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Abstract

We introduce one-sided cross-validation to nonparametric kernel density esti-

mation. The method is more stable than classical cross-validation and it has

a better overall performance comparable to what we see in plug-in methods.

One-sided cross-validation is a more direct date driven method than plug-

in methods with weaker assumptions of smoothness since it does not require

a smooth pilot with consistent second derivatives. Our conclusions for one-

sided kernel density cross-validation are similar to the conclusions obtained

by Hart and Li (1998) when they introduced one-sided cross-validation in the

regression context. An extensive simulation study confirms that our one-sided

cross-validation clearly outperforms the simple cross validation. We conclude

with real data applications.1

Keywords: bandwidth choice, cross-validation, plug-in, nonparametric esti-

mation

1This research was financially supported by knowledge company Festina Lente and the
Dirección General de Investigación del Ministerio de Ciencia y Tecnoloǵıa under research
grant SEJ2004-04583/ECON.
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1 Introduction

Suppose we have observed data X1, X2, . . . , Xn that are assumed indepen-

dent identically distributed with common density function, f(·). We want to

estimate this common density nonparametrically using the standard kernel

estimator:

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (1)

where K is the kernel function and h is the bandwidth parameter. Our prob-

lem is to find a reliable data driven estimator of the bandwidth. We would like

to use the popular and widely used least squares cross-validation proposed of

Rudemo (1982) and Bowman (1984). We do, however, worry about the well

known lack of stability of this method, see e.g. Wand and Jones (1995). Many

alternatives have been proposed to the intuitively appealing method of cross-

validation. For example the wide range of so called plug-in methods aiming at

estimating the minimizer of the integrated squared error. However, all these

plug-in methods require a pilot estimator to be plugged in. We prefer a di-

rect and immediate method like cross-validation without extra complications

with pilot estimators and without the extra smoothing assumptions required

to assure that the pilot estimator works well. In regression an appealing im-

provement of standard cross-validation exists, namely the so called one-sided

cross-validation that simply is the cross-validation procedure based on the

one-sided kernel version of the original kernel K(·). The estimated bandwidth

coming from this procedure is then readjusted by a simple constant only de-

pending on the kernel, see Hart and Yi (1998) and Yi (1996, 2001, 2004). The

surprising fact is that this one-sided procedure is much more stable than the

original cross-validation procedure and that it in many ways behaves similar

to the plug-in method without having its vices: the complicated pilot esti-

mator and the added smoothness assumptions. In this paper we introduce

one-sided cross-validation for kernel density estimation and we show through

simulations that one-sided cross-validation is performing better, is more stable

and have a similar performance to plug-in, also in the kernel density case. Its

performance and superiority will be shown via simulation studies and real data

applications.
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2 The one-sided cross-validation method for density es-

timation

One commonly used measure of the performance of f̂h is the Mean Integrated

Squared Error (MISE), defined by

MISE(h) =

∫
E[{f̂h(x)− f(x)}2]dx.

Let’s denote by h0 the minimizer of MISE(·). This is the optimal bandwidth

that plug-in methods aim at estimating. Another performance measure to

consider it the data dependent Integrated Squared Error, defined by

ISE(h) =

∫ (
f̂h(x)− f(x)

)2

dx

with the optimal (random) bandwidth, ĥ0 as minimizer.

This is the optimal bandwidth that cross-validation aims at estimating. How-

ever, theoretical studies have shown that standard cross-validation is so un-

stable that plug-in methods do better at estimating ĥ0 than cross-validation

does, even though plug-in methods really aim at estimating h0.

2.1 Ordinary least squares cross-validation

Cross-validation is probably still the most popular automatic bandwidth se-

lection method. Its intuitive definition and its practical data driven flavor

makes up for its lack of stability in the eyes of many practitioners. Also

cross-validation immediately generalizes to most statistical smoothing prob-

lems. Plug-in methods are only well defined for a narrow range of statistical

problems and even here debate over which pilot estimator to use makes prac-

titioners turn to cross-validation.

Least squares cross-validation was proposed by Rudemo (1982) and Bowman

(1984), who estimated ĥ0 by minimizing the criterion,

CV(h) =

∫
f̂ 2

h(x)dx− 2n−1

n∑
i=1

f̂h,−i(Xi), (2)

where f̂h,−i is the density estimator obtained by leaving out the observation

Xi. Let
̂̂
h be this classical cross-validation bandwidth estimator.

4



Hall (1983) showed that the cross-validation bandwidth is a consistent estimate

of the optimal bandwidth ĥ0, and its asymptotic normality was established in

Hall and Marron (1987). They pointed out the lack of stability of classical

cross-validation. Härdle, Hall and Marron (1988) showed the equivalent result

for the regression context. The cross-validation bandwidth also tends to be

undersmoothing in many practical applications. There has therefore been a

number of studies on more stable bandwidth selectors. Most of them related to

the plug-in method. For example the plug-in method of Sheather and Jones

(1986), biased cross-validation by Scott and Terrell (1987) smoothed cross-

validation by Hall, Marron and Park (1989) and the stabilized bandwidth

selector rule by Chiu (1991).

2.2 One-sided cross-validation

Hart and Yi (1998) used local linear regression when introducing one-sided

cross-validation in the regression context. They did this for a good reason since

a good boundary correction method is crucial for the one-sided procedure.

We therefore combine our one-sided cross-validation method with the local

linear density estimator of Jones (1993). In density estimation the local linear

density estimator is identical to the standard kernel density estimator away

from boundaries, see below.

Let K(·) be any common symmetric kernel function and let consider its (left)one-

sided version,

K̄(u) =

{
2K(u) if u < 0

0 otherwise.
(3)

Consider the one-sided density estimator, f̂left,b based on the one-sided kernel

K̄ and bandwidth b. we define the one-sided versions of the error measures

ISE and MISE calling them OISE and MOISE. Define also b̂0 and b0, their

minimizers (respectively).

We also have the following assumptions on the kernel: µ0(K) = 1, µ1(K) = 0

and µ2(K) < ∞, where µl(K) =
∫

ulK(u)du (l = 0, 1, 2).

The one-sided cross-validation criterion like is defined as

OSCV(b) =

∫
f̂ 2

left,b(x)dx− 2n−1

n∑
i=1

f̂left,b(Xi), (4)

with
̂̂
b as its minimizer.
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With these definitions, the one-sided cross-validation bandwidth is based on
̂̂
b but it has to be adjusted by a constant to become an estimator of the

bandwidth for the original kernel density estimator. Let us define

ĥOSCV := C
̂̂
b, (5)

where the constant, C, will be the ratio of the optimal bandwidth (in MISE

sense) of the density estimator (f̂h) to the optimal bandwidth (in MOISE

sense) of the one-sided density estimator (f̂left,b), i.e.

C =
h0

b0

.

Note that this constant does not depend on the underlying density. To be able

to do the one-sided kernel estimator we consider the local linear boundary cor-

rected density estimator of Jones (1993) and Cheng (1997a,1997b). Consider

the minimization problem:

min
β0,β1

[∫
{fn(u)− β0 − β1(u− x)}2 K

(
u− x

h

)
du

]
,

where fn(u) = n−1
∑n

i=1 1{u=Xi} is the empirical density function. Then, the

local linear estimator is defined by the equivalent-kernel expression

f̂h(x) =
1

nh

n∑
i=1

K∗
(

Xi − x

h

)
(6)

with the equivalent kernel

K∗(u) = eT
1 S−1(1, u)T K(u) =

= µ2(K)−µ1(K)u

µ0(K)µ2(K)−(µ1(K))2
K(u),

(7)

being e1 = (1, 0)T and S = (µi+j−2)0≤i,j,≤2.

We define the operator R(g) =
∫

(g(x))2dx, for a generic squared integrable

function g. Then the optimal bandwidths for local linear estimator is given by

h0 =

(
R(K)

(µ2(K))2R(f ′′)

)1/5

n−1/5, (8)

for the ordinary local linear estimator and

b0 =

(
R(K̄∗)

(µ2(K̄∗))2R(f ′′)

)1/5

n−1/5, (9)
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for the one-sided version, where K̄∗ is the one-sided version of the equivalent

kernel (7), i.e.,

K̄∗(u) =
µ2(K)− u

(
2
∫ 0

−∞ tK(t)dt
)

µ2(K)−
(
2
∫ 0

−∞ tK(t)dt
)2 2K(u)1{u<0}. (10)

The adjusting constant becomes then

C =

(
R(K)

R(K̄∗)
µ2(K̄

∗)2

µ2(K)2

)1/5

, (11)

which obviously is a feasible number.

3 Asymptotic theory

The theoretical justification for the stability of one-sided cross-validation seems

to come from the fact that the variation of one-sided cross-validation around

that optimal bandwidth it is aiming at estimating is much smaller than the

variation of ordinary cross-validation around its optimal bandwidth. We will

carry out the details of this argument below following Hall and Marron (1987).

Assumptions

(A1) The density, f , is bounded and twice differentiable, f ′ and f ′′ are bounded

and integrable, and f ′′ is uniformly continuous.

(A2) The kernel K is compactly supported, symmetric density function on R
with Hölder-continuous derivative, K ′, and satisfies that µ2(K) 6= 0.

Consider the following additional definitions and notation, assumed that (A1)-

(A2) hold:

Let define W (u) = −zK ′(u) and the one-sided version, W̄ ∗(u) = −uK̄∗ ′(u)1{u<0},

under assumption (A2) these functions are kernels which integrate one and

verify that µ1(W ) = µ1(W̄
∗) = 0.

Let be the constants:

c0 = (R(K)/(µ2(K)2R(f ′′1/5

and

c1 = 2c−3
0 R(K) + 3(µ2(K))2R(f ′′)c2

0 .

7



And the one-sided versions: c̄0 = (R(K̄∗)/(µ2(K̄
∗)2R(f ′′1/5 and c̄1 = 2c̄−3

0 R(K̄∗)+

3(µ2(K̄
∗))2R(f ′′)c̄2

0.

Let us define the variance terms:

σ2
c = (2/c0)

3R(f)R(W ) + (2µ2(K)c0)
2

{∫
(f ′′2f −

(∫
f ′′f

)2
}

(12)

and

σ̄2
oc = (2/c̄0)

3R(f)R(W̄ ∗) + (2µ2(K̄
∗)c̄0)

2

{∫
(f ′′2f −

(∫
f ′′f

)2
}

. (13)

Observe that the difference
∫

(f ′′2f−(∫
f ′′f

)2
is the variance of f ′′(X). It will

be denoted by V (f ′′) in the following.

Under conditions (A1) and (A2) Hall and Marron (1987) demonstrated that

n3/10(
̂̂
h− ĥ0) −→ N (0, σ2

cc
−2
1 ). (14)

An immediate application of Hall and Marron (1987) gives the following re-

sult allowing us to compare the variation of one-sided cross-validation to the

variation of standard cross-validation:

Theorem 1. Under conditions (A1) and (A2),

n3/10(ĥOSCV − Cb̂0) −→ N (0, C2σ̄2
occ̄

−2
1 ). (15)

The gain in reduction of the variation can be approximated as follows.

Remark 1. The ratio of the asymptotic variance of one-sided cross-validation

to standard cross-validation is given by the ratio of the asymptotic variance

from (14) and the asymptotic variance of (1):

Goc = C2

(
c1

c̄1

)2
σ̄2

oc

σ2
c

. (16)

The reduction of variance for the Epanechnikov kernel and Gaussian kernel

are given by:

GEp
oc =

0.530605928R(f)R(f ′′) + 0.117383673V (f ′′)
1.418004931R(f)R(f ′′) + 0.47266831V (f ′′)

. (17)

and

GGa
oc =

0.6913873R(f)R(f ′′) + 0.6173955V (f ′′)
17.094364R(f)R(f ′′) + 1.363272V (f ′′)

. (18)

The variance reduction is at least 35% for the Epanechnikov kernel and at least

50% for the gaussian kernel.
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4 Finite Sample Performance

The small sample performance of one-sided kernel density estimation is com-

pared to its most immediate competitors, classical cross-validation and plug-

in. The here chosen plug-in method is also called ”refined plug-in” or often

referred to as Sheather-Jones bandwidth; details are given below. The per-

formance is compared by integrated squared error (ISE), where we consider

two measures. The classical where the ISE is calculated for each sample and

averaged (m3) and a new - and perhaps better measure - where we the inte-

grated squared error of ISE’s (m1) and the L1-distance (m2) are calculated.

The latter measures therefore take variability of the ISE’s into account and

penalize bandwidth selectors that often do well but once in a while fail com-

pletely. We also calculate the bias of the bandwidth selectors (m5) and the

volatility of the ISE’s (m4). These numbers will help us explaining why one-

sided cross-validation does better than classical cross-validation. Concretely,

given a bandwidth estimate, ĥ, the considered criteria are the following:

m1 = mean({ISE(ĥ)− ISE(ĥ0)}2),

m2 = mean(| ISE(ĥ)− ISE(ĥ0)|),
m3 = mean(ISE(ĥ)),

m4 = std(ISE(ĥ)),

and

m5 = mean(ĥ− ĥ0).

For brevity we will concentrate on kernel density estimation with the local

linear Epanechnikov kernel.

The plug-in bandwidth h0 is calculated from equation (8). Here, R(K) and

µ2(K) are known whereas R(f ′′) has to be estimated with a prior bandwidth

gp. To this aim, take Silverman’s rule of thumb bandwidth gp for Gaussian

kernels where the standard deviation of X is estimated by the minimum of two

methods: the moment estimate sn and the interquartile range IRX divided by

1.34, i.e. gS = 1.06 min{IRX1.34−1, sn}n−1/5. Then, as the Quartic kernel

KQ comes close to the Epanechnikov but allows for estimating the second

derivative, we normalize gS by the factors of the canonical kernel (Gaussian

to Quartic) and adjust for the slower rate (n−1/9) needed to estimate second

derivatives, i.e.

gp = gS
2.0362

0.7764
n1/5−1/9 .
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Next,

R̂(f ′′) = R(f̂ ′′)− 1

ng5
p

R(K ′′
Q)

to correct for the bias inherited by

f̂ ′′(x) =
1

ng3
p

n∑
i=1

K ′′
Q

(
x−Xi

gp

)
.

In simulation studies not shown here this prior choice turned out to perform

better than any modification we have tried, at least for the estimation problems

discussed in the following.

4.1 Data Generating Processes and Numerical Results

As data generating process (DGP) we have considered a huge bunch of normal,

gamma and mixed densities from which we will concentrate on the following

six:

1. a simple normal distribution, N(0.5, 0.22),

2. a mixture of two normals which were N(0.35, 0.12) and N(0.65, 0.12),

3. a gamma, Gamma(a, b) with b = 1.5, a = b2 applied on 5x with x ∈ IR,

i.e.

f(x) = 5
ba

Γ(a)
(5x)a−1e−5xb,

4. a mixture of two gamma, Gamma(aj, bj), aj = b2
j , b1 = 1.5, b2 = 3

applied on 6x, i.e.

f(x) =
6

2

2∑
j=1

b
aj

j

Γ(aj)
(6x)aj−1e−6xbj

giving one mode and a plateau,

5. a mixture of three gamma, Gamma(aj, bj), aj = b2
j , b1 = 1.5, b2 = 3,

and b3 = 6 applied on 8x giving two bumps and one plateau,

6. and a mixture of three normals, namely N(0.25, 0.0752), N(0.5, 0.0752)

and N(0.75, 0.0752) giving three clear modes.
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Figure 1: The six data generating densities: design 1 to 6 from the upper left

to the lower right.

As you can see in Figure 1 all six models have the main mass in [0, 1]. You

can see also that we have mostly densities with exponentially decreasing tails

so that in this simulation study we will disregard the possible use of boundary

correcting kernels. Moreover, we assume that the empirical researcher has

no knowledge on possible boundaries. For the six models we have considered

sample sizes: n = 50, 100 and 200, and 250 repetitions (simulation runs) for

each model and each sample size.

The results of the six densities are collected in Table 1 to Table 3. We see that

one-sided cross-validation does better and is much more stable than classical

cross-validation on most of our performance measures (see especially m1 and

m2). Therefore, the relative improvement in performance is even bigger with

our main performance measure m1, compare Remark 1. One can see that the

price for stability (compare e.g. m4) of both the one-sided cross-validation

and the plug-in method is a tendency to overestimate the bandwidth a little

bit, see m5. However, the stability more than makes up for this bias and

the overall performance of both these methods tend to be better than the

performance of classical cross-validation. To see this, recall that the measures

of interest for the practitioner are m1 to m3. The conclusion is that one-sided

cross-validation performs similar to - sometimes worse, sometimes better - as

the plug-in method. Our results therefore parallel the results of Hart and Yi

(1998) in the regression context.
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Design 1 Design 2

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 ,0112 ,0004 3e-05 ,0171 ,0012 ,0016

m2 ,0407 ,0064 ,0029 ,0552 ,0263 ,0357

50 m3 ,0781 ,0438 ,0403 ,1112 ,0823 ,0917

m4 ,1028 ,0372 ,0305 ,1214 ,0351 ,0197

m5 -,0225 ,0136 ,0193 ,0071 ,0500 ,0803

m1 ,0028 8e-05 1e-05 ,0019 ,0004 ,0009

m2 ,0234 ,0039 ,0014 ,0246 ,0142 ,0288

100 m3 ,0479 ,0285 ,0260 ,0590 ,0486 ,0633

m4 ,0530 ,0209 ,0185 ,0450 ,0241 ,0137

m5 -,0234 ,0088 ,0160 ,0067 ,0308 ,0763

m1 ,0017 3e-05 1e-06 ,0021 ,0007 ,0005

m2 ,0110 ,0024 ,0007 ,0159 ,0084 ,0213

200 m3 ,0255 ,0170 ,0152 ,0384 ,0309 ,0438

m4 ,0417 ,0125 ,0108 ,0448 ,0287 ,0116

m5 -,0136 ,0034 ,0127 ,0003 ,0145 ,0671

Table 1: Criteria values for designs 1 and 2

5 Practical Remarks and Data Applications

5.1 Data Transformation and Boundary Correction

In our application we estimate data belonging to the interval (0,1) because

we want to apply the transformation approach of Buch-Larsen et al. (2005)

to estimate some loss distributions of operational risk. While the transforma-

tion methodology of Buch-Larsen et al. (2005) have proved to be extremely

efficient and beat its direct competitors in the extensive simulation study of

that paper, the bandwidth selection part of that paper is not really very so-

phisticated. It is just the simplest possible bandwidth selector: Silverman’s

rule of thumb. Recall that if the prior information of facing a one mode dis-

tribution is available, Silverman’s rule of thumb may give nice plots but is

generally much too course for a detailed data analysis. So, while the transfor-

mation method of Buch-Larsen et al. (2005) already has shown its usefulness

it clearly needs to be updated by a better bandwidth selection method. We

use cross-validation, refined plug-in, Silverman’s rule of thumb and our new

12



Design 3 Design 4

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 ,0164 ,0026 ,0019 ,0062 ,0009 6e-05

m2 ,0564 ,0339 ,0342 ,0343 ,0096 ,0053

50 m3 ,1316 ,1092 ,1095 ,0823 ,0576 ,0534

m4 ,1206 ,0557 ,0457 ,0756 ,0353 ,0215

m5 -5e-05 ,0456 ,0669 -,0081 ,0335 ,0398

m1 ,0018 ,0006 ,0010 ,0007 8e-05 4e-05

m2 ,0227 ,0196 ,0269 ,0126 ,0056 ,0047

100 m3 ,0698 ,0667 ,0741 ,0466 ,0397 ,0387

m4 ,0480 ,0329 ,0306 ,0276 ,0158 ,0134

m5 -,0008 ,0388 ,0666 -,0035 ,0327 ,0395

m1 ,0030 ,0008 ,0005 ,0022 ,0008 3e-05

m2 ,0168 ,0126 ,0193 ,0130 ,0061 ,0040

200 m3 ,0495 ,0453 ,0520 ,0365 ,0296 ,0275

m4 ,0559 ,0318 ,0200 ,0460 ,0292 ,0070

m5 -,0038 ,0245 ,0593 -,0056 ,0302 ,0393

Table 2: Criteria values for designs 3 and 4

one-sided cross validation estimator as our selection rule. We conclude that

while the other estimators grossly oversmooth or undersmooth what seems

to be appropriate, the one-sided cross validation seems to work very well in

practice.

First a few words on the actual transformation. In our two considered cases

the modified Champerknowne distribution of Buch-Larsen et al. (2005) actu-

ally simplifies since their parameter c is estimated to zero. This implies that

the transformation is a special case of the original Champerknown distribu-

tion - Champerknown (1936,1952) and from a transformation point of view

identical to the Möbius transformation used for the exact same purpose by

Clements, Hurd and Lindsay (2003). The simple Champerknown distribution

has cumulated distribution function

T (x) = xα(xα + Mα)−1

with density

t(x) = αxα−1Mα(xα + Mα)−2 ,

where M and α will be estimated via maximum likelihood on the original data.

13



Design 5 Design 6

n Criteria CV OSCV Plug-in CV OSCV Plug-in

m1 ,0034 ,0042 ,0001 ,0095 ,0055 ,0055

m2 ,0283 ,0239 ,0088 ,0455 ,0659 ,0669

50 m3 ,0810 ,0765 ,0615 ,1173 ,1377 ,1387

m4 ,0591 ,0664 ,0222 ,0896 ,0159 ,0126

m5 ,0023 ,0860 ,0518 ,0211 ,0989 ,1057

m1 ,0006 ,0001 ,0001 ,0034 ,0020 ,0046

m2 ,0123 ,0090 ,0086 ,0240 ,0325 ,0655

100 m3 ,0480 ,0447 ,0442 ,0687 ,0771 ,1101

m4 ,0272 ,0158 ,0146 ,0600 ,0358 ,0080

m5 ,0041 ,0397 ,0521 ,0102 ,0500 ,0977

m1 ,0012 7e-05 7e-05 ,0008 ,0002 ,0034

m2 ,0114 ,0065 ,0070 ,0125 ,0084 ,0577

200 m3 ,0359 ,0310 ,0315 ,0403 ,0362 ,0855

m4 ,0352 ,0108 ,0094 ,0293 ,0186 ,0069

m5 -,0009 ,0342 ,0506 ,0015 ,0152 ,0878

Table 3: Criteria values for designs 5 and 6

We will apply our method with boundary correcting kernels on the transformed

data yi = T̂ (xi), (i = 1, , . . . , n), where T̂ (·) refers to T (·) with estimated α

and M . The same way we define t̂(·). The resulting kernel density estimate

we call f̂transf (y). Then, the final density estimate for the original data is

f̂(xi) = f̂transf (yi) · t̂(xi). Note that {yi}n
i=1 ∈ (0, 1).

So, we have to define a local linear estimator on the interval (0, 1) As long as all

bandwidths considered - both the bandwidth of the original kernel estimator

and the bandwidth of the one-sided kernel estimator - are smaller than one

half then we can continue to use the local linear estimator defined above that

only take care of one boundary. Since this is indeed the case in our two specific

applications below, we do not generalize our procedure to be able to take care

of two boundaries. Also, as long as all bandwidths are smaller than one half, we

can change our above approach to one-sided kernel estimation, by estimating

to the right when estimating in the interval (0, 1/2) and estimating to the

left when estimating in the interval (1/2, 1). The asymptotic theory that our

one-sided kernel bandwidth approach is based on is of course unchanged by
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this and we can proceed just as described above. We there replace (3) by

K̄(u) =





2K(u) if u < 0 and 0 < x ≤ 1/2

2K(u) if u > 0 and 1/2 < x < 1

0 otherwise

,

calculate our one-sided bandwidth and rescale to our final bandwidth.

5.2 Operational Risks: Execution, Delivery and Pro-

cess Management

We first apply our method to a small data set with sample size n = 75. It

has been taken from a major publicly available financial loss data base on

operational risk data. We consider the loss line ”Execution, delivery and

process management” with relatively few reported claims.

First we have transformed the data along the lines described above. For

this transformation T̂ we got from maximum likelihood α̂ = 1.1129968 and

M̂ = 3.2357247. Then we have searched for the optimal bandwidths on an

equispaced grid of 50 bandwidths from hmin = 1/75 to hmax = 0.5, respec-

tively hmax = 0.27 ≈ C/2 for the one sided cross validation, see discussion

above. For kernel K we have used again the Epanechnikov kernel as we did

in the simulations. The results were ĥCV = 0.05 for the classical cross vali-

dation, ĥOSCV = 0.24 for the one sided cross validation, ĥS = 0.29 for Silver-

man’s bandwidth, and ĥPI = 0.43 for the refined plug-in method. Silverman’s

bandwidth has been calculated as described in Section 4 gS but corrected for

Epanechnikov kernels. Compared to the other bandwidth estimates, ĥPI is

much to big. A closer look at the calculation revealed that for this (small)

data set the refined plug-in method has serious problems with the estimation

of the second derivative f ′′.

In Figure 2 are given the resulting density plots for both the original and

the transformed data except for ĥPI as this was ridiculously oversmoothed.

It can be seen clearly that CV tends to under- and plug-in to oversmooth

whereas our one sided cross validation method lies in between. While the

difference between the three curves might seem slight to the untrained eye,

the difference in the heaviness of the three tails are actually enormous and

economic judgements would be very different for these three curve estimators.

Note that the transformation approach allow us to compare the entire tail and

that we therefore are able to get a visual impression of the relationship between

15



0 0.25 0.5 0.75 1
Y

0
0.

5
1

1.
5

2
f(

Y
)

0 5 10 15 20 25
X

0
0.

1
0.

2
0.

3
0.

4
f(

X
)

Figure 2: The density estimates for the transformed (left) and the original

data (right): black solid for ĥOSCV , blue dashed for ĥCV , and green solid for

ĥS. The graph on the right is cut off at x = 25.

tails for different estimators. This visual comparison is more complicated on

the original scale: we can not capture the entire positive axis in one picture.

In the second example we consider external fraud taken from the same financial

data base as our first data set was taken from. Here the size of the data set is

n = 538.

For this data set, the transformation T̂ has been performed with the maximum

likelihood estimates α̂ = 1.113242 and M̂ = 4.0. Accordingly to the sample

size we have searched for the optimal bandwidths on an equispaced grid of

50 bandwidths from hmin = 1/538 to hmax = 0.25 < C/2. Here, we also

tried with larger hmin for reasons we discuss below. For kernel K we have

used again the Epanechnikov kernel. The results were that ĥCV (using the

classical cross validation) always converged to zero whatever hmin has been.

Now it is well known that for increasing n cross validation suffers from this

problem. As a remedy, Feluch and Koronacki (1992) propose to leave out in

the cross validation notjust observation xi (yi respectively in our application)

but xi and its neighbors, in other words an ε−environment Uε(xi). However,

in practice it is not clear how large this environment should be, this depends

certainly on sample size n. Moreover, often ĥCV varies a lot with the size

of Uε(xi). Therefore, in this application we have given in the search for a

reasonable ĥCV . Further results have been ĥOSCV = 0.100 for the one sided

cross validation, ĥS = 0.190 for Silverman’s bandwidths, and ĥPI = 0.214 for

the refined plug-in method.
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Figure 3: The density estimates for the transformed (left) and the original

data (right): black solid for ĥOSCV , green solid for ĥS, and red solid for ĥPI .

The graph on the right is cut off at x = 25.

In Figure 3 are given the resulting density plots for both the original and the

transformed data. Again, obviously CV tends to strongly undersmooth (not

plotted as ĥCV ≈ 0.0) and plug-in to oversmooth whereas our one sided cross

validation method lies in between although with the tendency to undersmooth.

Also here the difference of the two curves might seem slight - standard cross-

validation is left out since it did not work at all in this case - the difference

in the heaviness of the two are so big that it is very important which of these

curves economic judgements are based on.

We conclude that our one-sided method beats clearly classic cross validation

and refined plug-in in both the simulations and the real data examples. We

have seen one example in which refined plug-in breaks down, and one in which

classic cross validation breaks down whereas our method does reasonably well

throughout.
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