
              

City, University of London Institutional Repository

Citation: Karcanias, N. (2011). The Minimal Design Problem on Dynamic Polynomial 

Combinants. Paper presented at the 18th IFAC World Congress, 28-08-2011 - 02-09-2011, 
Milano Italy. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/7302/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


The Minimal Design Problem on Dynamic
Polynomial Combinants

Nicos Karcanias ∗

∗ Systems and Control Centre, School of Engineering and
Mathematical Sciences, City University London, Northampton Square

EC1V 0HB, UK (e-mail: N.Karcanias@city.ac.uk).

Abstract: The theory of dynamic polynomial combinants is linked to the linear part of the
Dynamic Determinantal Assignment Problems, which provides the unifying description of the
pole and zero dynamic assignment problems in Linear Systems. The fundamentals of the theory
of dynamic polynomial combinants have been recently developed by examining issues of their
representation, parameterization of dynamic polynomial combinants according to the notions
of order and degree and spectral assignment. Central to this study is the link of dynamic
combinants to the theory of ”Generalised Resultants”, which provide the matrix representation
of the dynamic combinants. The paper considers the case of coprime set polynomials for which
spectral assignability is always feasible and provides a complete characterisation of all assignable
combinants with order above and below the Sylvester order. A complete parameterization
of combinants and respective Generalised Resultants is given and this leads naturally to the
characterisation of the minimal degree and order combinant for which spectrum assignability
may be achieved, referred to as the ”Dynamic Combinant Minimal Design” (DCMD) problem.
Such solutions provide low bounds for the respective Dynamic Assignment control problems.
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1. INTRODUCTION

The study of determinantal type problems (such as pole
zero assignment, stabilisation) has been unified by the de-
velopment of a framework referred to as Determinantal As-
signment Problem (DAP) [Karcanias and Giannakopoulos
(1984)],[Leventides and Karcanias (1998)]. This frame-
work belongs to the general algebro-geometric methodol-
ogy [Brockett and Byrnes (1980)] and it relies on tools
from algebra and algebraic geometry [Hodge and Pedoe
(1952)]. DAP is a multi-linear nature problem and thus
may be naturally split into a linear and multi-linear prob-
lem (decomposability of multivectors). The final solution
is thus reduced to the solvability of a set of linear equations
coming from the spectrum assignability of polynomial
combinants [Karcanias et al. (1983)], characterising the
linear problem, together with quadratics characterising the
multi-linear problem of decomposability, which in turn
define some appropriate Grassmann variety [Hodge and
Pedoe (1952)].

Dynamic compensation problems may also be studied
within the DAP framework, but their linear sub-problem
depends on dynamic polynomial combinants which have
much richer properties and they have been studied recently
[Karcanias and Galanis (2010)]. Amongst the open issues
in the area of dynamic frequency assignment problems,
is defining the least complexity compensator (this is fre-
quently defined by the McMillan degree), for which we may
have solvability of the arbitrary spectrum assignment of
the corresponding DAP. This is referred to as the minimal
design problem of DAP. The linear part of DAP is ex-
pressed as spectrum assignability of dynamic polynomial

combinants, and thus the study of the minimal design for
this problem may enable the derivation of lower bounds
for the solution of the original minimal design problem
defined on DAP.

The fundamental aspects of the theory of dynamic poly-
nomial combinants have been examined in [Karcanias and
Galanis (2010)], where their representation in terms of
Generalized Resultants [Barnett (1970b)] [Barnett (1983)]
[Vardulakis and Stoyle (1978)] and Toeplitz matrices has
been established. Dynamic polynomial combinants have
been parameterized in terms of order and degree and this
has introduced the foundations for the investigation of the
property of spectrum assignability for some value of the
degree and order of the dynamic combinant which are re-
ferred to as Sylvester order and degree respectively. It has
been established that under the conditions of coprimeness
of the set P defining the combinant, there is always an
order and degree such that the corresponding combinant
has its spectrum assignable. The parametrisation of all
dynamic combinants according to order and degree is used
to show that all combinants of degree greater than the
Sylvester degree have elements (corresponding to some
appropriate order) which are assignable, and there is a set
of degrees less than the Sylvester degree for which we have
assignable combinants for some appropriate order. The
latter property motivates the study for finding the least
degree and order combinant that is spectral assignable.
This problem is referred to here as Minimal Design Prob-
lem for Dynamic Combinants (MDP-DC) and is examined
here. Using the systematic construction of the family of
Generalised Resultants with order and degree less than



the Sylvester, we define the minimal solution in a finite
number of tests using only rank tests. These results on
the dynamic polynomial combinants are clearly necessary
for the solvability of the corresponding DAP, and thus
provide lower bounds for the solutions of the corresponding
dynamic frequency assignment problem.

Throughout the paper the following notation is adopted: If
F is a field, or ring then Fm×n denotes the set of m×n ma-
trices over F . If H is a map, then R(H),Nr(H),Nl(H) de-
note the range, right, left null spaces respectively. Qk,n de-
notes the set of lexicographically ordered, strictly increas-
ing sequences of k integers from the set ñ , {1, 2, . . . , n}.
If V is a vector space and {vi1 , . . . , vik} are vectors of V
then vi1 ∧ . . . ∧ vik = vω ∧, ω = (i1, . . . , ik) denotes their
exterior product and ∧r V the r−th exterior power of V. If
H ∈ Fm×n and r ≤ min{m,n}, then Cr(H) denotes the
r−th compound matrix of H [Marcus and Minc (1964)].
We shall denote by R[s],R(s) the ring of polynomials,
rational functions over R respectively.

2. BASIC DEFINITIONS AND PROPERTIES OF
DYNAMIC COMBINANTS

The Determinantal Assignment and Polynomial Combi-
nants

A large family of problems for Linear Systems dealing
with Dynamic Compensation [Kucera (1979)], [Kailath
(1980)] may be reduced to a common formulation that
is represented by the determinantal assignment problem
(DAP) [Karcanias and Giannakopoulos (1984)]. This prob-
lem deals with the study of the following equation with
respect to polynomial matrix H(s):

det(H(s)M(s)) = f(s) (1)
where f(s) is a polynomial of an appropriate degree d.
If M(s) ∈ Rp×m[s], r ≤ p, such that rank(M(s)) = r
and let H be a family of full rank r × p constant matrices
having a certain structure. Solve with respect to H ∈ H
the equation:

fM (s,H) = det(HM(s)) = f(s) (2)
where f(s) is a real polynomial of an appropriate degree
d. If, we denote the rows of H(s), columns of M(s)
respectively, then hi(s)

t
,mi(s), i ∈ r̃, then:

Cr(H(s)) = h1(s)t ∧ · · · ∧ hr(s)
t = h(s)t∧ ∈ R1×σ (3)

Cr(M(s)) = m1(s)∧· · ·∧mr(s) = m(s)∧ ∈ Rσ [s], σ =
(
p
r

)
(4)

then by the Binet-Cauchy theorem [Marcus and Minc
(1964)]:

fM (s,H) = Cr(H)Cr(M(s)) =

=< h(s),m(s) >=
∑

ω∈Qr,p

hω(s)mω(s) (5)

where < ·, · > denotes inner product, ω = (i1, . . . , ir) ∈
Qr,p, and hω(s), mω(s) are the coordinates of h(s)∧ ,
m(s)∧ respectively. Note that hω(s) is the r×r minor of

H(s), which corresponds to the ω set of columns of H(s)
and thus hω(s), is a multilinear alternating function of the
entries hij(s) of H(s). The study of the zero structure of
the multilinear function fM (s,H) may thus be reduced to
a linear subproblem and a standard multilinear algebra
problem as it is shown below.

(i) Linear subproblem of DAP: Set m(s)∧ = p(s) ∈
Rσ[s]. Determine whether there exists a k(s) ∈ Rσ[s],
k(s) 6= 0, such that:

fM (s, k(s)) = k(s)tp(s) =
∑

ki(s)pi(s) = f(s) ∈ R[s]
(6)

(ii)Multilinear subproblem of DAP: Assume that K
is the family of solution vectors k(s) of (6). Determine
whether there exists H(s)t = [h1(s), . . . ,hr(s)], where
H(s)t ∈ Rp×r[s], such that:

h1(s) ∧ · · · ∧ hr(s) = h(s)∧ = k(s) ∈ K (7)

The polynomials fM (s, k(s)) are generated by p(s) =
[p1(s), . . . , pi(s), . . . , pσ(s)]t ∈ Rσ[s], or as linear combi-
nations of the set P = {pi(s) ∈ R[s], i ∈ σ̃} and they will
be referred to as Dynamic Polynomial Combinants (DPC).
The study of the spectral properties of such polynomials
has been considered in [Karcanias and Galanis (2010)]. We
may define:
Definition 1. Given a set of polynomials P = {pi(s) :
pi(s) ∈ R[s]; i ∈ m̃)} and a family of polynomial sets
< K >= {Kd,∀d ∈ Z+ : Kd = {ki(s) : ki(s) ∈ R[s]}; i ∈
m̃, d = max{deg(ki(s))}}, we consider:

f(s,K;P) =
∑

ki(s)pi(s) = φ(s) where ki(s) ∈ Kd (8)

defined as d order dynamic-polynomial combinants of P
and p = deg{f(s,K;P)} is as its degree.

The representation problem of a given order and degree
dynamic combinant is summarised here [Karcanias and
Galanis (2010)] and this involves the parameterization of
all sets < K >= {Kd,∀d ∈ N : Kd = {ki(s) : ki(s) ∈
R[s]}; i ∈ m̃, d = max{deg(ki(s))}} which lead to a
polynomial combinant of a given degree p. We assume that
the maximal degree polynomial in K,k1(s) 6= 0 and such
sets K are call proper. If we define P as:
P = {pi(s) ∈ [s], i ∈ m̃, n = deg{p1(s)} ≥ deg{pi(s)},
, i = 2, . . . ,m, q = max{deg{pi(s)}}, i = 2, . . . ,m}

(9)

p1(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0, pi(s) =

= bi,qs
q + · · ·+ bi,1s+ b1,0, i = 2, . . . ,m

(10)

p(s) =


p1(s)
p2(s)

...
pm(s)

 = [p
0
, p

1
, . . . , p

n
]


1
s
...
sn

 = Pe n(s)

(11)

Then the set P will be referred to as an (m;n(q))-ordered
set of R[s] . Consider now the (m; d) set K = {ki(s) ∈
[s], i ∈ m̃, deg{ki(s)} ≤ d} with the resulting d-order
polynomial combinant of P, defined as:

fd(s,K,P) =
m∑
i=1

, ki(s)pi(s) = kt(s)p(s) (12)



The matrix P ∈ Rm×(n+1) generates the representative
p(s) ∈ Rm[s] of P and it is the basis matrix of P. Clearly:

−∞ ≤ ∂[fd(s,K,P)] ≤ n+ q (13)

Generalised Resultant Representations of Dynamic Com-
binants

For the general (m; d) set K with a representative vector:

k(s)t =
t

k0 +sk1
t + . . .+ sdkd

t = [k1(s), k2(s), . . . , km(s)],

ki(s) = ki,0 + ki,1s+ . . .+ ki,ds
d

(14)

then fd(s,K,P) may be expressed as:

fd(s,K,P) =
m∑
i=1

[ki,d, . . . , ki,1, k1,0]


sdpi(s)

...
spi(s)
pi(s)

 =

= [
t

k 1,d, . . . ,
t

k m,d]

 p i,d
(s)

...
p
m,d

(s)


(15)

Proposition 2. Every dynamic combinant fd(s,K,P) de-
fined by an (m;d) set K is equivalent to a constant poly-
nomial combinant defined by the (m(d+ 1); 0) set K0 and
generated by the (m(d+ 1); (n+ d)(q+ d)) the d-th power
of the (m;n(q)) set P, defined by:

Pd = {sdp1(s), . . . , sp1(s), p1(s); . . .

. . . ; sdpm(s), . . . , spm(s), pm(s)}
(16)

If µ = n+d, ẽµ (s)t = [sµ, sµ−1, . . . , s, 1], then ∂[p
1,d

(s)] =
n+ d, ∂[p

i,d
(s)] ≤ q + d for all i = 2, 3, ,m, then:

p
1,d

(s) =


1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0

 ẽµ(s) =

= Sn,d(p1)ẽµ(s), Sn,d(p1) ∈ R(d+1)×(µ+1)

(17)
and for i = 2, 3, . . . ,m

p
i,d

(s) =


0 · · · 0 bi,q · · · bi,1 bi,0 0 · · · · · · 0
0 · · · 0 0 bi,q · · · bi,1 bi,0 0 · · · 0
... 0

...
. . . . . .

...
0 · · · 0 0 · · · 0 bi,q · · · bi,1 bi,0

 ẽµ(s) =

= Sn,d(pi)ẽµ(s), Sn,d(pi) ∈ R(d+1)×(µ+1)

(18)

The set Pd has then a basis matrix representation as shown
below:

p
d
(s) =


p
1,d

(s)
p
2,d

(s)
...

p
m,d

(s)

 =


Sn,d(p1)
Sn,d(p2)

...
Sn,d(pm)

 ẽµ(s) = SP,d ẽµ(s)

(19)

where SP,d ∈ Rm(d+1)×(µ+1)which is the d-th Generalised
Resultant representation of the set P and SP,d is the basis

matrix of the Pd set. An alternative expression for the
dynamic combinant is obtained using the basis matrix
description of the set Pand this leads to an alternative
equivalent representation, referred to [Karcanias and Gala-
nis (2010)] as the Toeplitz representation.

3. FIXED DEGREE AND ORDER
PARAMETERISATION OF K SETS AND

GENERALISED RESULTANTS

The general representation of dynamic combinants con-
sidered before, based on the order may lead to combinants
of varying degree. An alternative characterisation based
on the fixed degree of fd(s,K,P) but with varying order
K provides an explicit parameterisation of the K sets. The
fixed degree parameterisation of combinants is summarised
below [Karcanias and Galanis (2010)]:
Theorem 3. Given the (m;q(n)) set P and a general proper
(m; d) set K. Then,

(i) For all proper (m; d) sets K, n ≤ ∂[fd(s,K,P)] ≤ n+d
(ii) If p ∈ N>0, p ≥ n, then the family {Kp} for which
∂[fd(s,K,P)] = p, satisfies the conditions

∂[k1(s)] ≤ p− n, ∂ [ki(s)] ≤ p− q, i = 2, ...,m
where at least one of the first two conditions holds as
an equality.

(iii) The p degree family {Kp} contains n− q+ 1 subfam-
ilies parameterised by an order d. The possible values
for the order are:
d1 = p− q > d2 = p− q − 1 > . . . > dn−q+1 = p− n

and the corresponding subfamilies are:

{Kpd1} = {ki(s) : ∂[k1(s)] ≤ p− n, ∂[k2(s)] = d1 =
= p− q, ∂[ki(s)] ≤ d1, i = 3, . . . ,m}

{Kd2p } = {ki(s) : ∂[k1(s)] ≤ p− n, ∂[k2(s)] = d2 =
= p− q − 1, ∂[ki(s)] ≤ d2, i = 3, . . . ,m}

...

{Kdn−q+1
p } = {ki(s) : ∂[k1(s)] = ∂[k2(s)] =

= dn−q+1 = p− n, ∂[ki(s)] ≤ dn−q+1 =
= p− n, i = 3, . . . ,m}

The (m,n(q)) set P the degree of the proper combinants
takes values p ≥ n and the family of proper combinants of
P may thus be parameterised by degree and orders. The
entire set of K vectors is denoted as < K > and may be
partitioned as:

< K >= {Kn} ∪ {Kn+1} ∪ . . . ∪ {Kn+q−1} (20)

whereas each subset {Kp} has the structure defined by the
previous result. The above suggests that {Kn} class acts
as a generator of all other classes derived simply by adding
the corresponding increase in the degree. For a class {Kdp}
we shall denote by < Kdp > the ordered set of degrees of
the {ki(s), i ∈ m̃} polynomials.
Corollary 4. Given an (m;q) set P and a general (m; d)
set K, then:

(i) The minimal degree family p = n, {K}n is:



{Kn} =
{K0

n} :< K0
n >= (0, 0, . . . , 0);

{K1
n} :< K1

n >= (0, 1, . . . , 1);
...

{Kn−qn } :< Kn−qn >= (0, n− q, . . . , n− q)
(ii) The general degree family p = n+ d, {Kp} is:

{Kp} = {Kdp} :< Kdp >= (0, . . . , 0) + (d, d, . . . , d);

{Kd+1
p } :< Kd+1

p >= (0, 1, . . . , 1) + (d, d, . . . , d);
...

{Kd+n−qp } :< Kd+n−qp >=
= (0, n− q, . . . , n− q) + (d, d, . . . , d)}

(iii) For the general degree p family, p ≥ n, the values of
possible orders in decreasing order are:

d1 = p− q > d2 = p− q − 1 > . . .

. . . > dn−q = p− n+ 1 > dn−q+1 = p− n
and they are di = p− q + 1− i, i = 1, 2, . . . , n− q + 1.

Amongst all (m; d) sets K, the set defined by:
{Kn−1

n+q−1} ={k1(s) : ∂[k1(s)] = q − 1, ki(s) :
: ∂[ki(s)] = n− 1, i = 2, . . . ,m}

(21)

plays a particular role in our study and it is referred to as
the Sylvester set of P. The general p degree family may
be expressed as:

{Kp} = {Kd̃ip , d̃i = p− n− 1 + i, i = 1, 2, ..., n− q + 1} =

= {Kp−np ;Kp−n+1
p ; ....;Kp−q−1

p ;Kp−qp }
(22)

The element Kp−qp that corresponds to the highest order
d1 = p − q will be called the generator of the family and
its degrees are: < Kp−qp >= (p− n, p− q, . . . , p− q).

Similarly, the element Kp−np that corresponds to the lowest
order dn−q+1 = p−n will be called the co-generator of the
family and its degrees are: < Kp−np >= (p−n, p−n, . . . , p−
n).

The above suggests that the entire family of vector sets
< K > may be expressed in ”direct sum” form (

⋃̇
) as:

< K >= {Kn}∪̇{Kn+1}∪̇ . . . ∪̇{Kn+q−1}∪̇ . . .
{Kp} = {Kp−np }∪̇{Kp−n+1

p }∪̇ . . . ∪̇{Kp−qp }
(23)

4. GENERALISED RESULTANTS BASED ON FIXED
DEGREE AND ORDER PARAMETRISATIONS

The parameterisation of the sets K based on degree and
order induces a natural parameterisation of the corre-
sponding Generalized Resultants. For the general (m; d)
set K that leads to combinants of degree p its structure is
explicitly defined by:

{Kdp} = {k1(s) : ∂[k1(s)] = p− n = d̃, k2(s) : ∂[k2(s)] = d,

, d̃ ≤ d ≤ d∗ = p− q, . . . , ki(s) : ∂[ki(s)] ≤ d, i = 3, . . . ,m}
(24)

The above set {Kdp}, p ≥ n and with d taking values
as above, represents the general set generating dynamic
combinants of a given degree d and order p and for all
ki(s), i = 3, . . . ,m, ∂[ki(s)] ≤ d.

Proposition 5. The dynamic combinant fd(s,Kdd,P), gen-
erated by the set {Kdp} is equivalent to a constant combi-
nant of degree p that is generated by the polynomial set
Pdp , d̃ = p− n, d̃ ≤ d ≤ p− q = d∗, where:

Pdp = {sd̃p1(s), . . . , sp1(s), p1(s); sdp2(s), . . .

. . . , sp2(s), p2(s); . . . ; sdpm(s), . . . , spm(s), pm(s)}
(25)

The set Pdp is the (p, d)- power of P and has degree p and
its polynomial vector representative is:

p
d
(s) =


p

1,d̃
(s)

p
2,d

(s)
...

p
m,d

(s)

 =


Sn,d̃(p1)
Sq,d(p2)

...
Sq,d(pm)

 ẽp(s) = Sp,d ẽp(s)

(26)

where the structure of the Toeplitz type blocks above
Sn,d̃(p1), Sq,d(pi) i = 2, . . . ,m is given below:

Proposition 6. The Generalised Resultants corresponding
to the parameterized set {Kdp} are defined by:

(i) Given that p
1,d̃

(s) has degree d̃ + n = p − n + n = p,
then:

Sn,d̃(p1) =


1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0

 ∈
∈ R(d̃+1)×(p+1)

(ii) Given that p
i,d

(s) has degree d+ q which satisfies the
inequality p−(n−q) ≤ d+q ≤ p and thus d+q+1 ≤ p+1,
the structure of Sq,d(pi) is defined for all i = 2, . . . ,m
and ∀d : p− n ≤ d ≤ p− q by:

Sq,d(pi) =


0 · · · 0 bi,q · · · bi,1 bi,0 0 · · · · · · 0
0 · · · 0 0 bi,q · · · bi,1 bi,0 0 · · · 0
... 0

...
. . . . . .

...
0 · · · 0 0 · · · 0 bi,q · · · bi,1 bi,0

 ∈
p − q − d︸ ︷︷ ︸
∈ R(d+1)×(p+1)

The boundary case d = p − q, has is no zero block and
when d = p − n, then the zero block takes its maximal
dimension n− q. The matrix Sp,d(P) ∈ Rσ×(p+1), σ = p−
n − d + m(d + 1) will be called the (p, d)- Generalised
Resultant of the set P where the possible values of d are:
p − n ≤ d ≤ p − q. Clearly theSp,d(P) matrix, denoted
briefly by Sp,d, is the basis matrix of the (p, d) power of
P, Pdp .
Remark 7. We can parameterise all dynamic combinants
in terms of the degree p and the corresponding order d as:

(a) p = n : then 0 ≤ d ≤ n− q
(b) p = n+ 1 : then 1 ≤ d ≤ n− q + 1
(c) p > n+ 1 : then p− n ≤ d ≤ p− q
and their properties are defined by the properties of
corresponding (p, d)- generalised resultants Sp,d(P).



The properties of all dynamic combinants are described by
the corresponding family of matrices:

S(P) = {Sp,d(P)∀ p ≥ n and ∀ d : p− n ≤ d ≤ p− q}
(27)

which will be referred to as the family of Generalised Resul-
tants of the set P. The element of S(P) that corresponds
to p=n+q-1, d=n-1 and thus ∂[k1(s)] = p − n = q − 1.
Sn+q−1,n−1(P) is denoted in short as S̃P and it is the
Sylvester Resultant of the set P:

S̃P =


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 ∈ Rτ×(n+q), τ = [q+(m−1)n] (28)

where Sn,q−1(p1) ∈ Rq×(n+q), Sq,n−1(pi) ∈ Rn×(n+q), j =
2, . . . ,m and τ = [q + (m− 1)n].

5. SPECTRUM ASSIGNMENT OF DYNAMIC
COMBINANTS AND THE SYLVESTER RESULTANT

We now consider the problem of arbitrary assignment of
the spectrum of dynamic combinants for some appropriate
order and degree. This is part of the more problem dealing
with the parameterisation of all possible degree and order
combinants for which assignment may be achieved. The
results in this section follow from the equivalence of
dynamic combinants to constant combinants, which imply
reduction of the problem to a linear matrix equation. We
may summarise the results from [Karcanias and Galanis
(2010)] below:
Lemma 8. [Barnett (1970a)], [Fatouros and Karcanias
(2003)]. Let P be an (m,n(q)) set with Sylvester Resultant
S̃P . The set P is coprime, if and only if S̃P has full rank.
Theorem 9. Let P be an (m,n(q)) set. There exists a d
such that fd(s,K,P) is completely assignable, if and only
if the set P is coprime.
Corollary 10. For the (m,n(q)) coprime set P the follow-
ing properties hold true:

(i) There exists a combinant f̃n−1(s,K,P) of degree p =
n + q − 1 and order d = n − 1 which is completely
assignable.

(ii) All combinants f̃n−1(s,K,P) of order d = n − 1 and
degree p : n + q − 1 ≤ p ≤ 2n − 1 are also completely
assignable.

(iii) (iii) All combinants f̃p(s,K,P) of degree p > ps =
n + q − 1 have an assignable element by selection of
some appropriate order p− n ≤ d ≤ p− q.

The special combinant of order d=n-1 and degree p =
n + q − 1 is the Sylvester combinant of the set P, it is

denoted by: f̃n−1(s,K,P) =
m∑
i=1

ki(s)pi(s) ∂[k1(s)] = q−1,

and for i = 2, . . . ,m, ∂[ki(s)] = n − 1, and the zero
assignment problem is expressed as making f̃n−1(s,K,P)
an arbitrary polynomial α(s) of degree n + q − 1, i.e.
α(s) = αt ẽn+q−1(s), which is equivalent to:

[k̃1

t
; k̃2

t
; . . . ; k̃m

t
]


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 = αt or k̃
t
S̃P = αt (29)

Remark 11. Under coprimeness assumption the above
equation has always a solution and the number of degrees
of freedom is ρs = mn + 1 − 2n. For the case m = 2 the
assignment problem has a unique solution.

It is clear that two combinants of the same order d =
n − 1 and different degrees may be both assignable. In
fact, under the coprimeness assumption, both combinants
f̃n−1(s,K,P), fn−1(s,K,P) of degrees respectively n+q−1
and 2n − 1 are assignable. This raises the questions of
investigating the assignability of all combinants fd(s,K,P)
with d < n−1 and parameterize all combinants f̂d(s,K,P)
of order d, d ≤ n− 1 and degree p ≤ n+ q − 1 which are
assignable. The families with degree p > ps will be called
non-proper.
The family of all resultants of degree less or equal to ps is
referred to as proper subset and can be defined as:

Spr(P) = {Sp,d(P) : n ≤ p ≤ n+ q − 1 = ps,

, d = p− q − ρ, ρ = 0, 1, . . . , n− q} (30)

This family is partitioned by the degrees and orders as:
Proposition 12. The family of proper generalised resul-
tants of the (m,n(q)) set P is partitioned into q − 1 sets
as:

Spr(P) = {Sps}∪̇{Sps−1}∪̇ . . . ∪̇{Sn} (31)
where ps = n + q − 1 and each subset of a fixed degree is
also partitioned by the corresponding order has n− q + 1
elements.

6. CONSTRUCTION OF THE FAMILY OF THE
PROPER SYLVESTER RESULTANTS

The construction of the generalised resultants together
with the paramaterisation of the K sets leads to:
Proposition 13. The proper combinant of the (m,n(q)) set
P that has ps = n + q − 1 degree and order d = n − 1 −
ρ, ρ = 1, 2, . . . , n−q is defined by the generalised resultant
Sps,n−1−ρ defined as in (16), (17) and (18) which is also
expressed as:

Sps,n−1−ρ =


Sn,q−1(p1)

0ρ
... Sq,n−1−ρ(p2)
...

0ρ · · · Sq,n−1−ρ(pm)

 (32)

where Sn,q−1(p1), Sn,q−1−ρ(pi), i = 2, . . . ,m are the
standard Sylvester blocks. Furthermore, any two succes-
sive combinants of degree ps and order d = n− 1− ρ and
d′ = n− ρ− 2 are related as:

Sps,n−1−ρ =


Sn,q−1(p1)

0ρ
... Sq,n−1−ρ(p2)
...

0ρ · · · Sq,n−1−ρ(pm)

 ∼=


x . . . x
...

...
x . . . x

Sps,n−ρ−2


(33)



where ∼= denotes row equivalence (permutations).
Corollary 14. If Sps,n−ρ−1, Sps,n−ρ−2 are two generalised
Sylvester matrices corresponding to combinants of degree
ps and orders d = n − ρ − 1, d′ = n − ρ − 2 respectively,
then:

rank(Sps,n−ρ−1) ≥ rank(Sps,n−ρ−2) (34)
Furthermore, if Sps,n−ρ−1 has full rank then all higher
order generalised resultants are also full rank.

The above result describes rank properties of generalised
resultants that have the same degree and different orders.
The investigation of links between generalised resultants
of different degree is considered next. In the following we

will use the notation Sρq,n−1−ρ(pi) =
[
0ρ

... Sq,n−1−ρ(pi)
]
.

With this notation for ps and ps − 1 degrees we have:

Sps,n−ρ−1 =


Sn,q−1(p1)
Sρq,n−ρ−2(p2)

...
Sρq,n−ρ−2(pm)

 (35)

where d = n−1−ρ , q−1 ≤ d ≤ n−1, ρ = 0, 1, 2, . . . , n−q.
For the ps−1 degree with q−2 ≤ d′ ≤ n−2, d′ = n−2−ρ′,
ρ′ = 0, 1, 2, . . . , n− q we have:

Sps−1,n−1−ρ′ =


Sn,q−2(p1)

Sρ
′

q,n−2−ρ′(p2)
...

Sρ
′

q,n−2−ρ′(pm)

 (36)

Remark 15. The definition of Generalised Resultants read-
ily establishes the following relationship:

Sps,n−1 =


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 =



1 x . . . x
0 Sn,q−2(p1)
x x . . . x
0 Sn,q−2(p2)
.
..

.

..
x x . . . x
0 Sn,q−2(pm)


∼=

[
0 X
1 x . . . x
0 Sps−1,n−2

]

(37)

The above clearly leads to the following result:
Proposition 16. The maximal order generalised resul-
tants Sps,n−1 and Sps−1,n−2, Sps−2,n−3 etc, of degrees
ps, ps−1, ps−2,. . . etc they are related as:

Sps,n−1
∼=

[1 x . . . x
0 X
0 Sps−1,n−2

]
∼=

[
I1 X
0 X
0 Sps−2,n−3

]
∼= · · ·

· · · ∼=

[
Iµ X
0 X
0 Sps−µ,n−µ−1

]
, µ = 0, 1, . . . , q − 1

(38)

and thus:
rank(Sps,n−1) ≥ 1 + rank(Sps−1,n−2) ≥ 2+
+ rank(Sps−2,n−3) ≥ . . . ≥ q − 1 + rank(Sn,n−q)

(39)

The above result establishes an important rank property
for the generators of each of the given degree ps − µ
classes which has implications for the determination of
the least degree solution. The analysis so far indicates
a systematic process for construction of the family of
generalised resultants.

Construction of a Family of Generalised Resultants
Given the (m,n(q)) set P, which is assumed to be coprime,
we construct the Sylvester resultant that corresponds to
ps = n+ q− 1 degree combinant and has order d = n− 1.
If Sps,n−1 is the Sylvester resultant, then the family of
proper generalised resultants is defined from Sps,n−1 by
transformations on this matrix. Thus, if:

Sps,n−1 =


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 (40)

is the Sylvester Resultant, then the construction of the
different degree and order families is described below:

(a)The construction of {Sps} family: This family has
degree ps = n + q − 1 and has n-q+1 generalised
resultants of respective order d = n − ρ − 1, ρ =
0, 1, . . . , n − q, where for ρ = 0 we have Sps,n−1 as the
generator of the family. The element Sps,n−ρ−1 of {Sps}
is constructed from Sps,n−1 by keeping the first block
Sn, q−1(p1) and then eliminating the first ρ rows from
each of the blocks Sq, n−1(pi), i = 2, . . . ,m. This leads
to the construction of:

Sps,n−1−ρ =


Sn,q−1(p1)

0ρ
...Sq,n−1−ρ(p2)

...

0ρ
...Sq,n−1−ρ(pm)

 =


Sn,q−1(p1)
Sρq,n−1−ρ(p2)

...
Sρq,n−1−ρ(pm)


(41)

The above family is denoted by < Sps >= {Sps,n−1−ρ,
ρ = 0, 1, . . . , n− q} and for ρ = 0 we have the generator
of the family, the Sylvester Resultant Sps,n−1.

(b)The construction of {Sps−1} family: This family
has degree p′s = n + q − 2 and has n-q+1 generalised
resultants of respective order d′ = n − 2 − ρ, ρ =
0, 1, . . . , n − q, where for ρ = 0 we have Sps′,n−2 as
the generator of the family which is constructed from
as follows:
The generator of {Sps−1} family: Eliminate the first
row for each of the Sn,q−1(p1), Sq,n−1(pi), i = 2, . . . ,m
blocks that results in matrix blocks [0, Sn,q−2(p1)],
[0, Sq,n−2(pi)], i = 2, 3, . . . ,m. The generator of the
p′s = n + q − 2 family has order d′ = n − 2 and it
is defined from these blocks by eliminating the first zero
columns. This leads to:

Sp′s,n−2 =


Sn,q−2(p1)
Sq,n−2(p2)

...
Sq,n−2(pm)

 (42)

Having defined the generator Sp′s,n−2 of dimension
τ ′ × (n+ q − 1) where τ ′ = τ −m = q + (m− 1)n−m
we can proceed with the construction of the rest of the
elements of the p′s family by following a similar process
as before i.e..
The general element of the {Sps−1} family: The
general element Sp′s,n−2−ρ, ρ = 1, 2, . . . , n − q is con-
structed from the generator Sp′s,n−2 by keeping the first
block Sn,q−2(p1) and by eliminating the first ρ rows form
each of the Sq,n−2(pi), i = 2, . . . ,m blocks. This leads to



the construction of:

Sps′,n−2−ρ =


Sn,q−2(p1)

0ρ
...Sq,n−2−ρ(p2)

...

0ρ
...Sq,n−2−ρ(pm)

 =


Sn,q−2(p1)
Sρq,n−2−ρ(p2)

...
Sρq,n−2−ρ(pm)


(43)

The above family is denoted by: < Sps−1 >=
{Sp′s,n−2−ρ, ρ = 0, 1, 2, . . . , n− q, d′ = n− 2− ρ} where
for ρ = 0 we have the generator of the family.

(c)The construction of{Sps−µ} family: The family
with degree pµs = n + q − 1 − µ, µ = 0, 1, . . . , q − 1
follows a similar construction process that involves the
construction of the generator Spsµ,n−µ−1 and then the
elements of the family by deleting the first ρ rows ρ =
0, 1, . . . , n− q form each of the i = 2, . . . ,m blocks. The
resulting family {Sps−µ} has again n− q + 1 elements.

The above provides a systematic procedure for defining
the elements of the partitioning of the proper family of
the resultants of P.

7. THE SEARCH FOR THE MINIMAL DEGREE AND
ORDER SOLUTION

The results on the rank properties of the generalised
resultants provide the basis for the development of a
procedure that may lead to determining the least degree
and order solution of the spectral assignment problem.

Problems: For an (m,n(q)) coprime set P with Sylvester
degree ps = n + q − 1 and generators for the different
degree families {Sps,n−1;Sps−1,n−2; . . . Sps−µ,n−1−µ}, µ =
0, 1, . . . , n− q define:

• The least value of µ, say µ∗ such that the
Sps−µ∗,n−µ∗−1 ∈ Rτ̃×(ps−µ∗+1)has τ̃ ≥ ps − µ∗ + 1.

• Having defined the value of such a µ∗ consider
the {Sps−µ∗} and define the least order element
Sps−µ∗,n−µ∗−1−ρ∗ ∈ Rτ ′×(ps−µ∗+1) for which τ ′ ≥
ps − µ∗ + 1.

The resulting values for µ∗, ρ∗ define the boundaries for
the searching process and are considered next. We first
note that the partition:

Spr (P) = {Sps}∪̇{Sps−1}∪̇ . . . ∪̇{Spn} (44)

has ν + 1 = q elements since ps − ν = n. Each of the
{Sps−µ}, µ = 0, 1, . . . , q − 1 families has a generator
Sps−µ,n−1−µ ∈ R[q+(m−1)n−mµ]×[n+q−1−µ]. These rela-
tions readily lead to:
Proposition 17. The least degree generator Sps−µ,n−1−µ ∈
Rτ ′×ρ′ for which τ ≥ ρ′:

µ∗ = min{1 +mn− 2n
m− 1

, q − 1} (45)

Remark 18. The suggested computation of µ∗ above indi-
cates that none of the classes {Sps−µ} with µ ≥ µ∗ contain
an element that is assignable and thus assignment has to
be investigated only for the classes:

{Sps}, {Sps−1}, . . . , {Sps−µ∗} (46)

Given that {Sps−µ∗} contains n-q+1 elements, it is worth
finding the element {Sps−µ∗,n−1−µ∗−ρ} ∈ Rτ ′′×ρ′′ for
which τ ′′ ≥ ρ′′. This is established next.
Proposition 19. The least degree and order generalised
resultant {Sps−µ∗,n−1−µ∗−ρ∗} ∈ Rτ ′′×ρ′′ for which τ ′′ ≥ ρ′′
is defined by:

µ∗ = min{1 +mn− 2n
m− 1

, q − 1} (47)

ρ∗ = min{n− q + 1,
m(n− µ∗)− 2n+ 1 + µ∗

m− 1
} (48)

The above results provide a lower bound for the degrees
and the order for a combinant to be assignable.
Theorem 20. For the coprime (m,n(q)) set P with Sylvester
degree ps = n + q − 1 the least degree combinant p∗

that may be assignable and the least order d∗ with the
assignability property are:

p∗ = n+ q − 1− µ∗, d∗ = n− 1− µ∗ − ρ∗ (49)

where µ∗ and ρ∗ are defined by (47),(48) respectively.

Clearly, p∗, d∗ define lower bounds and thus specify the
values where the test of the rank properties makes sense.
In principle we expect the minimal values of degree and
order,p̃, d̃ to be higher than the corresponding p∗, d∗. The
above provide the basis for the development of the search-
ing process considered next. We first state the following
result:
Proposition 21. Let {Sps−µ}, µ = 0, 1, . . . , q − 1 be the
family with degree ps − µ. If the generator Sps−µ,n−1−µ
is rank deficient, then all elements of the family {Sps−µ}
are rank deficient.
Remark 22. The search for the least degree and least order
solution is restricted only to those families with full rank
generators.

We may now state the main result:
Theorem 23. Consider the (m,n(q)) coprime set P with
Sylvester degree ps = n + q − 1. The following properties
hold true:

• The least degree assignable combinant p̃ = ps − ν̃ is
defined by the maximal index for ν̃ for which

0 ≤ ν̃ ≤ µ∗ = min{1 +mn− 2n
m− 1

, q − 1} (50)

where ν̃ is the maximal index for which the generator
S
ps−ν̃,n−1−ν̃ has full rank.

• The least order assignable combinant corresponds to
the least degree p̃ = ps − ν̃ and to the least order
d̃ = n − 1 − ν̃ − ρ̃, where ρ̃ is the maximal index for
which:

0 ≤ ρ̃ ≤ ρ∗ = min{n− q + 1,
m(n− µ∗)− 2n+ 1 + µ∗

m− 1
}

(51)

and S
ps−ν̃,n−1−ν̃−ρ̃ has full rank.

The results so far lead to the following algorithm for
computing the least degree and least order solution.

Procedure for Determining the Least Degree and
Order Solutions. For some coprime (m,n(q)) set P with



Sylvester degree ps = n+q−1 determining the least degree
and least order solutions involves the following steps:

Step(1): Compute the numbers µ∗ and ρ∗ by:

µ∗ = min{1 +mn− 2n
m− 1

, q − 1}

ρ∗ = min{n− q + 1,
m(n− µ∗)− 2n+ 1 + µ∗

m− 1
}

which define the lower bounds for the assignable
degree and order:
p∗ = ps−µ∗ = n+q−1−µ∗, d∗ = n−1−µ∗−ρ∗ (52)

Step(2): Define the generators of the proper family
Spr (P) = {Sps} ∪ . . . ∪ {Sps−ν} ∪ . . . for ν ≤ µ∗ in re-
verse order i.e. Sps−ν,n−1−ν , ν = µ∗, µ∗−1, . . . , 0. Then,
test successively the ranks of Sps−µ∗+j,ν−1−µ∗+j , j =
0, 1, . . . , µ∗ and determine the least index j = α for
which the matrix generator Sps−µ∗+α,n−1−µ∗+α has full
rank. Then the least assignable degree is:

p̃ = ps − µ∗ + α = ps − ν̃ (53)
Step(3): Having defined the least degree assignable gen-

erator S
ps−ν̃,n−1−ν̃ we consider the corresponding class

{S
ps−ν̃} and for ρ ≤ ρ∗ we list its elements in reverse

order: S
ps−ν̃,n−1−ν̃−ρ, ρ = ρ∗, ρ∗ − 1, . . . , 0. Then, we

test successively the ranks of S
ps−ν̃,n−1−ν̃−ρ∗+i, i =

0, 1, . . . , ρ∗ and determine the least index i = β
for which the corresponding Generalised Resultant
S
ps−ν̃,n−1−ν̃−ρ∗+β has full rank. Then, the least assign-

-able order for the least degree p̃ is defined by:

d̃ = n− 1− ν̃ − ρ∗ + β = n− 1− ν̃ − ρ̃ (54)

The above process involves a small number of rank tests
starting from smaller order generalised resultants and
leads to the minimal degree p̃ and least order d̃ in a finite
number of steps.

8. CONCLUSIONS

The fundamentals of the theory of dynamic polynomial
combinants have been reviewed and their representation in
terms of Generalized Resultants has been established. The
conditions for existence of spectrum assignable combinants
have been established and these are equivalent to the
coprimeness of the generating set P. The parameterization
of combinants in terms of order and degree has been
shown to be central in the study of their properties and
this lays the foundations for investigating the properties
of the family of Generalised Resultants. Amongst the
key problems in this area is the minimal design problem
dealing with finding the least order and degree for which
spectrum assignability may be guaranteed. Conditions
for the characterisation of the minimal order and degree
combinant for which arbitrary assignment is possible have
been derived and a simple algorithm that produces such
solutions in few steps is given. The current framework
allows the further development of the theory of dynamic
combinants that may answer questions related to the zero
distribution of dynamic combinants, in the cases where
complete assignability (due to order and degree) is not
possible. The computation of the GCD of polynomials
[Karcanias (1987)] [Mitrouli and Karcanias (1993)] is an

essential part fro such investigations and leads to non-
assignability. The study of non-assignable combinants is
also important and it is linked to the existence of an
”approximate GCD” [Karcanias et al. (2006)].
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