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Abstract: Cell tracking is of vital importance in many biological studies, hence robust cell tracking
algorithms are needed for inference of dynamic features from (static) in vivo and in vitro experimental
imaging data of cells migrating. In recent years much attention has been focused on the modelling of
cell motility from physical principles and the development of state-of-the art numerical methods for the
simulation of the model equations. Despite this, the vast majority of cell tracking algorithms proposed
to date focus solely on the imaging data itself and do not attempt to incorporate any physical knowledge
on cell migration into the tracking procedure. In this study, we present a mathematical approach for cell
tracking, in which we formulate the cell tracking problem as an inverse problem for fitting a mathematical
model for cell motility to experimental imaging data. The novelty of this approach is that the physics
underlying the model for cell migration is encoded in the tracking algorithm. To illustrate this we focus on
an example of Zebrafish (Danio rerio’s larvae) Neutrophil migration and contrast an ad-hoc approach to
cell tracking based on interpolation with the model fitting approach we propose in this study.

Keywords: cell tracking, optimal control of PDEs, chemotaxis, cell motility

1 Introduction

Cell migration is a fundamental process in cell biology and is tightly linked to many important physiological
and pathological events such as the immune response, wound healing, tissue differentiation, metastasis, em-
bryogenesis, inflammation and tumour invasion [2]. Advances in experimental techniques means that we now
have access to both in vivo and in vitro imaging data of migrating cells. Cell tracking is concerned with the
development of methods to track and analyse dynamic cell shape changes from static imaging data (see for
example [10] for a review), with level set or electrostatic based methods among the most widely used. One fea-
ture of the aforementioned methods is that the trajectories they generate are not physical in nature rather they
are designed with the goal of achieving nice geometric properties, e.g., equidistribution of vertices, smoothness
of the trajectories, etc. On the other hand a major focus of current research is the derivation of mathematical
models for cell migration based physical principles, e.g., [4]. Furthermore, such models appear to show good
qualitative and quantitative agreement with experimental observations of migrating cells. Recently we investi-
gated fitting parameters in such models to experimental imaging data of migrating cells where observations of
both the position of the cells and the concentrations of cell-resident proteins related to motility were available
[3].

In this study we focus on the setting, more prevalent in cell tracking problems, where only the position of the
cell, specifically the cell membrane, at a series of discrete times is available and no further biological information
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is given. To this end, we derive a mathematical model based on physical principles for cell migration and then
formulate an inverse problem, which takes the form of a PDE constrained optimisation problem, for fitting the
model to the experimental observations. To solve the optimisation problem we propose an algorithm based
on previous studies on the optimal control of geometric evolution laws [5]. Finally, we apply the algorithm to
some experimental data on the migration of neutrophils and contrast the results of our approach with a simple
cell tracking algorithm based on interpolation.

Due to space constraints we eschew technical details in the subsequent discussion focussing on the general
idea of our approach and contrasting it with a more standard cell tracking approach in a biological application
of in vivo migration. For further details on the methodology see [1].

2 An optimal control approach to cell tracking

In this section we present a numerical method for cell tracking based on optimal control theory. Our method is
inspired by the work of Haußer et al. [5], who use an optimal control approach to control the shape evolution
of nanoscale islands with electric fields.

As previously stated our approach seeks to fit a mathematical model to experimental data. The model we
consider describes the movement of the cell by proposing an evolution law for the motion of the cell membrane
which we denote by Γt, t ∈ [0, T ], where Γt ⊂ Rn, n = 2, 3 is assumed to be a closed n− 1 dimensional
hypersurface. Given an initial surface Γ0 our model for the evolution law takes the form of mean curvature
with forcing

v⃗(x⃗, t) = −σH(x⃗, t) + η(x⃗, t) + λ(t) x⃗ ∈ Γt, t ∈ (0, T ], (1)

where v⃗ is the normal velocity, H is the sum of the principle curvatures, λ is a spatially uniform forcing term
enforcing volume conservation and the forcing function η drives the movement of the cell. Such models may be
derived by assuming a force balance on the cell membrane where the various force contributions accounted for
are the resistance of the cell membrane to stretching, a hydrostatic pressure that conserves the enclosed volume,
a viscous force opposing the motion and protrusive and retractive forces arising due to actin polymerisation or
myosin mediated contraction (for further information on the derivation of the model and the inclusion of other
forces see [4]).

We now assume we are given some experimental observations of the position of the cell membrane {Γ̂i}i=0,...,N

where N > 0. The idea of the cell tracking algorithm we propose in this study is to find a forcing function
function η such that the solution to the model equations is close (c.f., (3)) to the experimental data. The
initial data for the model is given by the initial experimental observation i.e., Γ0 := Γ̂0. We approximate the
geometric evolution equation with a phase field model (conserved Allen-Cahn with forcing) of the form

ε∂tφ(x⃗, t) = ε∆φ(x⃗, t)− 1

ε
G′(φ(x⃗, t)) + cw(η(x⃗, t) + λ(t)), (2)

for the phase field function φ of the curve with initial condition φ(x⃗, t) = φ0(x⃗) and zero flux boundary
conditions on a rectangular domain Ω in R2. We take G(φ) = 1

4 (φ
2 − 1)2 a double well potential, ε a small

length parameter of the interfacial thickness and cw a scaling constant dependent on the double well potential.
We also approximate the sharp interface observations of the experimental data (Γ̂i’s) with diffuse interfaces
defined on the same domain Ω and using the same value of ε (see [3] for details).

As in [5] we formulate the problem of fitting to the experimental data as the following minimisation problem:
given an initial phase field function φ(x⃗, 0) at time t = 0, and a desired final phase field φdes(x⃗, T ), find a
suitable control function η(x⃗, t) : Ω× [0, T ] → R2 which minimises:

J (φ(x⃗, t), η (x⃗, t)) =
1

2

ˆ
Ω

(φ (x⃗, T )− φdes(x⃗))
2
dx⃗+

γ

2

ˆ T

0

ˆ
Ω

η2(x⃗, t)dx⃗dt (3)

subject to the constraints given by (2), where γ is a positive regularisation parameter. For simplicity we have
assumed N = 1, i.e., we are attempting to fit to a single observation using a previous observation as data.
ϕ(x⃗, 0) and ϕ(x⃗, T ) are the diffuse interface representations of the initial and final data respectively. We adopt
an optimal control approach for the solution of the minimisation problem, formally deriving the first order
necessary conditions and employing a simple gradient update scheme for the control. To solve the forward
equation (2) and the adjoint equation (for efficient computation of the gradient) we employ a finite element
method.
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3 Application to experimental data

To contrast the cell tracking approach proposed above with a more standard algorithm, we apply the optimal
control based algorithm to the problem of tracking in vivo migration of neutrophils in zebrafish larvae and
compare it with an approach based on interpolation. Neutrophil migration as observed in zebrafish larvae
is a popular model to study the cellular inflammatory response mainly due to the transparent nature of the
zebrafish in the developmental stage and the capacity to reproduce in vivo conditions of inflammation similar
to those in humans [9].

Experimental Setup

In the interests of space we only briefly state the details of the experimental setup. For the experimental
methodology and that used to generate and segment the imaging data we refer to [6]. Zebrafish were maintained
according to standard protocols, tail-fin transection was performed at 3 days post fertilisation, then mounted on
melting point agarose, and images were captured using an UltraVIEWVoX spinning disk confocal microscope
(PerkinElmer Life and Analytical Sciences) as previously described [9]. The biological data sets were acquired
from transgenic Tg(mpx:eGFP)i114 zebrafish larvae in which neutrophils specifically express Green Fluorescent
Protein (GFP). We selected eight observations of the migration of a single neutrophil as shown in Figure 1(a).
The observations were obtained in MATLAB format from the open-source software PhagoSight [8]

The biological data sets were acquired from transgenic Tg(mpx:eGFP)i114 zebrafish larvae in which neu-
trophils specifically express Green Fluorescent Protein (GFP). We selected eight observations of the migration
of a single neutrophil as shown in Figure 1(a). The orientation is such that tail-fin (which is the direction of
expected migration) is to the right of the neutrophils.

A simple interpolation based approach to cell tracking

To contrast the optimal control approach with a cell tracking method that is purely geometric in nature (i.e.,
the trajectories are non-physical) we implemented a simple algorithm for cell tracking based on cubic spline
interpolation. Here, following Madzvamuse et al. [7], given experimental observations of the cell membrane we
use cubic splines to generate a series of intermediate cell-surface boundaries with the interpolation chosen such
that the point trajectories are smooth (C2). To do this given two successive observations of the cell membrane
(that consist of a series of points on the cell membrane) we first manually select a single point on the first
surface to be mapped to a specific point on the second surface which uniquely determines the entire mapping
of every point as it is assumed the mapping preserves the connectivity (topology).

Results

In Figure 1 we report on the results of the two tracking algorithms applied to the experimental data. We
see that the cubic spline interpolation algorithm (as expected) and the optimal control based algorithm both
generate centroid trajectories that are significantly smoother than those obtained by linear interpolation of
the cell centroids alone. The usual measures of chemotaxis persistence length, chemotactic indices, maximum
velocities etc. have been computed and exhibit significant variation using the different approaches but are not
reported on due to space constraints. For this example the area of the cell is not conserved in the experimental
data therefore we take the linear interpolant of the area of the experimental data to be the target area and
determine the λ term in (2) such that it (weakly) penalises deviations from this target area (see [3] for details).
In Figure 1(d) we clearly observe good agreement between the target area (green line) and the area of the
cell using the optimal control approach while the area of the cell using the cubic spline interpolation approach
is significantly smaller than the area of the cell away from the end points of the interval. In Figure 1(e) we
plot one example of the optimal control based approach fitting between the fourth and fifth (from the left)
snapshot of Figure 1(a). We observe good agreement between the final position with the computed optimal
control and the experimental data we also above strong contractile forces in the rear of the cell away from the
chemoattractant and strong protrusive forces in the front of the cell that points towards the chemoattractant
(the chemoattractant concentration is expected to increase from left to right).
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(a) 2d experimental data of migrating zebrafish neu-
trophils in vivo
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(b) Centroid trajectories, linear interpolation and cu-
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Figure 1. (a) Experimental data. (b)-(c) Experimental data and centroids computed with the different cell
tracking algorithms. (d) area of the cell, the green line indicates the linear interpolant of the area of the
observations, the blue line the area using cubic spline interpolation and the red line the area using the optimal
control approach. (e) An example of intermediate morphologies obtained with the optimal control algorithm.
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4 Conclusion

In recent years, the rapid development in microscopy and imaging techniques has generated a huge amount of
data on migrating cells in vivo and in vitro. A key challenge is to study from discrete observed snapshots, quan-
tities of interest, such as trajectories of material points on the membrane, velocities and geometric quantities
[3]. In this study we have proposed an alternative to the purely geometric widely used cell tracking approaches
for the estimation of such quantities in which the estimated trajectories correspond to those generated by a
physical model for the evolution and thus may be more physically meaningful than those obtained previously.

While this proof of concept application to experimental data focused on 2-dimensional observations each of
the algorithms is immediately applicable to 3-dimensional data sets. Moreover while we specifically focussed
on the case where minimal information regarding the biology is available, in theory our approach is applicable
to models where more biology is included. In particular models for the dynamics of actin and myosin as well as
other motility related species within the cell and on the membrane may be included and the evolution law may
be modified to take into account the dependence of the movement of the cell on these species, see for example
[4]. We also believe the optimal control/inverse problem approach we present in this study could be a useful
framework within which to investigate other biological questions beyond cell tracking such as the inference of
chemotactic fields during in vivo chemotaxis [6]. Finally we remark that data on the morphology, curvature,
normal velocity, etc., may be easily extracted using the optimal control based approach which may be useful
in applications.
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