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Abstract 

This paper presents the results of a field experiment carried out to assess the accuracy and efficiency 

of a new in-vehicle navigation algorithm, whose aim is to incorporate and consider travel time 

reliability and route the guided vehicle along uncongested roads, in the absence of real-time traffic 

information. Using historical travel time profiles deduced from floating vehicle data, the algorithm is 

implemented in a purpose-developed software tool and tested in the London Congestion Charging 

Zone. The experiment consists of driving a vehicle along routes computed by the algorithm and 

comparing the outcome with that of a conventional navigation system installed in a second vehicle. 

The results indicate that the new algorithm outperforms the conventional system in most cases, thus 

suggesting that it is a step forward towards a more intelligent navigation system. 

 

1. Introduction 

Having started off as luxury accessories installed on high-priced cars, in-vehicle information systems, 

and in particular satellite navigation systems are gradually becoming more and more common due to 

recent technological advances. Navigation systems are progressively being recognised, together with 

the traditional radio, as the most important source of information in the vehicle and this is why the 

number of users is continuously increasing. In recent years, the market has seen the introduction of 

portable navigation devices, besides the embedded ones, which are available at affordable prices. 

Page 1 of 32

IET Review Copy Only

IET Intelligent Transport Systems



  2 

Technological advances in the wireless telecommunications field have also resulted in mobile phones 

equipped with a GPS-receiver becoming available and thus extending the field even further. 

Forecasts predict that in the next few years, a large number of drivers will be making frequent use of 

a navigation device, which indicates that car navigation systems are rapidly becoming everyday 

consumer goods. 

 

In order to keep up with the growing competition in the in-vehicle navigation field, developers and 

suppliers of devices, software and services endeavour to improve the quality of their products. 

Hence, systems containing increasingly more sophisticated functions than simple driving directions 

are developed. These range from more advanced algorithms aiming to calculate better routes 

(fastest route, shortest route, avoiding tolls, preferring motorways etc.) making use of higher quality 

data, to enhanced communication abilities, such that real-time traffic information aiming to inform 

the driver on congested areas in the road network becomes available, and even to extra functions 

not directly relevant to navigation, such as weather information. 

 

Focussing on traffic information, car navigation systems can be categorised as ‘autonomous’ and 

‘centralised’. The main characteristic of autonomous systems is the fact that they have access to very 

limited (only traffic congestion reports from the Traffic Message Channel (TMC)) or no real-time 

traffic information, using only historical data, based on which they offer route guidance to the user. 

These systems are thus independent of any external services, apart from the GPS satellites and the 

TMC, and no communication of the vehicle with any other entity is required. On the other hand, 

centralised systems are based on two-way data exchange between the navigation device and a traffic 

information centre, offering thus a subscriber-based better quality route guidance service.  

 

In recent research work [1-6] an advanced in-vehicle navigation strategy for an autonomous system 

has been developed, aiming at taking travel time uncertainty into consideration and supplying 
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alternative reliable routes to the driver, under the condition of no traffic information availability. 

Reliability is defined as the probability of not encountering abnormal delays and is quantified as the 

relationship between travel time and travel time variability on a specific road or an entire route  [7]. 

The method also considers time-dependence, i.e. the fact that travel time is not constant but varies 

with time. The objective of this paper is to further advance this approach and test it in the field, i.e. in 

a real road network using historical floating vehicle data, comparing the route guidance provided 

with the output of a conventional existing navigation system. 

 

The paper is structured as follows: the next section presents the background of the study. Then, the 

in-vehicle navigation algorithm developed is described. After that, the data acquisition and 

processing procedures required prior to carrying out the field experiment are described, followed by 

a presentation of the experimental conduct. The results obtained are reported in the following 

section, while the last section concludes the paper and identifies areas of further research work.    

 

2. Background 

This section briefly reviews previous relevant research and describes the background of the work 

reported here. This includes the time-dependent A* route finding algorithm for road networks, travel 

time reliability, and travel time estimation and floating vehicle data.    

 

2.1 The time-dependent A* route finding algorithm 

Finding the fastest route in a network is one of the most frequently encountered problems in 

transport engineering. Although various algorithms exist, their performance tends to significantly 

deteriorate with increasing network size. As in an in-vehicle navigation system route finding is a 

subroutine that needs to be called very often and due to the fact that the size of transportation 

networks is usually large, it is of vital importance to have an algorithm, which is efficient enough to 
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produce accurate results in little computation time.  

 

While a large number of methods for finding routes between two points in a network exist and are 

comprehensively appraised in [8], the leading algorithm for finding the fastest route from an origin to 

a destination is the A* algorithm [9]. The advantage of A* compared with other route finding 

algorithms, such as Dijkstra’s algorithm [10], is that A* is much more efficient, due to its ability to 

convert an uninformed search into an informed search by using a heuristic estimate of the travel 

time from any point of the network to the destination (usually based on the airline distance). The 

fastest route is found under the condition that the heuristic does not overestimate the actual travel 

time to the destination.  

 

The concept of A* is summarised as follows; the algorithm holds two lists; the closed list, containing 

all the nodes of the network that have been expanded; and the open list, containing all the nodes 

that may be expanded at the next step. At each step, one node is explored and moved from the open 

list to the closed list, while its successors are placed into the open list. For every node n, f(n) = g(n) 

+ h(n) is calculated, where g(n) is the travel time from the origin to n and h(n) is the estimate of the 

travel time from n to the destination. The node to be expanded at each step is the node with the 

lowest f(n) value among the ones in the open list. When h(n) = 0 for all nodes n, A* reduces to 

Dijkstra’s algorithm. Moreover, the efficiency of the algorithm increases, the closer h(n) is to the 

actual travel time. 

 

Using a link-based approach rather than the conventional node-based method, the A* algorithm can 

be used to find routes for in-vehicle navigation systems, on road networks with special features, such 

as turn restrictions and one-way roads. Namely, an efficient technique of working with the start- and 

end-part of each link, and moving between link parts by calculating their f-values each time, has 

recently been developed [6]. Links are connected through junction movements, such that the end-
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part of any link is connected to the start-part of any adjacent link by a respective junction movement. 

The method also accounts for time-dependence of travel time by adopting a modified version of the 

so-called ‘flow speed model’ technique developed in [11] and implemented in [3], which enables the 

time-dependent calculation of link travel times based on link speed time intervals and hence not 

violating the first-in-first-out condition.  

 

2.2 Travel time reliability 

Travel time uncertainty has been identified as one of the most important factors affecting travellers’ 

decisions. Travellers are interested in how long it will take them to reach their destination, but are 

even more concerned with the reliability of their prediction of total travel time. A wrong travel time 

prediction results in either an early arrival at the destination or in a delay, none of which are 

appreciated. 

 

Both empirical and analytical studies have been conducted, all of them demonstrating the 

importance of travel time uncertainty to travellers [12-17]. Models have been devised to measure 

the uncertainty encountered by a traveller during his/her trip and express it as reliability. 

Comprehensive reviews of this topic have also been carried out [18,19]. 

 

Much research has focussed on defining adequate measures for quantifying travel time reliability. 

Most measures use the characteristics of the travel time distribution, such that two types of 

measures can be identified: those indicating the probability that a link may be unusable due to 

congestion [20], and those attempting to quantify the amount of delay that may be experienced 

along a link [21]. 

 

Considering in-vehicle navigation, a recently defined measure of the latter category in the context of 

in-vehicle navigation is one consisting of two indices, namely earliness and lateness, which are 
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derived based on the mean and the 5% and 95% travel times, assuming that travel times are log-

normally distributed [7]. Thus, the earliness and lateness reliability of a link l is 

rE(l) = exp[– ½ . Tlog(l) – z0.05 
. Tlog(l)] (1) 

and 

rL(l) = exp[½ . Tlog(l) – z0.05 
. Tlog(l)] (2) 

with 

Tlog(l) = ln








1 + 
var[t(l)]

 [ t̄ (l)]
2  (3) 

where t(l) is the travel time on link l, following a log-normal distribution with mean t̄ (l) and variance 

var[t(l)], and z0.05 = 1.65 is the tail probability of the 90%-confidence level employed. The advantage 

of these measures is that they are comprehensible by the driver and can be easily converted to 

expected time gain and delay values, such that the earliest and latest reliable arrival times at the 

destination can be computed. 

 

2.3 Travel time estimation and floating vehicle data 

The estimation and prediction of travel time in an urban network is of vital importance to many 

transport applications and has therefore been extensively researched in the past and continues to be 

analysed by many researchers, such as Park and Rilett [22], Park et al [23] and Awasthi et al [24]. This 

is also the case in in-vehicle navigation, with important contributions to the field being the works of 

Hoffmann and Janko [25], Boyce et al [26], Sen et al [27-29] and Kerner et al [30], introducing 

methods, according to which default travel time profiles for navigation systems are estimated using 

data obtained from probe vehicles (vehicles equipped with a navigation system). 

 

In recent years a new accurate method of estimating travel time, called floating vehicle data (FVD) 

has been developed, and its concept is based on the transmission of traffic data from a number of 
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vehicles equipped with measuring devices “floating” in traffic, to a so-called service provider, the 

processing of this data to convert it to traffic information and the re-broadcast of this data to the 

vehicles, equipped with receivers. In the UK, the first fully operational FVD system has been 

developed by ITIS Holdings PLC. The ITIS FVD
TM

 system has been collecting data since February 2000, 

while commercial provision of the data gathered has been in place since 2002. With more than 2.5 

million measurements per day, the system is now considered the largest of its kind in the world [31]. 

 

The main advantage of a FVD system, as opposed to other existing travel time data collection 

schemes, is the fact that data can be obtained wherever there is adequate GPS-coverage, whenever 

the ignition of the vehicle is on. Apart from minimising the cost that would arise from installing 

conventional measuring devices (such as inductive loop detectors) on many roads, it also enables the 

monitoring of roads that are not equipped with such devices, such that all but the minor roads can 

be monitored [32,33]. The fleet of the ITIS FVD
TM

 system consists of about 50,000 private vehicles, 

business vehicles, trucks and coaches, equipped with ‘data collection units’, transmitting their 

locations (longitude and latitude) at pre-determined intervals. Thus, speed is worked out between 

two consecutive journey points and is assigned using a map-matching procedure to a specific link on 

a digital road network.    

 

While the initial purpose of the ITIS FVD
TM

 system was to obtain current traffic data and to broadcast 

it to vehicles, an additional function (or “by-product”) that has recently gained value is the creation 

of a historical travel time database from past measurements, taking advantage of the fact that the 

system collects data 24 hours a day, 365 days a year. The resulting database of speed measurements 

enables the calculation of key statistical values for the travel time on each link of the network, such 

as the mean, the standard deviation and confidence intervals [34]. 

 

Concerning in-vehicle navigation, the ITIS FVD
TM

 system has only been used for the provision of real-
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time traffic data so far. In this study, ITIS FVD
TM

 speed measurements are being utilised for the 

calculation of mean speed and reliability values following equations (1)-(3) for the links of a test 

network in London, so as to be used by the reliable dynamic in-vehicle navigation algorithm 

described in the next section. 

 

3. Methodology 

The dynamic in-vehicle navigation algorithm presented in this study makes use of the time-

dependent A* algorithm and the reliability measure defined in equations (1)-(3) so as to model 

congestion risk and suggest a set of alternative equivalently reliable routes to the driver, subject to a 

number of constraints imposed to ensure acceptability by him/her. The constraints applied relate to 

maximum route travel time, maximum route length and minimum route earliness and lateness.  

 

The constraints introduced are enforced by the application of link travel time penalties. The main 

idea lies in performing an initial search in order to find the fastest route without considering 

reliability, applying travel time penalties to unreliable links (whether in terms of earliness or lateness 

or both) to exclude them from the search, and running subsequent searches, each time reducing the 

penalties to re-include the least unreliable links, until the computed route satisfies the constraints 

imposed. The travel time and length constraints are expressed in proportion to the travel time and 

length of the fastest route, such that for any computed route pi, its travel time and length should be 

T(pi) < βT(p0) and Λ(pi) < ζΛ(p0), where T(p0) and Λ(p0) are the travel time and length values of 

the fastest route p0, and β and ζ are the travel time and length permission parameters respectively. 

Regarding the minimum earliness and lateness of route pi, it should be RE(pi) > REmin and RL(pi) > 

RLmin, where REmin and RLmin are pre-defined thresholds.  

 

The idea of link penalties is also introduced as an attempt to develop an efficient and acceptable 
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method for finding alternative routes in a network, as it has been proven that strategies suggesting 

multiple alternative routes to the driver are superior to single-route solutions, because they decrease 

the risk of the congestion feedback phenomenon and they give him/her the possibility to choose a 

route according to his/her individual preferences. However, it has to be ensured that the routes 

suggested are not too similar (are maximally disjoint). This is enforced by additionally applying 

penalties to links that are already included in a route that was previously computed and accepted, 

and by applying a fourth constraint relating to maximum route overlapping, such that a newly 

computed route is only accepted if it does not overlap too much with any previously computed 

route.  

 

Finally, to ensure termination of the algorithm, a constraint relating to a maximum number of routes 

to be computed, is introduced. Of course the algorithm terminates earlier if only a smaller number of 

acceptable routes are found. The travel time penalty, for links having an earliness or lateness value 

lower than a preset threshold rEmin or rLmin and for links that are already included in one of the 

computed alternative routes, is: 

∆t(l) = α
m

( )1- rE(l) . rL(l)
q

W0 (4) 

with 0 < α < 1, m = number of iterations, q = 0 if m = 0 otherwise q = 1, and W0 = a value large 

enough to bring about link exclusion. 

 

It should be noted that while the first run of the time-dependent A* algorithm is run in the normal 

order, i.e. forwards, the subsequent A* runs are performed in reverse order, i.e. from the destination 

to the origin. The advantage of doing this is that after the first run, the computed travel time from 

the origin to every visited link can be used as a more exact heuristic estimate for subsequent reverse 

A* runs. The number of links visited is thus significantly reduced and consequently the efficiency of 

the algorithm is improved. 
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In this study, the above algorithm is field tested, so as to demonstrate its advantages regarding the 

inclusion of reliability in in-vehicle dynamic navigation. Prior to reporting on the results from the 

experiment carried out, however, the data acquisition and processing procedures involved, as well as 

the experimental setup and method of conduct are described, including the provision of the test 

network and traffic data. 

 

4. Data acquisition and processing 

The data sources and the processing required prior to the conduction of the field experiments are 

described here; these include the test network and travel time data. The former is obtained from 

Planung Transport Verkehr AG (PTV AG) in the form of a PTV VISUM
TM

 map database, extracted from 

a Navigation Technologies (NAVTEQ
TM

) digital map database, while the latter is derived from speed 

measurements of the ITIS FVD
TM

 system. 

 

4.1 Test network 

The test network selected should meet a number of requirements, so as to be suitable for the 

purpose of field testing the algorithm. Firstly, it needs to be large enough to offer a route choice, 

such that a set of alternative equivalently reliable maximally disjoint routes can be computed for 

each origin-destination pair. Secondly, it needs to have adequate ITIS FVD
TM

 coverage, such that 

enough data is available for the experiments. Since the ITIS FVD
TM

 system only covers the UK 

strategic highways network, some travel time data will inevitably have to be simulated; however it is 

aimed to use as much real data as possible by choosing a network with a high density of main roads, 

such as a city centre. Thirdly, the network needs to be representative of a random network used for 

in-vehicle navigation, that is, it needs to be diverse, containing areas with different land uses and 

road types. 
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The network that is selected for this study is the original London Congestion Charging Zone (LCCZ), 

consisting of 6240 nodes and 12891 links and spreading over an area around 7 km long and 5 km 

wide. As it covers most areas of Central London, it exhibits great diversity of land uses and contains 

all road types but one (it does not contain a motorway). Also, it has good ITIS FVD
TM

 coverage, 

because it has a high density of main roads and because it has been the object of many transport 

planning studies arising from the introduction of the LCCZ scheme. It should be noted, however, that 

the western extension of the LCCZ is excluded, because the ITIS FVD
TM

 data acquired (see next sub-

section) refer to a period prior to the start of its operation, while the experiments are carried out 

after that.  

 

The test network is supplied in PTV VISUM
TM

 format and is shown on Figure 1. For each network 

element, a number of attributes are included. For nodes these are the ID number corresponding to 

the NAVTEQ
TM

 database and the location with X and Y co-ordinates with respect to the OS origin. For 

links the following are given: ID number in NAVTEQ
TM

 database, ID of start node, ID of end node, co-

ordinates of intermediate points indicating the curvature, road type, speed limit and direction. 

Finally, for junction movements the ID numbers of the three nodes specifying the turn (start node, 

via node, end node) and the type of the turn (left, right, straight-on or U-turn) are given. 

 

[Figure 1 goes here] 

 

4.2 ITIS FVD
TM

 set collection and processing 

ITIS FVD
TM

 measurements are supplied for the conduct of the field experiment in this study. For the 

test network, data collected by the ITIS FVD
TM

 system during a three month period, between 1 

September 2006 and 1 December 2006, is obtained. This corresponds to about 7.6 million speed 

measurements, each bearing the following attributes: 
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• Unit ID, representing the unique vehicle ID supplying the measurement 

• Latitude of the recorded position of the vehicle during the measurement 

• Longitude of the recorded position of the vehicle during the measurement 

• Speed of the vehicle in km/h at the time of the measurement 

• Date and time of the measurement 

• Vehicle type (car, bus, HGV or LGV) 

• Map-matched NAVTEQ
TM

 link ID number 

• Direction of the NAVTEQ
TM

 link 

 

In order to use the ITIS FVD
TM

 values, a temporal data aggregation procedure by day and time of day 

is carried out, such that days are categorised as ‘weekdays’ or ‘weekends’, while each day is split into 

15-minute intervals. Based on the time and day of the observation of an individual measurement, the 

speed value is assigned to a link and to a specific day and time interval. The individual measurements 

for a specific link and time interval form a distribution of speeds, from which the average speed can 

be derived by calculating the space-mean speed (harmonic mean of the distribution), and also the 

earliness and lateness indices can be computed through the variance of the distribution and 

equations (1)-(3). The result from the data aggregation is that for each link there are six lists: 

weekday speed, earliness and lateness, and weekend speed, earliness and lateness, each one of 

which has 96 values for each one of the 15-minute intervals. When plotted against time of day, the 

speed, earliness and lateness profiles are obtained. 

 

It should be noted here that a filter is applied to the data aggregation, such that a minimum number 

of observations are needed in order to be able to calculate unbiased statistical values. As such, 

whenever less than three speed measurements are present, these are ignored and simulated data 

(see next sub-section) is used for the link and time interval in question. A filter is also applied to the 

data aggregation when it comes to abnormally low values. When a value from an observation is too 
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low, it is conjectured that the vehicle stopped while the measurement was taken; hence, 

observations below 7 km/h are discarded and are not included in mean and reliability calculations. 

 

4.3 Simulation of missing data 

For the links and time intervals, for which speed data is not provided by the ITIS FVD
TM

 system (either 

because the system does not cover them or because not enough data points are available), mean 

speed and reliability data are simulated. The simulation procedure involves extrapolating data from 

the links for which data is available to the ones for which data is not available. 

 

Regarding speed data, the chosen value to extrapolate is the fraction of the mean speed to the free-

flow speed. Assuming that when no congestion is present the highest speed at which a vehicle would 

travel on a road is the speed limit, it can be assumed that the free-flow speed corresponds to the 

speed limit, which is provided for every link in the map database. In order to extrapolate the data, 

the ratio of the mean speed over the speed limit (speed ratio) is calculated for every link and time 

interval, for which data is available. For all those links and for each time interval individually, the 

average speed ratio is computed; the resulting value is assigned to all the remaining links of the 

network, for which no data is available. Speed values can then be derived for these links and time 

intervals by multiplying the speed ratio assigned to them with their speed limit value. On the top two 

graphs of Figure 2, the average speed ratio profiles for all links of the network are shown. 

 

Concerning reliability data, the method of simulation is similar to the one used for mean speeds. 

Namely, the average earliness and lateness indices are computed over all links, for which data is 

available, and for each time interval individually. Then, the values computed are assigned to the 

links, for which data does not exist. In the bottom four graphs of Figure 2, the average earliness and 

lateness profiles for weekdays and weekends are shown. 
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[Figure 2 goes here] 

 

5. Experimental conduct 

Using ARIAdNE, successor of ICNavS [5], a software tool developed for the purpose of the 

implementation of the new reliable in-vehicle navigation algorithm, a field experiment is conducted. 

Two vehicles are used, such that one vehicle is driven along routes suggested by ARIAdNE (termed 

‘ARIAdNE vehicle’), while the other follows routes suggested by a conventional system (termed 

‘conventional vehicle’); comparison is made between the two systems as concerns the overall travel 

time experienced. 

 

The conduct of the experiment is as follows. The two drivers involved (one for each vehicle) meet at 

the same point to start their trip and agree on a destination, input it in their systems, which calculate 

route(s) for them, and take note of the departure time (DT). The conventional vehicle driver takes 

note of the expected time of arrival (ETA) provided by his/her system (CETA), while the ARIAdNE 

vehicle driver selects a route among the set of reliable routes given and writes down the ETA, the 

earliest reliable time of arrival and the latest reliable time of arrival of this route, given by ARIAdNE 

(AETA, AERTA and ALRTA). The two drivers then begin to follow the route directions given by their 

systems. Upon arrival at the destination, the drivers observe which of the two arrived earlier and 

write down the conventional actual time of arrival (CATA) and the ARIAdNE actual time of arrival 

(AATA). It should be noted here, that in order to ensure objectivity and eliminate the possible 

advantage of one system compared to the other arising from the driving style of the one or the other 

driver (i.e. if one driver is faster than the other thus always arriving earlier), the drivers swap systems 

for half the runs of the experiment. 

 

When it comes to the analysis of the results, travel times are computed from the arrival times that 

have been recorded. The conventional expected travel time (CETT = CETA – DT), the ARIAdNE 
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expected travel time (AETT = AETA – DT), the ARIAdNE earliest reliable travel time (AERTT = AERTA – 

DT), the ARIAdNE latest reliable travel time (ALRTT = ALRTA – DT), the conventional actual travel time 

(CATT = CATA – DT) and the ARIAdNE actual travel time (AATT = AETA – DT) are thus derived. Also, 

the difference in the actual travel time (DATT = CATT – AATT) between the two systems is worked 

out, such that it can be seen which system “won” in each run of the experiment. When DATT is 

positive, this means that the ARIAdNE vehicle arrived earlier than the conventional vehicle, while the 

opposite applies if DATT is negative; a DATT value of zero indicates that the vehicles arrived at the 

destination at the same time. A plot of DATT against the number of runs is created, so as to visualise 

the magnitude of DATT. 

 

Since minor incidents on the route may cause short delays (crossing pedestrians, delivery HGVs, 

parking vehicles etc), values of DATT between -3 and 3 minutes are considered as ties between the 

two systems. This is applied as a filter to DATT, such that if DATT lies within those values, it is set as 

equal to zero. The new filtered DATT is called FDATT. The filter is also applied to CATT and AATT, such 

that the values of FCATT and FAATT are obtained by setting them equal to the average value of CATT 

and AATT, if DATT lies between -3 and 3 minutes, or by adding/subtracting 1.5 minutes.  In order to 

make DATT and FDATT values comparable between the two vehicles, the ratios DATT/CATT and 

FDATT/FCATT are computed (DATT/AATT and FDATT/FAATT would be equally appropriate). By 

ranking these values and by dividing by the total number of runs, cumulative distributions are 

obtained for both the filtered and the unfiltered data cases, showing the comparison of the results 

output by the two systems. 

 

6. Results 

23 runs of the field experiment are carried out according to the procedure described in the previous 

section and conclusions are drawn as regards the performance of ARIAdNE compared to the 

conventional navigation system. A graph displaying the trends of the CATT and AATT values 
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throughout the experiment, superimposed for comparison purposes, is shown in Figure 3, with the 

continuous line representing the CATT and the dotted line representing the AATT. 

 

[Figure 3 goes here] 

 

As can be seen from the graph, the ARIAdNE vehicle experiences in general similar or lower travel 

times than the conventional vehicle (i.e. the dotted line lies below the continuous line), with only 

two exceptions in the 7
th

 and the 12
th

 run of the experiment, while there are many occasions, where 

the AATT is significantly lower than the CATT (i.e. an advantage of ARIAdNE), such as in the 2
nd

, 3
rd

, 

10
th

, 14
th

, 15
th

, 16
th

, 19
th

 and 22
nd

 run. In total, ARIAdNE outperforms the conventional system in 12 

runs of the experiment, in 9 runs it is outperformed by it, while the remaining 2 runs are ties. These 

numbers mean that for around 61% of the runs ARIAdNE delivers similar or better results than the 

conventional system. This result is further demonstrated by computing the DATT from the CATT and 

the AATT values, and by then deriving and plotting the DATT/CATT cumulative distribution, shown in 

Figure 4 (the DATT/AATT cumulative distribution would also be appropriate and would be very 

similar). From the plot it can be seen that the resulting curve intersects the vertical axis, representing 

zero difference, at a cumulative probability of about 0.5, which again suggests that ARIAdNE yields 

better results than the conventional system. A statistical significance test of this result is described in 

the Appendix. 

 

[Figure 4 goes here]   

 

As minor incidents on a route may cause short delays, thus giving a potential marginal advantage to 

the one system or the other, a filter is applied to the DATT values, such that values lying between -3 

and 3 minutes are set equal to zero and the result of the corresponding observation is set to ‘tie’. The 

new filtered DATT is called FDATT and is also applied to CATT and AATT, such that the values of 
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FCATT and FAATT are obtained. Similarly to the plot of Figure 3, a plot of FCATT and FAATT against 

the number of runs is shown in Figure 5. 

 

[Figure 5 goes here] 

 

The filtered result of the 23 runs of the double-vehicle experiment is hence the following: ARIAdNE 

outperforms the conventional system 9 times, there are 11 ties between the two systems, while the 

conventional vehicle arrives before the ARIAdNE vehicle only 3 times. This means that ARIAdNE 

arrives either earlier or at the same time with the conventional vehicle in 87% of the runs, thus 

suggesting again that it has an advantage. The resulting FDATT/FCATT distribution now has a higher 

frequency of zero values and the corresponding plot intersects the vertical axis at a higher 

cumulative probability value, namely 0.6. The plot is shown in Figure 6 and depicts the findings 

reported above. The statistical significance of this is assessed in the Appendix. 

 

[Figure 6 goes here]   

 

Despite the overall pattern of ARIAdNE providing better results than the conventional system, it is 

interesting to note that it also suffers a fairly significant “defeat” during the experiment, and to be 

more specific, by 19 minutes. In order to explain this, one must not forget that ARIAdNE’s underlying 

methodology, the reliable dynamic in-vehicle navigation algorithm introduced earlier in this paper, is 

a risk-minimising technique. This means that, while unpredictable delays are avoided as much as 

possible, it cannot be guaranteed that they will not arise at all on a route computed by ARIAdNE, nor 

can it be guaranteed that the conventional system will compute a route, on which all possible delays 

will arise. Hence, this value is in fact the “exception confirming the rule”, as is on the other side the 

highest DATT value obtained, which is a “win” for ARIAdNE by 20 minutes. 
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[Figure 7 goes here]   

 

On a more detailed level, it can this time be observed that, not only links characterised as unreliable 

are avoided by ARIAdNE, but also that they are included in the route computed by the conventional 

system, which does not have access to reliability information, if they have a high speed limit. An 

example of this is shown in Figure 7, which corresponds to the 14
th

 run of the experiment, in which 

the second highest DATT value (12 minutes) is recorded, and in which route guidance is sought 

between Bedford Square in Bloomsbury and Tyers Street in Vauxhall (South London). 

 

While the conventional system guides the driver along the theoretically fastest route (Shaftesbury 

Avenue – Trafalgar Square – Whitehall – Millbank – Lambeth Bridge – Albert Embankment), shown 

by the thin line, ARIAdNE suggests a different, in theory longer, route (Kingsway – Aldwych – 

Waterloo Bridge – Kennington Road – Kennington Lane), shown by the thick line, completely avoiding 

the circled area containing links characterised as unreliable. The outcome is that congestion is 

encountered on these particular links, resulting in the conventional vehicle to experience great delay 

and arrive at the destination much later. As no incidents or other unpredictable events (e.g. road 

works) causing the congestion are neither reported nor observed in the area, it can be conjectured 

that the delay is due to the low lateness reliability, not considered by the conventional system but 

included in the route suggested by ARIAdNE. 

 

The underlying conclusion to the field experiment is that ARIAdNE seems to be able to compute 

routes that avoid areas where delays are more likely to occur, whereas this is not the case of the 

conventional system. The result of this is that, for the same origin and destination, a vehicle 

equipped with ARIAdNE seems to arrive in general earlier than a vehicle equipped with a 

conventional system. 
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7. Conclusions 

In this paper, a new dynamic in-vehicle navigation algorithm incorporating travel time reliability was 

field trialled, so as to draw conclusions on its accuracy and efficiency. Implemented in ARIAdNE, a 

purpose-developed software tool, the algorithm’s output was compared with the output of a 

conventional car navigation system, using traffic data derived from the ITIS FVD
TM

 system. The 

experiment took place in Central London, and more specifically in the London Congestion Charging 

Zone. The results pointed out that ARIAdNE outperformed the conventional system in most cases, 

thus suggesting that the new algorithm is a contribution to the state-of-the-art, and that it may be 

beneficial to use it in a more advanced navigation system. 

 

The promising results obtained can be used as an incentive for future research in the field of reliable 

in-vehicle navigation, and more specifically in the further development of the new algorithm. Topics 

of interest are the extension and testing of the approach to real-time routing (and re-routing) 

responding to traffic congestion reports, the further implementation of the algorithm in a centralised 

navigation scheme, aiming at system-wide reliability optimisation, as well as the incorporation of 

further attributes to be considered, such as individual user preferences and environmental impact.  
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Appendix: Statistical significance tests 

Two tests are carried out to assess the statistical significance of the difference in actual travel time of 

ARIAdNE and the conventional system, for both the unfiltered and filtered results. 

 

To test the statistical significance of the unfiltered result a one-tailed t-test is used. Namely, the 

sample size is n = 23, the sample mean is calculated as DATT ̄   = 1.739 and the sample standard 

deviation is worked out as sDATT = 8.225. The null and alternative hypotheses are thus formulated as 

H0: µDATT = 0 and H1: µDATT > 0, where µDATT is the mean DATT. Based on these, the t-test value 

is: 

 t = 
DATT ̄  – 0
 sDATT n   

 = 
1.739

 8.225 23   
 = 1.014 

For n-1 degrees of freedom, i.e. 22, the corresponding value of Student’s t-distribution at a 

significance level of 0.05 is t22,0.05 = 1.717, and since |t| < t22,0.05, the null hypothesis cannot be 

rejected. Thus, ARIAdNE’s advantage over the conventional system is not statistically significant at 

the 0.05 level. However, taking a significance level of 0.2, the corresponding value of Student’s t-

distribution is t22,0.2 = 0.859, and since |t| > t22,0.2, the null hypothesis is rejected and the alternative 

hypothesis is accepted. As such, ARIAdNE’s advantage over the conventional system is statistically 

significant at the 0.2 level. 

 

To assess the statistical significance of the filtered result, a t-test is used in the same way as in the 

unfiltered result assessment. Namely, for the filtered result the sample size is n = 23, the sample 

mean is FDATT ̄   = 1.261 and the sample standard deviation is sFDATT = 6.181. The null and 

alternative hypotheses are again formulated as H0: µFDATT = 0 and H1: µFDATT > 0. Based on these, 

the t-test value is: 
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t = 
FDATT ̄  – 0
 sFDATT n   

 = 
1.261

 6.181 23   
 = 0.978 

As in the case of the unfiltered result, for n-1=22 degrees of freedom, the corresponding value of 

Student’s t-distribution at a significance level of 0.05 is t22,0.05 = 1.717, and since |t| < t22,0.05, the null 

hypothesis cannot be rejected. Thus, the outcome is that, similarly to the unfiltered result, ARIAdNE’s 

advantage over the conventional system is not statistically significant at the 0.05 level. However, 

taking a significance level of 0.2, the corresponding value of Student’s t-distribution is t22,0.2 = 0.859, 

and since |t| > t22,0.2, the null hypothesis is rejected and the alternative hypothesis is accepted. As 

such, even for the filtered result, ARIAdNE’s advantage over the conventional system is statistically 

significant at the 0.2 level. 
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