity. This observation reflects that availability of market depth information increases

the heterogeneity between agents and thickens the limit order book, which, in turn, impedes the

price discovery process despite the common observable fundamental stock price. Conversely, lim-

ited market depth disclosure accelerates price discovery by balancing passive agents and those who

seek immediacy. In this respect the opaque market furnishes the most efficient rules.

Table 4.10: The summary of liquidity indicators under four transparency regimes. The results
represent averages over 100 simulation runs with the standard deviations provided in parentheses.

Quasi-
Dark Transparent

Transparent
Opaque

Liquidity provision 0.5729 0.6152 0.6052 0.5504
(0.0146) (0.0375) (0.0299) (0.0425)

Execution delay 0.0174 0.0120 0.0122 0.0008
(0.0017) (0.0011) (0.0010) (0.0002)

Kyle’s lambda 0.0071 0.0114 0.0111 0.0019
(0.0026) (0.0035) (0.0031) (0.0009)

Order Execution Delay

Given that traders submit orders of various sizes, I measure next a volume-weighted average delay

in limit order execution that is recorded from the moment of reaching the front of the queue to the

full execution or expiry as a fraction of traders’ horizons. Following this definition, the execution

delay lies in an interval between zero and unity. In this example I choose model parameters such

that most of the traders are day traders, with the longest possible execution time is slightly over two

days. The present definition of delay matches the notion of aggregate liquidity factor introduced

through execution delay earlier in Chapter 2. However, here, to account for the heterogeneity in

traders time horizons I measure a delay relative to the individual time horizons. The comparison

of the descriptive statistics (Table 4.10) of execution delays suggests that liquidity (inverse of the
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mean delay) increases with the arrival of iceberg order traders, while uncertainty (the variance)

remains almost unchanged. Figure 4.3 plots the average distributions of the volume-weighted aver-

age delays for the four specifications in order. The opaque market followed by the quasi-transparent

market with exogenously restricted transparency exhibit the most prominent skewness of execution

delay towards zero. Therefore, patient traders benefit from imperfect transparency and, at the same

time, they are better off than in the dark case. However, as was emphasised in the previous sub-

section, only the former setup of the two offers faster execution at no extra adverse selection cost.

Furthermore, I apply a nonparametric test to establish formally whether execution times arise from

the same distribution.15 The results of the test confirm the conclusions from graphical analysis.
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Figure 4.3: The distribution of execution delays in (a) a dark market, (b) a transparent market, (c) a quasi-
transparent market, and (d) an opaque market. The market parameters are given in Table 4.2.

15The detailed test procedure is described in Appendix D.
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Price Impact

Finally, I obtain the estimates of the liquidity indicator proposed in the paper by Kyle (1985),

usually referred to in the literature as Kyle’s lambda. This indicator essentially embraces several

aspects of liquidity including market resilience and depth, and is associated with the price impact of

aggressive trades. For each executed trade I record the signed order flow qt that is assumed positive

for the buyer-initiated trades and negative for seller-initiated trades, the change in the price ∆pt

inflicted by the trade and the average asset return r̄t. Using the data from 100,000 trading rounds I

estimate the following equation:

∆pt = λKqt + µr̄t + ζt. (4.8)

The coefficient λ̂K is reciprocal to liquidity: the higher is λ̂K , the more drastic effect an aggressive

order makes on the limit order book depth and the wider is the resulting spread.

The lowest estimate of Kyle’s lambda is for the opaque market which is entirely consistent with

the idea of exposure control via iceberg orders. Consider, for example, a large market sell that

exhausts all visible volume at the best bid and then new peaks are released at this price providing

additional fills to the impatient seller. The same mechanism is activated for the neighbouring buy

quotes, and thereby slows down the seller walking down the book and alleviates the total price

decrease created by his aggressive trade. The next best market in terms of price impact appears

to be the dark market, according to results in Table 4.10. However, recall that unlike real order

books a simulated dark market generates intensive order clustering around the best quotes with

rare submissions further away. This is the reason why under this market specification the impact

of trades is moderate – there are simply too few counterparties far from the current asset price.

Hence, the value of λ̂K in this case is not very indicative. Regarding the empirical findings on this

topic, Anand and Weaver (2004) apply this comprehensive liquidity measure and find that neither

a ban, nor a reintroduction of hidden orders provokes liquidity adjustments. Exogenously reduced

transparency pertains a marginally smaller price impact than perfect transparency in my simulations.

I conclude that intermediate levels of transparency in displayed quote depth, and particularly the

opaque microstructure, stimulate liquidity measured by the Kyle’s lambda.

Overall, on the basis of five different approaches the opaque market appears to be the most

liquid trading environment.

4.5 Conclusion

This chapter provided an extensive analysis of the impact that various pre-trade market transparency

rules produce on market performance. The evidence on benefits and adverse effects caused by

limited market transparency is gained in the artificial double auction market simulations. Two
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distinct reduced transparency regimes were included in my analysis: a market with visible orders

restricted to five best quotes on each side of the book – a quasi-transparent market, and a market

with a permission to use iceberg orders type for large trades – an opaque market. I review here the

main findings and prescriptions of my model.

The core implication of my agent-based model is that restricting the information about the

market depth improves efficiency of order-driven markets, as indicated by the diminishing memory

properties of returns and absolute returns alike. This applies both to the explicit restriction of

the displayed quotes on behalf of the exchange and to the permission of iceberg orders. In the

latter case, once traders are allowed to self-regulate the degree of transparency by managing their

exposure with iceberg orders, the market becomes less predictable in short term as well as at longer

time horizons. The transparency level imposed by certain exchanges whereupon only several best

orders on each side of the limit order book are publicly displayed is controversial. This policy

clearly has a positive impact on the speed of trading: the cumulative transacted volume increases

while the non-execution risk of limit orders moderates. This, however, is an example of a winner’s

curse situation, since patient traders get quick execution for their orders but the price of the security

moves away. Given this, traders are more prone to seek immediacy and hesitate to fill the book,

which, in turn, becomes on average thinner than under full depth disclosure rule. Not surprisingly,

the control over disclosed depth information impedes the price discovery process, reflected by the

deviations of transaction price from the fundamental asset value.

Reduced market transparency also protects patient limit order traders from adverse selection to a

certain degree, and, as a consequence, relieves the average transaction costs in the market measured

by the bid-ask spread. The opaque microstructure has a profound impact on the spread and its

volatility, while in a quasi-transparent market the book remains asymmetric with buyers dragging

the price down. The ample evidence from empirical literature does not reach a consensus on the

desirability of pre-trade transparency. As shown by the experiments of Bloomfield and O’Hara

(1999), market opacity leads to wider bid-ask spreads, on the other hand, Flood et al. (1999) observe

the reverse effect in the inter-dealer market. A recent comparative study of an introduction, ban and

subsequent reinstallment of hidden orders on the Toronto Stock Exchange conducted by Anand

and Weaver (2004) does not detect any discernible changes in the spread width. Moinas (2010)

rationalises in the sequential trade model with high transparency level that limit order traders are

reluctant to offer free options to other traders, thus market liquidity shrinks. The reaction to the

increased risk of being picked off was discussed in earlier literature by Copeland and Galai (1983);

Foucault (1999); Seppi (1997) among others.

It follows from the experiments reported in this chapter that markets with hidden layers ensure

higher liquidity ratio, faster execution and smaller price impact of aggressive trades. Also, such

markets are more active and carry out substantial trading volumes in line with Aitken et al. (2001);

107



4. Transparency Regimes in a Market with Heterogeneous Trading Rules

Anand and Weaver (2004); Madhavan et al. (2005). Restricting quote transparency to several best

quotes has negligible influence on market quality. Based on the numerical market simulations,

Yamamoto (2011) concludes that the level of pre-trade transparency is not crucial in terms of market

performance and long memory. It is coherent with the real market observations that suggest that

most of the asset pricing information is encapsulated in the best bid and ask, and any information

beyond the best quotes has marginal influence on the direction of trading. Moreover, the distribution

of the recorded limit orders under restricted quote information remains rather sparse as in the case of

perfect transparency and abundant aggregate market depth does not result in liquidity improvement

since many of the orders are placed too far away from the quotes and expire unfilled. At the same

time, the gaps in the book result in more dramatic price swings and higher volatility in returns

as compared to the absolutely transparent market environment. Issuing the traders a permission

to choose themselves the revealed order size allows to circumvent these problems. The empirical

outcome closest to my opaque market simulations was achieved by Madhavan et al. (2005) who

propose a theoretical framework and reconcile it with the Toronto Stock Exchange data.

In summary of this chapter, full quote transparency incurs substantial transaction costs for in-

vestors and dampens trading activity in an order-driven market, and exogenous restriction of dis-

played quote depth does not alter substantially the dynamics. On the other hand, the endogenous

restriction of displayed quote depth via iceberg orders appears to improve market quality in multiple

dimensions.
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Appendix A Detailed Model Description

When called to trade at time t, agent i builds his expectation of the return on the asset that can be

achieved within his time horizon τi according to the rule:

r̂i
t,t+τi =

1
νi

1 + νi
2 + ηi

νi
1

ln(p f
t /pt)
τ f + νi

2D̄t + ηiξt

 , (4.9)

where D̄t is the average visible order imbalance over the past τi periods. The parameter νi
1 > 0

determines a fundamentalist component in the trader’s strategy, νi
2 > 0 determines the impact of

order imbalance on his expectations, and ηi > 0 – the impact of a noise component. These weights

are drawn for the entire population of traders from three independent exponential distributions re-

spectively:

f (νi
1) =

1
σν1

e−ν
i
1/σν1 , (4.10)

f (νi
2) =

1
σν2

e−ν
i
2/σν2 , (4.11)

and f (ηi) =
1
ση

e−η
i/ση . (4.12)

The trading horizon of each trader is correlated with fundamentalist and imbalance components of

his expectations and remains fixed over the course of trading in this market:16

τi = τ

1 + νi
1

1 + νi
2

 . (4.13)

Each trader observes transaction price time series pt; if no transaction has occurred in the pre-

vious time stamp, then pt is the mid-point price calculated as the average of current bid and ask

prices. The forecasted rate of return r̂i
t,t+τi yields the maximum expected price

p̂i
t+τi = pt exp(r̂i

t,t+τiτ
i). (4.14)

In general, as can be deduced from (4.9), both buyers and sellers become more optimistic and raise

the highest expected price pM should the depth on the buy side exceed the depth on the sell side of

the market. Similarly, if the supply given by the volume on the sell side Qa
t is larger than the demand

for the asset given by the volume on the buy side Qb
t then incoming trader is more pessimistic and

anticipates lower returns. Fundamentalist component, naturally, pulls the expected price up when

the market is trading below the long-run level, and vice versa.

The portfolio of each trader is composed of stocks and cash W i
t = S i

t pt + Ci
t and his preferences

16For any z ∈ R, the ceiling function f (z) = dze is the smallest integer greater or equal to z.
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are described by a negative exponential (CARA) utility function:

U
(
W i

t , ϕ
i
)

= − exp(−ϕiW i
t ), (4.15)

where ϕi = ϕ
1+νi

1
1+νi

2
is a relative risk aversion coefficient of agent i proportional to his trading horizon

and ϕ is a common risk aversion factor for the population of agents in this market. Each agent is

initially assigned a random amount of stocks uniformly distributed on the interval S 0 ∈ [0,NS ] and

the amount of cash C0 ∈ [0,W0], where his total wealth equals W0 = NS p0. The initial allocation of

wealth does not affect the outcome under CARA preferences. The optimal portfolio of each trader

at any given point in time is determined by utility maximisation principle. I derive the demand for

stocks of agent i in the following proposition.

Proposition 4.5.1. Assume that a trader with a risk aversion ϕi and a portfolio of stocks and cash

maximises the expected utility of his future wealth W i
t+τi . Let the trader form his expectation of the

stock price p̂i
t+τi in τi periods according to rules (4.2) and (4.3). If the current price of the asset is

p, then the trader’s demand for a risky asset or the optimal number of stocks required to hold in his

portfolio at time t is given by:

πi
t (p) =

ln(p̂i
t+τi/p)

ϕiV i
t p

, (4.16)

where V i
t is the variance of the spot returns V i

t = 1
τi

∑τi

j=1(rt− j − r̄i
t)

2 with the mean spot return

r̄i
t = 1

τi

∑τi

j=1 rt− j = 1
τi

∑τi

j=1 ln
(

pt− j
pt− j−1

)
.

Proof. Recall first that the utility function of the agent i at time t

U(W i
t , ϕ

i) = − exp(−ϕiW i
t ), (4.17)

therefore, in τi periods ahead he expects

Et
[
U(W i

t+τi , ϕ
i)
]

= Et
[
− exp(−ϕiW i

t+τi)
]
, (4.18)

where the future wealth is composed of W i
t+τi = W i

t +S i
t(pt+τi−pt). Assume that the asset returns are

normally distributed, then the cumulative price change is approximated by pt+τi − pt = pt(pt+τi/pt−

1) ≈ pt ln(pt+τi/pt) = ptrt+τi , where rt+τi is the log-return, therefore the wealth is

W i
t+τi = W i

t + S i
t ptrt+τi . (4.19)
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Substituting this expression into (4.18) I obtain

Et
[
U(W i

t+τi , ϕ
i)
]

= −Et
[
exp(−ϕiW i

t − ϕ
iS i

t ptrt+τi)
]

= − exp(−ϕiW i
t ) · Et

[
exp(−ϕiS i

t ptrt+τi)
]

= U(W i
t , ϕ

i) · Et
[
exp(−ϕiS i

t ptrt+τi)
]
. (4.20)

The only stochastic term unknown at time t in the equation (4.20) is the log-return rt+τi . The mean

value of the return in τi periods is the expected return defined for each trader i in (4.2) and the

measure of variance is the historical volatility over the past τi trading rounds, denoted V i
t . Using the

moment generating function property of a Gaussian random variable I rewrite

Et
[
U(W i

t+τi , ϕ
i)
]

= U(W i
t , ϕ

i) · exp
(
−ϕiS i

t pt r̂i
t,t+τi + (ϕiS i

t pt)2V i
t/2

)
= U(W i

t , ϕ
i) · exp

(
−ϕiS i

t pt ln(p̂i
t+τi/pt) + (ϕiS i

t pt)2V i
t/2

)
(4.21)

The derivative of the expected utility with respect to the number of stocks S i
t is

∂Et[U]
∂S i

t
= Et[U] ·

(
−ϕi pt ln( p̂i

t+τi/pt) + (ϕi pt)2V i
t S

i
t

)
. (4.22)

Applying the first order condition S i∗
t ∂Et[U]/∂S i∗

t = 0 with S i∗
t > 0, I find a solution to the

utility maximisation problem πi
t(pt) = S i∗

t and arrive at expression (4.16). �

Denote the quantity that the trader is willing to purchase or to sell by qi
t(p) =

∣∣∣S i
t − π

i
t(p)

∣∣∣. For

a price level p trader i wishes to buy more stock if his demand exceeds present stock holdings

πi
t(p) > S i

t, while if his portfolio contains more stocks than required πi
t(p) < S i

t, then he wishes

to reduce his exposure and sell stocks. There is a price p∗, a satisfaction level, that makes the

current portfolio composition optimal. As a result, if the realised price is lower p < p∗ then the

trader wishes to buy the security; conversely, he will be willing to sell when p > p∗. The range

of admissible prices that a particular trader can choose is p ∈
[
pm, pM

]
: the upper bound pM is

determined by a no short selling restriction and the lower bound pm is subject to a no borrowing

condition. Departing from the expected return in (4.2) and the associated expected price in (4.3),

the trader i that is called to the market at time t solves the following three equations:

∀p ≤ pM : πi
t(p) ≥ 0 ⇔ pM = p̂i

t+τi , (4.23)

πi
t(p∗) = S i

t ⇔
ln(p̂i

t+τi/p∗)

ϕiV i
t p∗

= S i
t, (4.24)
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pm
(
πi

t(pm) − S i
t

)
= Ci

t ⇔
ln(p̂i

t+τi/pm)

ϕiV i
t

− pmS i
t = Ci

t. (4.25)

The trader is boundedly rational: he picks randomly a price p from a range of admissible prices

in period t. A qualitative chart of the demand function πi
t(p) provided by Chiarella et al. (2009) is

depicted in Figure 4.4. The relation of the boundaries pm and pM and the satisfaction price p∗ to

the current quotes, the bid bt and ask at, determines the order aggressiveness of trader i at time t, as

shown in Table 4.11.

Figure 4.4: The demand for stock as a function of price and the corresponding range of admissible prices.
Source: Chiarella et al. (2009).

Table 4.11: Order placement definitions for a chosen price p.

position direction type volume
pm ≤ p < at buy limit qi

t(p)
at ≤ p < p∗ buy market qi

t(at)
p = p∗ no order placement
p∗ < p ≤ bt sell market qi

t(bt)
bt < p ≤ pM sell limit qi

t(p)

Appendix B Proof of Proposition 4.2.1

Since neither of the equations (4.24) or (4.25) admits an explicit solution, I apply the implicit

function theorem to obtain the derivatives of p∗ and pm with respect to pM.

Theorem 4.5.1 (Implicit Function Theorem). Let the function F : R × R → R have a zero in

(x0, y0). If F(x, y) is continuous in the vicinity of (x0, y0) and strictly monotonic in y for any fixed x,
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then there exists a continuous two-dimensional interval I = Ix × Iy in the vicinity of (x0, y0) and a

continuous function f : Ix → Iy such that for any point (x, y) ∈ I it holds:

F(x, y) = 0 ⇔ y = f (x). (4.26)

Corollary 4.5.1. Suppose that F(x, y) is continuously differentiable, and denote its partial deriva-

tive with respect to x by F′x and the partial derivative with respect to y by F′y. The partial derivative

of the function f (x) is expressed as

f ′(x) = −
F′x(x, f (x))
F′y(x, f (x))

. (4.27)

First, to calculate ∂p∗/∂pM define the function

F
(
pM, p∗

)
=

ln(pM/p∗)
ϕiV i

t p∗
, (4.28)

then it follows from Corollary 4.5.1 that

∂p∗

∂pM
= −

∂F (pM, p∗) /∂pM

∂F (pM, p∗) /∂p∗
=

(p∗)2ϕiV i
t

pM p∗ϕiV i
t (1 + p∗ϕiV i

t S
i
t)
.

Next, I apply substitution ln(pM/p∗) = p∗ϕiV i
t S

i
t implied by (4.24) and obtain

∂p∗

∂pM
=

p∗

pM(1 + p∗ϕiV i
t S

i
t)
. (4.29)

Second, to calculate ∂pm/∂pM define the function

G (pM, pm) =
ln(pM/pm)

ϕiV i
t

− pmS i
t, (4.30)

then by the property of implicit function (4.27)

∂pm

∂pM
= −

∂G (pM, pm) /∂pM

∂G (pM, pm) /∂pm
=

pm

pM(1 + pmϕiV i
t S

i
t)
. (4.31)

Notice, that derivatives (4.29) and (4.31) are both positive since all the parameters are positive

and have the same functional form f (x) = x/(1 + xϕiV i
t S

i
t). Given that function f (x) is strictly

monotonic increasing ( f ′(x) > 0 ∀x ∈ R), it follows

∂p∗

∂pM
>
∂pm

∂pM
> 0. (4.32)
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Appendix C Proof of Proposition 4.2.2

The trader picks any price p ∈ [pm, pM] with an equal probability, therefore, in order to evaluate the

impact of a certain factor z on the propensity of trader i who arrived to the market at time t to buy

or sell shares, it suffices to compute the derivative of the ratio of the appropriate subinterval (buy or

sell) to the interval of admissible prices with respect to z. Consider the sell subinterval [p∗, pM] and

denote its ratio to the full price range by

A =
pM − p∗

pM − pm
, (4.33)

then
∂A
∂z

=
(pM − pm)

(
∂pM
∂z −

∂p∗

∂z

)
− (pM − p∗)

(
∂pM
∂z −

∂pm
∂z

)
(pM − pm)2 . (4.34)

If ∂A/∂z > 0, then the trader becomes more likely to be a seller once z increases; if ∂A/∂z < 0, then

the trader becomes more likely to be a buyer once z increases. I first establish the necessary results

for statements (1), (2a) and (2b), and then prove the effect of volatility in statement (3).

Statements (1), (2a) and (2b)

Since p∗ and pm depend on the order imbalance D̄t and νi
2 only through pM, to prove statements

(1), (2a) and (2b) of Proposition 4.2.2 I write the differentials of prices with respect to a change in

factor z as follows:
∂p∗

∂z
=
∂p∗

∂pM
·
∂pM

∂z
, and

∂pm

∂z
=
∂pm

∂pM
·
∂pM

∂z
,

therefore, in this case expression (4.34) simplifies to

∂A
∂z

=
∂pM/∂z

(pM − pm)2

[
(pM − pm)

(
1 −

∂p∗

∂pM

)
− (pM − p∗)

(
1 −

∂pm

∂pM

)]
. (4.35)

By substituting the expressions (4.29) and (4.31) from Appendix B, I rewrite the derivative of

term A as follows:

∂A
∂z

=
∂pM/∂z

pM(pM − pm)2

[
(pM − pm)

(
pM −

p∗

1 + p∗ϕiV i
t S

i
t

)
− (pM − p∗)

(
pM −

pm

1 + pmϕiV i
t S

i
t

)]
︸                                                                                       ︷︷                                                                                       ︸

B1

.

Given that by definition pm < p∗ < pM, substitute p∗ = a · pm and pM = b · pm, where b > a > 1.
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Then term B1 is expressed by

B1 = pm(b − 1)
(
bpm −

apm

1 + apmϕiV i
t S

i
t

)
− pm(b − a)

(
bpm −

pm

1 + pmϕiV i
t S

i
t

)
= p2

m(ab + abpmϕ
iV i

t S
i
t + b − a)

[
1

1 + pmϕiV i
t S

i
t
−

1
1 + apmϕiV i

t S
i
t

]
.

Notice that function f (x) = 1/(1 + xϕiV i
t S

i
t) is monotonic increasing ∀x ∈ R, hence B1 > 0

and the sign of ∂pM/∂z determines the change in the propensity to sell. Denote the weight of order

imbalance in the expected return by ν̃i
2 = νi

2/(ν
i
1 + νi

2 + ηi). Recall that from equation (4.3) the

maximum price is pM = pt exp(r̂i
t,t+τiτ

i), so the derivatives with respect to the visible imbalance D̄t

and imbalance weight ν̃i
2 determine the sign of ∂A/∂D̄t and ∂A/∂ν̃i

2 as follows

∂pM

∂D̄t
= pMτ

iν̃i
2, ⇒

∂A
∂D̄t

> 0, (4.36)

and
∂pM

∂ν̃i
2

= pMτ
iD̄t, ⇒ sgn

 ∂A
∂ν̃i

2

 = sgn{D̄t}. (4.37)

Therefore, I conclude that the propensity to sell increases when the order imbalance in the limit

order book increases towards buyers. Similarly, higher sensitivity to imbalance prompts the trader

to join the opposite side of the market relative to the visible imbalance trend.

Statement (3)

Statement (3) of Proposition 4.2.2 is proven in a similar manner. Notice, that the maximum ex-

pected price pM is not related to asset return volatility in this model, therefore, ∂pM/∂V i
t = 0. The

minimum and satisfaction prices depend on the spot volatility, so I simplify the expression of the

derivate of A with respect to V i
t as follows

∂A
∂V i

t
=

(pM − p∗)∂pm

∂V i
t
− (pM − pm)∂p∗

∂V i
t

(pM − pm)2 . (4.38)

I define two functions

F̃
(
V i

t , p∗
)

=
ln(pM/p∗)
ϕiV i

t p∗
, and G̃

(
V i

t , pm
)

=
ln(pM/pm)

ϕiV i
t

− pmS i
t, (4.39)

and applying the corollary of implicit function theorem (4.27), I compute partial derivatives with
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respect to the spot volatility V i
t :

∂p∗

∂V i
t

= −
∂F̃

(
V i

t , p∗
)
/∂V i

t

∂F̃
(
V i

t , p∗
)
/∂p∗

= −
p∗ ln(pM/p∗)

V i
t (1 + p∗ϕiV i

t S
i
t)
, (4.40)

and
∂pm

∂V i
t

= −
∂G̃

(
V i

t , pm
)
/∂V i

t

∂G̃
(
V i

t , pm
)
/∂pm

= −
ln(pM/pm)

V i
t (1 + pmϕiV i

t S
i
t)
. (4.41)

I substitute the derivatives (4.40) and (4.41) into the expression (4.34) and obtain

∂A
∂V i

t
=

1
V i

t (pM − pm)2

[
(pM − pm)

p∗ ln(pM/p∗)
(1 + p∗ϕiV i

t S
i
t)
− (pM − p∗)

ln(pM/pm)
(1 + pmϕiV i

t S
i
t)

]
︸                                                                     ︷︷                                                                     ︸

B2

.

Further, I apply the same substitution p∗ = a · pm and pM = b · pm with b > a > 1, and rearrange

term B2 as follows

B2 = pm(b − 1)
apm ln(b/a)

(1 + apmϕiV i
t S

i
t)
− pm(b − a)

ln(b)
(1 + pmϕiV i

t S
i
t)

= (b − 1) ln(b/a)
[
pm

apm

(1 + apmϕiV i
t S

i
t)
−

ln(b)
b − 1

·
b − a

ln(b/a)
·

pm

(1 + pmϕiV i
t S

i
t)

]
.

Notice that function f (x) = 1/(1 + xϕiV i
t S

i
t) is monotonic increasing in x, therefore,

apm

(1 + apmϕiV i
t S

i
t)
>

pm

(1 + pmϕiV i
t S

i
t)
. (4.42)

On the other hand, function g(x) = ln(b/x)/(b − x) is monotonic decreasing in x, so

ln(b)
b − 1

·
b − a

ln(b/a)
> 1.

Taking into account lim
a→b−

[
ln(b)
b − 1

·
b − a

ln(b/a)

]
=

ln(b)
b − 1

· lim
a→b−

[
∂(b − a)/∂a
∂ ln(b/a)/∂a

]
=

b · ln(b)
b − 1

, it follows

that17

pm >
ln(b)
b − 1

·
b − a

ln(b/a)
. (4.43)

The product of the two inequalities (4.42) and (4.43) thus yields B2 > 0 and

∂A
∂V i

t
> 0, (4.44)

17This inequality holds for almost all price levels, unless both p∗ and pm are near zero while pM is substantially high.
The range of market parameters that I use in my simulations, in particular, common risk aversion ϕ and the maximum
initial number of stocks per trader NA, prevent such situations.
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which proves statement (3) of Proposition 4.2.2. Therefore, I establish that the trader’s propensity

to sell increases with the volatility of returns in this model.

Appendix D Nonparametric Test for the Equality of Distributions

I use the basic methodology described in Li and Racine (2007, p.465). Given {Xi}
N1
i=1 and {Yi}

N2
i=1

are two unidimensional random samples, I test if they are drawn from the same distribution using

nonparametric kernel density estimators. The integrated squared difference between two empirical

distributions is given by

Ib
n =

1
N1

N1∑
i, j

Kx
h,i j +

1
N2

N2∑
i, j

Ky
h,i j −

2
N1N2

N1∑
i

N2∑
j

Kxy
h,i j, (4.45)

where kernel functions are defined through a bounded second order kernel k(·) ≥ 0 and a bin width

h as

Kx
h,i j =

1
h

k
(

Xi − X j

h

)
, Ky

h,i j =
1
h

k
(
Yi − Y j

h

)
, and Kxy

h,i j =
1
h

k
(

Xi − Y j

h

)
.

The null hypothesis of the test Hb
0 assumes that the distribution of {Xi}

N1
i=1 and {Yi}

N2
i=1 are equal

for almost all x. The test statistic then follows a normal distribution and is calculated as

T b
n =

√
hN1N2

Ib
n − cn,b

σ̂b
∼ N(0, 1) (4.46)

with cn,b =
k(0)(N1+N2)

hN1N2
and the sample variance is obtained as

σ̂2
b =

1
N2

1

N1∑
i, j

h · (Kx
h,i j)

2 +
1

N2
2

N2∑
i, j

h · (Ky
h,i j)

2 +
2

N1N2

N1∑
i

N2∑
j

h · (Kxy
h,i j)

2. (4.47)

The equality hypothesis Hb
0 is rejected at level α if T b

n > zα, where zα is the α% percentile from the

standard Normal distribution.

Appendix E Empirical Order Flow Data

In the original paper, Biais et al. (1995) distinguish between 15 order types, which I regroup for

the purpose of comparison with my results. Since there are no strategic order cancellations in my

artificial market, I disregard order types ‘Cancel Ask’ and ‘Cancel Bid’ as well as pre-arranged

trades labelled as ‘Application’ that are absent in my market. I combine ‘Large Buy’, ‘Market Buy’

and ‘Small Buy’ into buy market orders (BM) since these orders result in immediate execution,

‘New Bid Within’ as an aggressive buy limit order (aBL), ‘New Bid At’ and ‘New Bid Below’ ito
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passive buy limit orders (pBL). Similarly, ‘Large Sell’, ‘Market Sell’ and ‘Small Sell’ are treated

as sell market orders (SM), ‘New Ask Within’ as an aggressive sell limit order (aSL), and, finally,

‘New Ask At’ and ‘New Ask Above’ as passive sell limit orders (pSL).

Table 4.12: Percentage deviations of order type probabilities conditional on a previously submitted order
type from their unconditional probabilities that are given in the last column.

Paris Bourse
BM aBL pBL SM aSL pSL Unconditional

BM 57.5 3.6 -3.7 -20.2 -31.0 -8.8 19.03
aBL 9.8 52.7 25.4 -22.1 0.1 -27.2 10.10
pBL -3.6 23.9 62.4 -17.5 -22.2 -22.6 14.52
SM -19.0 -24.7 -20.0 33.3 -4.1 -17.2 34.23
aSL -18.7 5.1 -21.9 -2.3 51.5 15.4 9.37
pSL -11.6 -24.1 -22.5 -12.2 9.1 85.1 12.96

In a similar manner I transform the data from Hall and Hautsch (2006) by combining ‘Aggres-

sive Buy/Sell’ and ‘Normal Buy/Sell’ into buy/sell market orders (BM/SM), ‘Aggressive Bid/Ask’

and ‘Normal Bid/Ask’ into passive buy/sell limit orders (pBL/pSL) and write ‘Most Aggressive

Bid/Ask’ as aggressive buy/sell limit orders (aBL/aSL). The results for the five stocks quoted on

the Australian Stock Exchange are given in Table 4.13. The stocks abbreviations stand for Broken

Hill Proprietary Limited (BHP), National Australia Bank (NAB), News Corporation (NCP), Telstra

(TLS) and Woolworths (WOW).

Table 4.13: The unconditional probabilities of six order types (in %) in the Australian Stock Exchange.
Australian Stock Exchange

BHP NAB NCP TLS WOW
BM 27.72 24.38 15.91 23.99 25.43
aBL 5.64 5.93 3.58 1.79 4.36
pBL 24.70 20.93 29.17 25.72 24.16
SM 18.28 23.37 13.81 22.40 20.92
aSL 4.28 6.29 4.52 1.29 5.78
pSL 19.38 19.10 33.01 24.81 19.34

Appendix F Statistics of a Single Simulation Run

This section provides summary statistics and profile plots of one simulation run with 100,000 rounds

under four transparency regimes.

118



4. Transparency Regimes in a Market with Heterogeneous Trading Rules

Table 4.14: Summary statistics of one simulation run under four transparency regimes.
Quasi-

Dark Transparent
Transparent

Opaque

Transaction Price
mean 187.96 186.18 184.70 188.42
s.d. 17.14 15.81 16.24 15.23

Returns
min -0.0176 -0.1061 -0.0473 -0.0529
max 0.0235 0.0626 0.0755 0.0306
mean 0.0000 0.0000 0.0000 0.0000
s.d. 0.0013 0.0024 0.0026 0.0014
skewness 0.3115 -0.4307 0.5503 -1.2746
kurtosis 18.2475 69.2100 35.6471 73.4915

Spread
mean 0.34 0.64 0.67 0.44
s.d. 0.34 0.70 0.77 0.48

Visible Imbalance
mean 0.0000 0.2674 0.0890 0.1134
s.d. 0.0000 0.7830 0.8831 0.5526
Total Imbalance
mean 0.2651 0.2674 0.3718 0.1744
s.d. 0.7234 0.7830 0.8872 0.7728

Visible Book Depth
average buy depth 0.00 704.22 71.52 276.67
average sell depth 0.00 490.2765 74.30 224.18
average book depth 0.00 1,194.50 145.81 500.85
Total Book Depth
average buy depth 524.18 704.22 689.51 602.67
average sell depth 391.77 490.2765 459.54 482.61
average book depth 915.94 1,194.50 1,149.05 1,085.28

Order Flow
no. of orders 97,075 97,030 97,074 70,995
average order size 23.93 23.60 23.66 29.78

average BM 29.38 27.80 27.63 36.81
average BL 21.67 22.46 22.49 25.76
average SM 32.15 30.85 30.69 39.62
average SL 19.16 19.07 19.16 23.60

Transactions
no. of trades 74,754 71,647 72,049 78,345
trading volume 1,013,767 939,414 954,464 1,016,113
average trade size 13.56 13.11 13.25 12.97
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Figure 4.5: Profile plots of data series in the dark market with parameters in Table 4.2.
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Figure 4.6: Profile plots of data series in the transparent market with parameters in Table 4.2.
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Figure 4.7: Profile plots of data series in the quasi-transparent market with parameters in Table 4.2.
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Figure 4.8: Profile plots of data series in the opaque market with parameters in Table 4.2.
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Chapter 5

Conclusions

This thesis contributes to the theoretical domain of microstructure economics by exploring two

features of financial markets: liquidity and market transparency. My research is motivated by the

progressive expansion of electronic markets with reduced pre-trade transparency and the collateral

liquidity effects. Maintaining sufficient liquidity is an endemic problem of any organised exchange,

especially in the absence of designated specialists responsible for liquidity provision, as in the case

of non-intermediated order-driven markets. Liquidity improvement is, therefore, a primary goal

of regulators, policy-makers and market operators alike. Iceberg and hidden orders are designed

to attract liquidity by protecting institutional block traders. However, there orders obfuscate quote

transparency and, according to diverse empirical evidence, have controversial influence on market

quality. Aiming to provide economic explanation to empirical facts, I developed three theoretical

frameworks in this thesis to address the connection between liquidity and transparency and the im-

plications of imperfect liquidity from various angles. I have investigated liquidity and transparency

issues in the context order placement decisions made by individual traders. Further, I evaluated

the interplay of transparency and liquidity determinants in the artificial agent-based stock exchange

environment.

5.1 Main Findings

A substantial challenge of microstructure analysis is to disentangle the effects and infer causality

between market transparency and liquidity, given the multi-dimensional nature of these concepts.

As the core finding of this thesis I have identified the direction of mutual dependence between

liquidity and transparency on the basis of several quantitative tools, and reconciled certain observed

empirical phenomena.

Abstracting initially from transparency issues, I showed through an optimal limit order pric-

ing model that departures from absolute liquidity serve as a source of non-transient bid-ask spread
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in pure limit order markets. Moreover, by introducing a synthetic liquidity factor, measured by a

random delay in limit order execution, I demonstrated that improvement in liquidity reduces the

equilibrium bid-ask spread while a higher traders’ risk aversion widens it. My agent-based simu-

lation analysis suggests the same tendency: the bid-ask spread is tighter in markets with subsistent

liquidity.

Furthermore, my comparative analysis of four distinct transparency regimes in the artificial dou-

ble auction market reveals that permission of iceberg orders alleviates the problem of adverse se-

lection, improves market efficiency and liquidity properties, and reduces the bid-ask spread, which

represents the transaction costs and is one of the key market quality factors. Nonetheless, my ex-

periments indicate that full quote transparency incurs substantial transaction costs for traders and

dampens trading activity in an order-driven market. At the same time, according to simulation re-

sults, exogenous restriction of market depth transparency to the five best quotes on each side of the

book has no substantial effect on market performance, unlike self-regulation of market transparency

via iceberg orders. Further scrupulous analysis in the real option setup delineates the situations

when the intensity of the order flow can accentuate the willingness of the trader to participate in

the opaque market. I showed that once the trader enters the opaque market, he commits to trade

rather quickly relative to his time horizon. Therefore, I conclude that there is a positive relationship

between market opacity and liquidity, and that permitting traders to disguise part of their orders is

desirable for the mutual benefit of market participants.

Although opacity has advantages on the aggregate level, it entails downsides from the standpoint

of individuals: due to the imperfect clarity of information signals embedded in the visible order flow,

impatient traders are highly likely to surpass the favourable trade execution offered in the opaque

market, while a prior optimistic bias prompts traders to place their orders sooner. In addition, my

model of optimal order submission time suggests that opaque markets have a natural predisposition

to attract speculators compared to transparent markets, which, in turn, can potentially hinder price

discovery and deteriorate market quality.

This thesis, therefore, provides a theoretical interpretation of both the individual investors’ atti-

tude towards market opacity and imperfect liquidity, and the resulting emergent market properties.

In line with numerous empirical observations, it demonstrates that opaque markets fulfil its mis-

sion to enhance aggregate market quality and augment liquidity with few downsides for individual

traders.

5.2 Potential Extensions

The three original models developed in this thesis can be employed to advance the understanding

of patterns evicted by concrete transparency policies and consequent liquidity supply in multiple
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directions.

The model of optimal limit order pricing in a market with imperfect liquidity has been analysed

in the form of a a static solution. Allowing for revisions of limit order price over time, I intend to

derive a dynamic optimal strategy. In this version the model can also be applied to examine the

problem of a block trader with a random delay factor dependent on the total volume that the trader

is willing to trade. These extensions would contribute to the branch of microstructure literature

that focuses on optimal dynamic trading, in particular, splitting strategies. Furthermore, a different

stochastic process can be used to describe the dynamics of best prices, such as a double-exponential

diffusion, which incorporates jumps.

The model of optimal order submission time in the opaque market would benefit from account-

ing for the stochastic nature of asset prices. However, the model may not admit an analytical

solution, and numerical methods would be required instead. Furthermore, the range of execution

prices that the trader expects to achieve could be linked to the visible order imbalance in order to

make the model more realistic. It would also be interesting to examine whether various heuristics,

such as loss aversion and availability bias motivate even further or discourage traders to participate

in opaque trading.

Lastly, in future work I could extend the simulation analysis to incorporate the adaptive be-

haviour of the heterogeneous agents that populate the artificial limit order market. The current

version of the agent-based model could be adjusted to allow learning among all agents in order to

explore their reaction to the change of transparency policy from full quote disclosure to opaque

market and the reverse shock. This setup would enable to conduct a comparative study alike live

experiments from real markets and juxtapose the effects of imposing lower transparency versus the

effects of subsequent unveiling of the limit order book.
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